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Abstract Two-pore domain potassium (K2P) channels are
implicated in an array of physiological and pathophysiological
roles. As a result of their biophysical properties, these chan-
nels produce a background leak K+ current which has a direct
effect on cellular membrane potential and activity. The regu-
lation of potassium leak from cells through K2P channels is of
critical importance to cell function, development and survival.
Controlling the cell surface expression of these channels is
one mode to regulate their function and is achieved through a
balance between regulated channel delivery to and retrieval
from the cell surface. Here, we explore the modes of retrieval
of K2P channels from the plasma membrane and observe that
K2P channels are endocytosed in both a clathrin-mediated and
clathrin-independent manner. K2P channels use a variety of
pathways and show altered internalisation and sorting in re-
sponse to external cues. These pathways working in concert,
equip the cell with a range of approaches to maintain steady
state levels of channels and to respond rapidly should changes
in channel density be required.
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Introduction

Cellular endocytosis was classically viewed as a mechanism
for protein internalisation and destruction. The identification
of multiple endocytic pathways with defined cellular destina-
tions helped recognise endocytosis as not only a means of

reducing the expression of membrane proteins but also a
mechanism to enable their rapid recycling and redistribution
[13, 28, 78]. Endocytosis is now understood to be central to
the fine control of cell surface expression and function of
many membrane proteins.

Expression of two-pore domain potassium (K2P) channels
on the cell surface is regulated at the transcriptional and post-
transcriptional levels, via controlled biogenesis, sorting and
trafficking [32, 65, 73]. These channels show constitutive
activity once inserted into the plasma membrane and their
surface expression directly impacts cell membrane potential
by supporting K+ leak from cells [43, 65, 69]. Consequently,
changes to channel surface density will result in changes in K+

leak, membrane depolarisation and hence, cellular function
and excitation. Furthermore, as the 15 K2P family members
show widespread tissue distribution and, as reviewed by
others within this issue, are proposed to play roles in cellular
mechanisms as diverse as chemoreception, adrenal develop-
ment, cardiac function, pain, sleep and anaesthesia, the control
of their surface density has the potential to impact an array of
cellular physiological and pathophysiological processes [16,
46, 47, 90]. Our understanding of the mechanisms which
regulate delivery of members of the K2P family to the cell
surface has been elucidated over the last decade and is the
focus of Renigunta et al. review (in this issue). Clearly, the
recovery of K2P channels from the plasma membrane is of
equal importance and a molecular understanding of the inter-
play between various endocytic pathways and environmental
triggers is vital to our understanding of their roles in cell
regulation. To date, we have limited knowledge of the path-
ways used by many of the K2P channels. This article will
provide an overview of our current understanding of the
predominant endocytic pathways utilised by ion channels
and present recent evidence of endocytic pathway usage by
members of the K2P family, including K2P1.1 (TWIK1),
K2P2.1 (TREK1), K2P3.1 (TASK1) K2P9.1 (TASK3) and
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K2P18.1 (TRESK). Finally, using known criteria for recruit-
ment of cargo into specific endocytic pathways, we speculate
on likely modes of endocytosis of the remaining K2P family
members.

Ion channel endocytosis

Cells use various mechanisms to internalise plasmamembrane
proteins (Fig. 1), and many proteins are capable of being
recruited to different endocytic pathways in response to envi-
ronmental triggers or as a result of constitutive or stimulated
endocytosis [17, 20, 110]. The primary congregation point for
most internalised proteins is the Rab5 (Ras-related GTPase 5)
positive early endosome [11, 64, 114]. From here, proteins can
either transit to recycling endosomes and back to the plasma
membrane or are sorted to late endosomes and finally to the
lysosome for degradation [11, 12, 93]. Similarly, at the trans-
Golgi network (TGN), proteins can shuttle to the plasma
membrane or be diverted to endosomes [12, 54]. An ARF6
(a member of the family of ADP-ribosylation factor) positive
compartment operates as an alternative route to direct delivery
of cargo to the Rab5 positive early endosomes [15, 59, 95, 96].
Proteins targeted to the ARF6 positive compartment can be
recycled directly back to the cell surface or pass from there to
early endosomes. On the whole, the endocytic routes and
subsequent trafficking pathways (degradation versus
recycling) are specified by structural features or sorting motifs

within the cytoplasmic domains of cargo proteins [11, 114].
These endocytic signals enable binding partners to target the
protein into specific pathways. While the molecular details of
these processes are still emerging, recognised motifs and
modifications have been defined.

