99 research outputs found

    Impact-Induced Melting of Near-Surface Water Ice on Mars

    Get PDF
    All fresh and many older Martian craters with diameters greater than a few km are surrounded by ejecta blankets which appear fluidized, with morphologies believed to form by entrainment of liquid water. We present cratering simulations investigating the outcome of 10 km s–1 impacts onto models of the Martian crust, a mixture of basalt and ice at an average temperature of 200 K. Because of the strong impedance mismatch between basalt and ice, the peak shock pressure and the pressure decay profiles are sensitive to the mixture composition of the surface. For typical impact events, about 50% of the excavated ground ice is melted by the impact-induced shock. Pre-existing subsurface liquid water is not required to form observed fluidized ejecta morphologies, and the presence of rampart craters on different age terranes is a useful probe of ground ice on Mars over time

    Membrane protein biogenesis at the ER: the highways and byways

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-02-18, rev-recd 2021-04-19, accepted 2021-04-28, pub-electronic 2021-06-05Article version: VoRPublication status: PublishedFunder: Biochemical Society; Id: http://dx.doi.org/10.13039/501100000373Funder: Wellcome Trust; Grant(s): 204957/Z/16/ZThe Sec61 complex is the major protein translocation channel of the endoplasmic reticulum (ER), where it plays a central role in the biogenesis of membrane and secretory proteins. Whilst Sec61‐mediated protein translocation is typically coupled to polypeptide synthesis, suggestive of significant complexity, an obvious characteristic of this core translocation machinery is its surprising simplicity. Over thirty years after its initial discovery, we now understand that the Sec61 complex is in fact the central piece of an elaborate jigsaw puzzle, which can be partly solved using new research findings. We propose that the Sec61 complex acts as a dynamic hub for co‐translational protein translocation at the ER, proactively recruiting a range of accessory complexes that enhance and regulate its function in response to different protein clients. It is now clear that the Sec61 complex does not have a monopoly on co‐translational insertion, with some transmembrane proteins preferentially utilising the ER membrane complex instead. We also have a better understanding of post‐insertion events, where at least one membrane‐embedded chaperone complex can capture the newly inserted transmembrane domains of multi‐span proteins and co‐ordinate their assembly into a native structure. Having discovered this array of Sec61‐associated components and competitors, our next challenge is to understand how they act together in order to expand the range and complexity of the membrane proteins that can be synthesised at the ER. Furthermore, this diversity of components and pathways may open up new opportunities for targeted therapeutic interventions designed to selectively modulate protein biogenesis at the ER

    An alternative pathway for membrane protein biogenesis at the endoplasmic reticulum.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: epub 2021-07-01, ppub 2021-07-01Publication status: PublishedFunder: Ball State University (Ball State); Grant(s): Provost Startup AwardFunder: Wellcome Trust; Grant(s): 204957/Z/16/ZFunder: NIGMS NIH HHS; Grant(s): R15 GM116032The heterotrimeric Sec61 complex is a major site for the biogenesis of transmembrane proteins (TMPs), accepting nascent TMP precursors that are targeted to the endoplasmic reticulum (ER) by the signal recognition particle (SRP). Unlike most single-spanning membrane proteins, the integration of type III TMPs is completely resistant to small molecule inhibitors of the Sec61 translocon. Using siRNA-mediated depletion of specific ER components, in combination with the potent Sec61 inhibitor ipomoeassin F (Ipom-F), we show that type III TMPs utilise a distinct pathway for membrane integration at the ER. Hence, following SRP-mediated delivery to the ER, type III TMPs can uniquely access the membrane insertase activity of the ER membrane complex (EMC) via a mechanism that is facilitated by the Sec61 translocon. This alternative EMC-mediated insertion pathway allows type III TMPs to bypass the Ipom-F-mediated blockade of membrane integration that is seen with obligate Sec61 clients

    ‘All the corridors are the same’: a qualitative study of the orientation experiences and design preferences of UK older adults living in a communal retirement development

    Get PDF
    Environments need to be designed such that they support successful orientation for older adults and those with dementia who often experience marked difficulties in their orientation abilities. To better understand how environments can compensate for decreasing orientation skills, voice should be given directly to those experiencing dementia to describe how they find their way and to understand their design preferences. This study explored the navigational experiences and design preferences of older adults with memory difficulties living in a retirement development. In-depth semi-structured interviews with 13 older adults experiencing memory difficulties were conducted. All participants were residents of one retirement development in the United Kingdom. Questions began broadly, for example, to describe their experiences of navigating in their living environment, before discussing any specific navigation difficulties in detail. Thematic analysis identified three main themes: highlighting environmental design that causes disorientation, strategies to overcome disorientation, and residents’ suggestions to improve the design. The design suggestions were particularly informative, heavily focusing on the importance of having memorable and meaningful spaces which were favoured more than signage as an orientation aid. The findings demonstrate the need to consider environmental design to support orientation for those with memory difficulties. Of particular importance is the use of meaningful and relevant landmarks as orientation aids which can additionally stimulate conversation and increase wellbeing. Given the range of suggestions in dementia-friendly design guidelines aimed to support orientation, it is crucial to speak directly to those living in different environments to learn how they find their way around and what design works in their environment