Internalisation and intracellular sorting signals

The most extensively studied endocytic pathway is clathrin-
mediated endocytosis (CME); however, a range of additional
clathrin-independent endocytic pathways operate within dif-
ferent cell types and are proposed to account for a significant
proportion of protein endocytosis [22, 28, 53, 75, 87]. Adaptor
proteins (predominantly but not exclusively AP 1–4) together
with clathrin-associated sorting proteins (CLASPs) recruit
cargo into clathrin-coated vesicles of the CME pathway [62,
87, 92, 113]. Recruitment relies on recognition of sorting
motifs predominantly within the cytosolic termini of cargo
protein. A tyrosine motif (YXXϕ; using single amino acid
code X represents a variable residue and ϕ a hydrophobic
residue) and a di-leucine [DE]XXXL [LI] motif in channel c-
termini are recognised by clathrin adaptor protein AP-2 (μ and
α-δ2 subunits, respectively) [11]. AP-2 binding facilitates
recruitment to the clathrin bud and results in channel endocy-
tosis and lysosomal targeting. AP-1 and AP-3 also recognise
these motifs but play roles in bidirectional transport between
TGN and endosomes and sorting to lysosome (for AP-3

Fig. 1 Ion channel endocytic
pathways. Clathrin-mediated and
clathrin-independent sorting
pathways utilised by ion
channels. Channels can be
internalised by scission of
clathrin-coated pits by action of
dynamin to produce clathrin-
coated vesicles which can be
sorted to endosomes, lysosomes
and trans-Golgi network. Cargo
internalised through clathrin-
independent pathways can also be
sorted to the same destinations
following their shuffling to the
early endosomes (Rab5+).
Alternatively, cargo of the
clathrin-independent pathway can
enter ARF6+ recycling
endosomes and return directly to
the cell surface or transit to the
early endosomes and into the
endocytic pathway (recycling or
late endosomes) from there.
Prominent Rab proteins in each of
the compartments are included.
Arrows indicate possible direction
of sorting between compartments
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recruited cargo) [104, 109]. A similar motif, DXXLL or acidic
cluster/di-leucine motif, is recognised by another member of
the ARF family (ARF1) which is localised to the TGN and
endosomes and regulates membrane recruitment of AP1 and
AP3 [30, 81]. These motifs are thought not to be involved in
cargo internalisation or recycling but likely enable sorting of
transmembrane proteins from the TGN to endosomes.

Cargo bea r ing an a l te rna t ive ty ros ine mot i f
([FX]NPXY[FX]), as seen in Kir1.1, are also endocytosed
through the CME pathway [11, 21, 35]. Here, recruitment into
clathrin-coated vesicles appears to be independent of AP-2 but
depends on CLASP proteins which either contain a
phosphotyrosine-binding (PTB) domain and associate with
either of PTB proteins, Disabled-2 (Dab2) and the autosomal
recessive hypercholesterolemia (ARH) protein which localise
to clathrin-coated structures [57, 79, 80]. [FX]NPXY[FX]
motifs are also recognised by sorting nexin (SNX) proteins,
endocytic proteins which contain phox-homology (PX) do-
mains selective for endosomal phosphatidylinositol 3-
phosphate (PtdIns(3)P) and function in cargo internalisation
and endosomal sorting [19, 111, 116].

Clathrin-independent endocytosis

While CME is recognised by its distinctive cytoplasmic coat
and well-defined mechanism for selection of cell surface
cargo, evidence supports the existence of additional endocytic
routes with less distinctive pathways and cargo recruitment.
Together these pathways are grouped by their lack of depen-
dence on a clathrin coat and machinery and are termed
clathrin-independent endocytosis (CIE). As these pathways
have less distinct coated vesicles and adaptor proteins, to date,
few cargo motifs have been exclusively associated with a
single CIE pathway [45, 70]. It is currently unclear how many
CIE pathways exist and if incorporation into these pathways is
via recruitment into vesicles or bulk release from plasma
membrane [107]. Three general regulators of these pathways
have been defined. CIE pathways are divided into those
regulated by small GTPases ARF6, Cdc42/ARF1 and Rho
A [29]. Most CIE pathways are dependent on actin and
sensitive to plasma membrane cholesterol concentration [1,
45, 82, 107]. Cholesterol levels play an important regulatory
role in the function of small GTPase Cdc42, as well as the
recruitment of cholesterol interacting membrane proteins (e.g.
flotillins) which enhance some CIE pathways [6, 42, 82].
While CIE is often described as a non-selective process,
internal sorting of CIE cargo is evident. ARF6 activity regu-
lates post-endocytic trafficking of CIE cargo [34]. By activat-
ing phosphatidylinositol 4-phosphate 5-kinase ARF6 can in-
crease phosphatidylinositol 4,5 bisphosphate (PIP2).
Inactivation of ARF6 following internalisation results in re-
duced PIP2 levels and supports the fusion of endocytic

vesicles with early endosomes (containing CME cargo) [51,
55, 61]. ARF6 activation is also required for recycling of CIE
cargo usually from the recycling tubular endosomes back to
the plasma membrane through activation of phospholipase D
[55, 101]. Indeed, ion channels containing acidic cluster
(termed potassium acidic clusters or KAC) have been shown
to be recruited into an ARF6-regulated recycling pathway
[44]. Addition of KAC to cargo enables its rapid recycling
to the plasma membrane via a route which bypasses the
early endosome. ARF6, Rac, Ras or Sfc activation has
also been implicated in plasma membrane ruffling and
macropinocytosis [60, 97, 120].

Until recently, caveolae were believed to represent a dis-
tinct CIE pathway and were proposed to regulate ion channel
function by controlling their trafficking [5, 91]. Recent data
demonstrate that caveolae are static at the plasma membrane
and caveosomes remain attached to the cell surface [39, 89].
These developments suggest that caveolae may function in
organising ion channel macrodomains; however, they appear
not to enable channel endocytosis [39].

While it remains unclear whether cargo is actively selected
at the plasmamembrane or is released from retention to enable
internalisation via CIE, evidence suggests that endocytosis of
CIE cargo may occur by different pathways under different
cellular conditions [3, 110].

ARF6-dependent endocytosis is a key regulator of K2P1.1
(TWIK-1) surface expression

The wild-type protein of the first mammalian member of the
K2P channel family, K2P1.1 (two-pore domain weak-inwardly
rectifying potassium channel or TWIK) achieves low levels of
functional expression [65–67, 83]. Various explanations for
this low channel function have been proposed including chan-
nel inhibition by SUMOylation or more recently the identifi-
cation of a hydrophobic gate within the channel inner cavity
which disrupts K+ flux [4, 37, 98]. Channel removal from the
cell surface will also negatively impact channel function and
increasing evidence suggests that independently of biophysi-
cal properties of this channel; K2P1.1 shows low levels of
surface expression with a high level of regulation of its ex-
pression on the cell surface. Wang et al. provide evidence of
K2P1.1 expression within astrocytes but demonstrate that the-
se channels are predominantly located within the cytoplasm
[117]. In 2004, Decressac et al. examined subcellular
localisation of K2P1.1 in both adult mouse kidney and
Madin-Darby canine kidney (MDCK) cells stably expressing
the channel [26]. K2P1.1 localised to a subapical cellular
domain in the kidney and polarised MDCK cells, which was
confirmed to be an apical recycling compartment by co-
localisation with endobrevin (vesicle associate membrane
protein or Vamp-8) a marker for recycling endosomes and
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the perinuclear and vesiculotubular compartments. In non-
polarised cells, K2P1.1 localised to the equivalent perinuclear
recycling compartment. A di-isoleucine motif in the c-
terminus of K2P1.1 (I293,294) was demonstrated to be instru-
mental in channel internalisation. Mutation of I293 results in
increased channel surface expression and current [36]. The
motif either enhances delivery or enables internalisation of the
channel. Evidence suggests that it is the latter, as pulse chase
experiments show nascent wild-type channels with intact di-
isoleucine motifs being delivered to the cell surface and then
rapidly (<10 min) recycled to subapical compartment [36].
Channels with mutated motifs remained on the cell surface.
Investigation into the nature of the motif found that it
operates in a manner comparable to the di-leucine motif
([DE]XXXL[LI]) which enables cargo endocytosis via the
CME with the potential to be recognised by AP-1, AP-2 or
AP-3 [114]. Interestingly, Feliciangeli et al. demonstrate that
endocytosis enabled by the di-isoleucine in the c-terminus of
K2P1.1 is sensitive to the activity of the mechanochemical
GTPase, dynamin, required for vesicle scission in CME
[36]. However, a clear role for ARF6-dependent endocytosis
is also reported [26]. Elegant experiments from the same
group using active and inactive forms of the small G protein
ARF6 demonstrate that ARF6 exchange factor EFA6 interacts
with an overlapping region of K2P1.1 in an ARF6 dependent
manner [26]. Dominant negative ARF6 was shown to pro-
mote surface expression of K2P1.1 [26, 59].