    Confidence-Building Measures for Artificial Intelligence: Workshop Proceedings

    Full text link
    Foundation models could eventually introduce several pathways for undermining state security: accidents, inadvertent escalation, unintentional conflict, the proliferation of weapons, and the interference with human diplomacy are just a few on a long list. The Confidence-Building Measures for Artificial Intelligence workshop hosted by the Geopolitics Team at OpenAI and the Berkeley Risk and Security Lab at the University of California brought together a multistakeholder group to think through the tools and strategies to mitigate the potential risks introduced by foundation models to international security. Originating in the Cold War, confidence-building measures (CBMs) are actions that reduce hostility, prevent conflict escalation, and improve trust between parties. The flexibility of CBMs make them a key instrument for navigating the rapid changes in the foundation model landscape. Participants identified the following CBMs that directly apply to foundation models and which are further explained in this conference proceedings: 1. crisis hotlines 2. incident sharing 3. model, transparency, and system cards 4. content provenance and watermarks 5. collaborative red teaming and table-top exercises and 6. dataset and evaluation sharing. Because most foundation model developers are non-government entities, many CBMs will need to involve a wider stakeholder community. These measures can be implemented either by AI labs or by relevant government actors

    Reservoir Computing with Thin-film Ferromagnetic Devices

    Get PDF
    Advances in artificial intelligence are driven by technologies inspired by the brain, but these technologies are orders of magnitude less powerful and energy efficient than biological systems. Inspired by the nonlinear dynamics of neural networks, new unconventional computing hardware has emerged with the potential for extreme parallelism and ultra-low power consumption. Physical reservoir computing demonstrates this with a variety of unconventional systems from optical-based to spintronic. Reservoir computers provide a nonlinear projection of the task input into a high-dimensional feature space by exploiting the system's internal dynamics. A trained readout layer then combines features to perform tasks, such as pattern recognition and time-series analysis. Despite progress, achieving state-of-the-art performance without external signal processing to the reservoir remains challenging. Here we show, through simulation, that magnetic materials in thin-film geometries can realise reservoir computers with greater than or similar accuracy to digital recurrent neural networks. Our results reveal that basic spin properties of magnetic films generate the required nonlinear dynamics and memory to solve machine learning tasks. Furthermore, we show that neuromorphic hardware can be reduced in size by removing the need for discrete neural components and external processing. The natural dynamics and nanoscale size of magnetic thin-films present a new path towards fast energy-efficient computing with the potential to innovate portable smart devices, self driving vehicles, and robotics

    Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time

    Get PDF
    Background Laser-Doppler imaging (LDI) of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique. Methods We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool. Results Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA), site and cause of burn, day of LDI scan, burn center). It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small. Conclusion Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are that age and %TBSA are not important predictors of healing time when the LDI results are known, whereas gender does influence recovery time, even when blood flow is controlled for. The conclusion regarding the palette is that an optimum three-color palette can be chosen 'automatically', but the optimum choice of a 5-color palette cannot be made solely by optimizing the percentage of correct diagnoses

    N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rastetter, E., Kwiatkowski, B., Kicklighter, D., Plotkin, A., Genet, H., Nippert, J., O’Keefe, K., Perakis, S., Porder, S., Roley, S., Ruess, R., Thompson, J., Wieder, W., Wilcox, K., & Yanai, R. N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry. Ecological Applications, (2022): e2684, https://doi.org/10.1002/eap.2684.We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2, warming, and decreased precipitation combined because higher water-use efficiency with elevated CO2 and higher fertility with warming compensate for responses to drought. Response to elevated CO2, warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2 and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C-nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2 and climate change.This material is based on work supported by the National Science Foundation under Grant No. 1651722 as well through the NSF LTER Program 1637459, 2220863 (ARC), 1637686 (NWT), 1832042 (KBS), 2025849 (KNZ), 1636476 (BNZ), 1637685 (HBR), 1832210 (HFR), 2025755 (AND). We also acknowledge NSF grants 1637653 and 1754126 (INCyTE RCN), and DOE grant DESC0019037. We also acknowledge support through the USDA Forest Service Hubbard Brook Experimental Forest, North Woodstock, New Hampshie (USDA NIFA 2019-67019-29464) and Pacific Northwest Research Station, Corvallis, Oregon

    Maternal prenatal anxiety and depression and trajectories of cardiometabolic risk factors across childhood and adolescence: a prospective cohort study

    Get PDF
    Objectives: Quantifying long-term offspring cardiometabolic health risks associated with maternal prenatal anxiety and depression can guide cardiometabolic risk prevention. This study examines associations between maternal prenatal anxiety and depression, and offspring cardiometabolic risk from birth to 18 years.Design: This study uses data from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort.Participants: Participants were 526-8,606 mother-offspring pairs from the ALSPAC cohort. Setting: British birth cohort set, Bristol, UK. Primary and secondary outcomes: Exposures were anxiety (Crown-Crisp Inventory score) and depression (Edinburgh Postnatal Depression Scale score) measured at 18 and 32 weeks gestation. Outcomes were trajectories of offspring body mass index; fat mass; lean mass; pulse rate; glucose, diastolic and systolic blood pressure; triglycerides, high-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol, and insulin from birth/early childhood to 18 years. Exposures were analysed categorically using clinically relevant, cut-offs and continuously to examine associations across the distribution of prenatal anxiety and depression.Results: We found no strong evidence of associations between maternal anxiety and depression, and offspring trajectories of cardiometabolic risk factors. Depression at 18 weeks was associated with higher SBP at age 18 (1.62 mmHg (95% CI, 0.17, 3.07). Anxiety at 18 weeks was also associated with higher DBP at 7 years in unadjusted analyses (0.70 mmHg (95% CI, 0.02, 1.38); this difference persisted at age 18 years (difference at 18 years; 0.89 mmHg (95% CI, 0.05, 1.73). No associations were observed for body mass index; fat mass; lean mass; pulse rate; glucose; triglycerides, high-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol, and insulin. Conclusions: This is the first examination of maternal prenatal anxiety and depression and trajectories of offspring cardiometabolic risk. Our findings suggest that prevention of maternal prenatal anxiety and depression may have limited impact on offspring cardiometabolic health across the first two decades of life
    corecore