These findings suggest an interplay between the CME and
CIE pathways with ARF6 enhancing CME [25, 61, 88].
D’Souza-Schorey et al. first reported this in 1995 when they
observed that a constitutively active ARF6 mutant
(ARF6Q67L) inhibited transferrin receptor internalisation
while the inactive ARF6 (ARF6T27N) prevented its recycling
to the plasma membrane [25]. A clear link between CME
pathways and ARF6 is apparent. Indeed, an ARF6 GTPase
activating protein (GAP), SMAP1, which converts ARF6
from GTP bound to an inactive GDP bound state, directly
binds clathrin. Additionally ARF6-GTP has been proposed as
a source of GTP for dynamin-dependent scission of clathrin
buds [88]. Active ARF6 may also enable recruitment of AP2
to the plasma membrane due to its role in PIP2 production
which could then recruit K2P1.1 to clathrin coated pits via it c-
terminal di-isoleucine motif [51, 61].

The mode of interplay between the CME pathway and
ARF6 for K2P1.1 sorting has yet to be fully ascertained;
however, it is clear that K2P1.1 is internalised to a subapical
compartment via di-isoleucine motif and is recycled in an
ARF6-dependent manner, with the consequence of K2P1.1
being sequestered below the cell surface [26, 36]. This cellular
strategy would explain the maintenance of a low level of this
leak channel on the cell surface that could then be rapidly
delivered to the plasma membrane or transported onto the
endocytic pathway (early endosomes) in response to external

cues. Indeed, activation of the serotonergic receptor results in
increased K2P1.1 surface expression in the wild-type protein
but not when the di-isoleucine motif has been disrupted [36].
5-HT has previously been demonstrated to inhibit entorhinal
cortex neurons in a K2P1.1-dependent manner [27]. These
data provide insight into this mechanism and suggest that 5-
HT triggers the release of K2P1.1 from the subapical recycling
compartment increasing its cell surface expression and
resulting in neuronal depolarisation. The molecular mecha-
nisms of many aspects of these regulatory processes are still
lacking significant detail but a clear role of endocytosis in the
regulation of K2P1.1 is undeniable.

Does bulk endocytosis control surface expression
of K2P18.1 (TRESK)?

An alternative strategy for neuronal cells to control the surface
expression of potassium leak channels is proposed for
K2P18.1 (also TWIK-related spinal cord potassium channel
or TRESK). K2P18.1 exhibits predominantly neuronal expres-
sion and disruption of its function has been implicated in
playing a role in migraine with aura [33, 63, 108]. TRESK
contains a consensus site for the calcium-dependent phospha-
tase, calcineurin, within its large cytosolic loop between trans-
membrane domains 2 and 3 [24]. Calcineurin plays a role in
activity-dependent bulk endocytosis (ADBE) in nerve termini
[119]. While no direct experimental evidence has been pro-
vided for TRESK internalisation via ADBE in activated nerve
termini, its recruitment to the complex and the indiscriminate
nature of this endocytic pathway certainly supports the
concept.

K2P2.1 binding partners impact channel plasma
membrane density

Following K2P2.1’s (TWIK-related potassium channel 1 or
TREK-1) molecular and biophysical characterisation, it rap-
idly became recognised as an important regulator of neuronal
function [84]. K2P1.1 is implicated in depression, polymodal
pain perception, diseases related to blood-brain barrier dys-
function and anaesthesia [2, 9, 38, 48, 52, 56]. Due to the
neurological physiology and pathophysiology it impacts,
modes of long-term regulation of K2P2.1 are particularly
sought after. A-kinase anchoring protein (AKAP150),
microtubule-associated protein (Mtap2) and neurotensin re-
ceptor 3 (NTSR3 also known as sortilin) have been identified
as binding partners to K2P2.1 [76, 105, 106]. Both Mtap2 and
NTSR3 are proposed to act by altering channel density. While
Mtap2 interaction with K2P2.1 was shown to enhance channel
density, it is unclear if this is due to enhanced delivery or
reduced recovery at the plasma membrane [105]. NTSR3
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promotes endocytosis and lysosomal sorting of neuronal car-
go [18, 115, 118]. Interaction of a partial propeptide of
NTSR3 (referred to as Spadin) with K2P2.1 resulted in 80 %
of the complex being observed within the cell [76]. The
researchers propose that activation of NTSR3 (through appli-
cation of Spadin) results in endocytosis of both receptor and
channel with likely targeting to TGN or lysosomes. To date,
only protein interactions and channel density reduction have
been confirmed experimentally and the precise pathways and
channel destination have yet to be determined.

K2P3.1 utilises both CME and CIE pathways

K2P3.1 (TWIK-related acid sensitive potassium channel 1 or
TASK-1) and K2P9.1 (TWIK-related acid sensitive potassium
channel 3 or TASK-3) show a high degree of homology in
sequence and biophysical properties with both channels sensi-
tive to external pH and regulated by similar modulators [8, 31,
58, 99]. These channels have been proposed to function as
heterodimers in some cells and indeed the forward transport of
both channels appears to undergo similar regulation through
post-translational modification and binding partner recruitment
[23, 41, 71, 72, 85, 86, 100, 103, 121]. However, when
considering K2P3.1 and K2P9.1 internalisation and subsequent
sorting, these channels appear to diverge in their regulation. As
the c-termini of these channels have a critical role in channel
sorting and the c-termini of K2P3.1 andK2P9.1 show only 34%
homology, this divergence is not wholly unexpected.

Under unstimulated conditions, both K2P3.1 and K2P9.1 are
internalised and appear within the early endosome within
minutes of permitting endocytosis (through removal of tem-
perature block) [71]. Quantification of the number of size-
defined vesicles containing either of the internalised channels
enabled comparison of the transit of both channels through the
endocytic system. At specific time points, a higher number
(>50 % increase) of endocytosed vesicles containing K2P9.1
compared to K2P3.1 were consistently observed [71]. This
suggests that under unstimulated conditions either K2P9.1 is
endocytosed more readily than K2P3.1 or indeed that it is
retained within the endocytic pathway for longer (i.e. not
shuttled back to the membrane or degraded). Both channels
were found to colocalise with clathrin, and the number of
endocytosed vesicles positive for both clathrin and either of
the channels was dramatically reduced (∼50 % reduction)
following disruption of the CME pathway by dynasore (a
powerful dynamin GTPase inhibitor which prevents fission
of clathrin buds) [40, 71, 74, 102]. Continued channel
internalisation following inhibition of clathrin bud fission sug-
gests the possibility of these channels also utilising an alternate
or clathrin independent pathway for internalisation [71].
Fractionation experiments performed by Inoue et al. support
this view as they observed the majority of K2P9.1 within a cell

fraction in which transferrin receptor (a known cargo for CME)
was also observed, but while K2P3.1 was also observed within
this fraction, it was also observed in a fraction containing
flotillin which is suggestive of CIE [74]. Endocytosed channels
were observed in both the recycling (Rab 11 positive vesicles)
and degradative (Lamp1 positive) pathways in a number of
studies using cells with either endogenous or heterologous
channel expression [40, 71, 74, 102].

StimulatedK2P3.1 internalisation has been demonstrated in a
number of systems and is proposed to utilise specific motifs
within the channel c-terminus. Nerve growth factor (NGF)
activation of tyrosine kinase, TrKA, has been proposed to
induce CME of K2P3.1 (but not K2P9.1) [74]. NGF treatment
of either acutely isolated rat adrenal medulla cells which ex-
press K2P3.1 channels or a rat adrenal medulla cell line from a
pheochromocytoma (PC12 cells) which express both K2P3.1
and K2P9.1 resulted in decreased functional expression of
K2P3.1 and increased cytosolic expression of the channel [74].
Matsuoka et al. propose NGF stimulates K2P3.1 internalisation
through CME. However, the possibility that some of the ob-
served effects following NGF treatment (decreased functional
expression and increased cytosolic localisation of the channel)
are due to disruption of channel forward transport is not
completely ruled out. A di-leucine motif (LL263/264) within
K2P3.1 c-terminus has been implicated in recruiting the channel
to clathrin pits, while two c-terminal potential tyrosine motifs
(YAEMorYSIP; Y317 andY340 in rat K2P3.1) were found not
to contribute to the effect [74].

While Y317 was found not to be essential to NGF induced
channel internalisation, a separate study found this motif to be
critical to K2P3.1 endocytosis in the human ortholog.
Reningunta et al. demonstrate a direct interaction between a
member of the Q-SNARE family (Q-soluble N-
ethylmaleimide-sensitive factor attachment protein receptor)
syntaxin 8 (stx8) and K2P3.1 and utilising recombinant expres-
sion systems demonstrate that stx8 suppresses K2P3.1 current
and surface expression [102]. This interaction was not observed
with either stx7 (another member of the SNARE family) or
K2P9.1. SNAREs operate by using a combination of various
members of the Q and R-SNAREs to enable organelle-specific
docking and fusion [50, 112]. Regulation of K2P3.1 surface
expression by stx8 is lost by ablating a region of interaction on
stx8 or by disrupting CME. Disruption of the Y317 (critical to
YAEVmotif in humanK2P3.1 but absent fromK2P9.1) disabled
stx8-associated internalisation of K2P3.1 [102]. This work fur-
ther demonstrated that both stx8 and K2P3.1 are endocytosed in
a cooperative manner and within the same vesicles. An attrac-
tive hypothesis proposed by the authors is that cooperative
recruitment of K2P3.1 and stx8 may influence their final desti-
nation through interaction with SNARE proteins localised to
distinct subcellular compartments.

Protein kinase C (PKC) activation results in a decrease in
K2P3.1 current and cell surface expression [7, 40]. Human
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embryonic kidney (HEK293T) cells heterologously express-
ing K2P3.1 or rat cerebellar granule neuron (CGN) with en-
dogenous expression of the channel treated with phorbol
myristate acetate (PMA), a potent activator of PKC resulted
in K2P3.1 but not K2P9.1 internalisation and localisation with-
in distinct intracellular puncta [40]. Similarly, activation of
mGluR had a comparable effect with reduced current and
increased K2P3.1 internalisation through CME. An REKmotif
analogous to a PKC-endocytosis motif identified and
characterised in the dopamine transporter was found to be
central to PKC-mediated endocytosis of K2P3.1 but lacking
in K2P9.1 [40, 49, 68]. Gabriel et al. propose that this motif
(SRERKLQYSIP) is similar to a mode II 14-3-3 bindingmotif
and present evidence supporting the hypothesis that PKC-
mediated endocytosis requires 14-3-3 [40]. The rationale for
targeting 14-3-3β alone or the identification of the requisite
phosphorylation site were lacking but intriguingly 14-3-3β
knockdown had a negative impact on both channel cell sur-
face expression and current following PKC activation. These
findings present interesting avenues to explore in terms of the

role played by 14-3-3 in balancing K2P3.1 forward transport
and retrieval from the cell surface.

How much can signaling motifs tell us?

Endocytic signaling motifs are not conserved sequences but
rather degenerate motifs in which two or three residues are
critical for signal recognition. Recruitment to specific path-
ways is influenced by motif sequence; however, the ultimate
fate of cargo following internalisation (degradation or
recycling) is often determined not only by the pathway into
which the protein is recruited but also by the affinity of
adaptor proteins for variations within motif sequences [3,
110]. YXXϕ motifs, for example are recognised by AP pro-
teins and are essential for the rapid internalisation of cargo
from the plasma membrane [10, 114]. However, their function
is not limited to endocytosis, since the same motif is implicat-
ed in the targeting of transmembrane proteins to lysosomes
and lysosome-related organelles [10]. Evidence suggests that

Table 1 Putative endocytic and sorting signaling motifs identified through in silico analysis of human K2P family members. Residue number of critical
or first residue within the human motif provided. Residues critical to motif recognition are in bold

Yxxϕ DExxxL[LI] KAC Pro-rich Lϕxϕ[DE]

K2P1.1 (TWIK-1) Y167FHL DQVHI293I D287KDED L261VVLE

K2P2.1 (TREK-1) Y254FVV

Y277LDF

Y281KPV

Y348DKF

K2P3.1 (TASK-1) Y138LLH EHRAL263L E252DEKRD

Y300AEV

Y323SIP

Y353SDT

K2P4.1 (TRAAK) P306PPPCP L344aFID

K2P5.1 (TREK-2) Y301NDL L413IFQD

Y410HPL L429SDEE

Y483EQL L443AGEE

L459NMGE

K2P6.1 (TWIK-2) Y308ASL D282EDDRVD P272PPCP

K2P9.1 (TASK-3) E252DERRDAEE

K2P10.1 (TREK-2) Y478KTF D482EEKKEEE

K2P12.1 (THIK-2) D356SDAE P6RPPP

K2P13.1 (THIK-1) E335SDTD L291RKMD

K2P15.1 (TASK-5) P261SPRPP

K2P16.1 (TALK-1) P301LPLP

K2P17.1 (TASK-4) Y236PLW D295REPE

Y241KNM

K2P18.1 (TRESK) Y123PVT

Y315FCF

Y343IIV

Y365KNV
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the variable residues (XXϕ) within the motif together with the
phosphorylation state of the motif are central to recruiting
specific AP isoforms and hence cargo destination. For exam-
ple, YXXϕ signals involved in lysosomal targeting custom-
arily have a Gly preceding the critical Tyr, while acidic X
residues result in lysosomal sorting [10, 14, 114]. This sce-
nario is made all the more complicated by many transmem-
brane proteins containing more than one motif (Table 1) and
the functionality of the motif being influenced by its position
within the channel cytosolic domain and flanking residues.
The impact of post-translational modifications within the mo-
tif and surrounding residues (ubiquitination, palmitoylation,
phosphorylation, glycosylation) have also been well docu-
mented to impact motif usage and cargo fate [17, 20, 77,
94]. When examining the K2P family of channels for promi-
nent endocytic motifs, the majority of channels displayed an
array of putative endocytic and sorting motifs (Table 1).
Interestingly, none of the K2P channels contained the tyrosine
motif [FX]NPXY[FX], previously identified in other ion chan-
nels [35]. Many K2P channels displayed multiple putative Yxxϕ
motifs with up to four in some channels (Table 1). Many other
membrane proteins contain a number of tyrosine motifs which
on experimental analysis are not functionally relevant or may
only be utilised under specific environmental conditions [17,
110]. Di-leucine or di-isoleucine motifs were only identified in
K2P1.1 and K2P3.1 and both of these have been demonstrated to
be functionally significant [36, 74]. Putative short proline-rich
domains, which are proposed to enable sorting between
endosomes and the TGN, were identified in five K2P channels,
and for K2P15.1 (TASK-5) and K2P16.1 (TALK-1) these were
the only putative endocytic sorting motifs identified (Table 1).
While putative short acidic clusters (KAC) which are associated
with protein retention within ARF6 positive recycling compart-
ments were found in eight of the 14 human K2P channels
examined [44]. As only a handful of the predicted motifs have
been experimentally determined, and motif usage depends on
both protein and cellular context, functionalmotifs and the fate of
channels due to possession of a signal motif will need to be
explored experimentally.

Even with our limited understanding of the endocytic pro-
cesses utilised to regulate K2P channel functional expression,
it is clear how versatile and important endocytosis could be in
controlling the cell surface expression of such physiologically
relevant proteins. As these channels enable K leakage from
cells when they are expressed on the cell surface, their regu-
lated removal from the plasmamembrane and retention within
recycling endosomes close to the cell surface appears a
shrewd strategy to rapidly alter channel density in response
to environmental stimuli. Equally, sorting these channels for
destruction to regulate the optimal cell surface density either
under unstimulated or stimulated conditions is a mode of
regulation which if molecularly defined could have significant
physiological and clinical implications.
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