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The Sec61 complex is the major protein translocation channel of the endo-

plasmic reticulum (ER), where it plays a central role in the biogenesis of

membrane and secretory proteins. Whilst Sec61-mediated protein transloca-

tion is typically coupled to polypeptide synthesis, suggestive of significant

complexity, an obvious characteristic of this core translocation machinery

is its surprising simplicity. Over thirty years after its initial discovery, we

now understand that the Sec61 complex is in fact the central piece of an

elaborate jigsaw puzzle, which can be partly solved using new research

findings. We propose that the Sec61 complex acts as a dynamic hub for co-

translational protein translocation at the ER, proactively recruiting a range

of accessory complexes that enhance and regulate its function in response

to different protein clients. It is now clear that the Sec61 complex does not

have a monopoly on co-translational insertion, with some transmembrane

proteins preferentially utilising the ER membrane complex instead. We also

have a better understanding of post-insertion events, where at least one

membrane-embedded chaperone complex can capture the newly inserted

transmembrane domains of multi-span proteins and co-ordinate their

assembly into a native structure. Having discovered this array of Sec61-as-

sociated components and competitors, our next challenge is to understand

how they act together in order to expand the range and complexity of the

membrane proteins that can be synthesised at the ER. Furthermore, this

diversity of components and pathways may open up new opportunities for

targeted therapeutic interventions designed to selectively modulate protein

biogenesis at the ER.

Introduction

Integral membrane proteins are often anchored into

their host membrane via one or more hydrophobic

polypeptide segments, or transmembrane domains

(TMDs), that span the entire width of the phospho-

lipid bilayer. These so-called ‘transmembrane’ proteins

(TMPs) represent ~ 25% of human genes, are diverse
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in structure and perform a plethora of essential cellular

functions [1]. The endoplasmic reticulum (ER) is a

major site for the biogenesis of such integral membrane

proteins, acting as their entry point into the secretory

pathway, an elaborate network tasked with the synthe-

sis, folding and transport of both membrane and secre-

tory proteins (Fig. 1A) [2,3]. Given the molecular

crowding of the cytosol and the biophysical constraints

of the lipid bilayer, most TMPs enter a dedicated ER

targeting pathway(s) as soon as an appropriate subcel-

lular targeting signal has emerged from the ribosome.

Upon arrival at the ER, these nascent polypeptides are

threaded into and across its membrane via specialised

protein translocation channels that typically act con-

comitantly with translation [4].

Amongst these ER translocation channels, the het-

erotrimeric Sec61 complex (a, b, c subunits), or Sec61

‘translocon’ [5], is the principal protein-conducting

channel through which secretory proteins are fully

translocated across the ER membrane. TMPs also

access the Sec61 complex, however, in contrast to

secretory proteins, they are only partially translocated,

with their TMD(s) exiting the Sec61 complex via a lat-

eral gate. This enables stable membrane integration

and thereby constrains their membrane topology as

they navigate the secretory pathway towards the

plasma membrane. Single-span TMPs can be grouped

into different types based on their structural features

and the location of their N and C termini relative to

the ER membrane (Fig. 1B). Here, we will classify

them as type I, type II or type III TMPs and tail-an-

chored (TA) proteins (Fig. 1B; [6]). Based on the fea-

tures of their first TMD, this characterisation can, in

principle, also be extrapolated to multi-span TMPs

(type I-like, type II-like, type III-like). However, given

that the membrane insertion of multiple TMDs is not

necessarily sequential and may also be co-operative

[7,8], such an approach may be of limited use when

trying to understand the biogenesis of multi-span

TMPs.

It is increasingly clear that TMP biogenesis at the

ER is a substrate-selective and mechanistically diverse

process that involves a range of molecular machines

well beyond the canonical Sec61 translocon [9]. Herein,

we review the rapidly expanding field of co-transla-

tional membrane protein biogenesis at the mammalian

ER; that is, when membrane insertion is concomitant

with ribosomal polypeptide synthesis. Focussing on

the mechanisms of ER targeting, together with protein

translocation across, and TMD insertion into, the ER

membrane, where relevant, we draw upon molecular

details obtained in bacterial and yeast systems so as to

gain prospective insight into mammalian mechanisms

of co-translational TMP biogenesis that are yet to be

fully elucidated.

ER membrane targeting: the SRP-
delivery system

Within the arsenal of ‘accessory components’

employed by the Sec61 complex [9], the signal recogni-

tion particle-(SRP) and its ER membrane-localised

cognate binding partner, the SRP receptor, constitute

the first key players that are encountered by the major-

ity of proteins destined for the secretory pathway.

Together, these complexes mediate protein targeting to

the ER [4], typically by virtue of an N-terminal

hydrophobic stretch of amino acids [13], or signal

sequence, that acts as a ‘molecular postcode’ and, in

many cases, is cleaved [11] from the newly synthesised

polypeptide once it is committed to membrane translo-

cation and/or insertion.

Not all polypeptides that are destined for the ER

are equipped with a so-called cleavable N-terminal sig-

nal sequence (Fig. 1B). Hence, in the case of type II

and III TMPs their hydrophobic TMD(s) act as ‘sig-

nal-anchor’ sequences, emulating the functions of N-

terminal ER signal sequences and targeting nascent

TMPs to the ER prior to their integration into the

membrane bilayer [7,8]. Thus, whether cleavable or

not, these hydrophobic regions within TMPs act as

‘signal flares’, efficiently recruiting and interacting with

the SRP at an early stage during the synthesis of the

nascent polypeptide. Hence, the SRP-delivery system

predominantly operates co-translationally, targeting a

range of structurally diverse single- and multi-span

TMP clients to the ER for co-translational membrane

insertion. Notable exceptions include TMPs whose ER

targeting and integration occurs after protein synthesis

is completed (post-translationally), as best exemplified

by the TA proteins (cf. Fig. 1B) [14–16]. In yeast, the

proteome-wide effects of rapid SRP depletion suggest

it is essential for the efficient ER targeting of TMPs

utilising their TMDs as signal-anchor sequences [17].

In contrast, SRP is only required for the ER delivery

of ~ 14% of yeast proteins with cleavable N-terminal

signal sequences [17]. Likewise in bacteria, SRP is

essential for membrane targeting of inner-membrane

proteins utilising signal-anchor sequences. However, it

is dispensable for the targeting of many secreted pre-

cursor proteins with N-terminal signal sequences

[18,19]. Although it is generally assumed that SRP

plays a wider role in the ER targeting of proteins that

bear N-terminal signal sequences in mammalian cells,

proteome-wide analyses that directly test this hypothe-

sis are presently lacking.
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Fig. 1. Accessing the secretory pathway via Sec61: ‘many hands make light work’ (A) Newly synthesised secretory proteins and TMPs are

targeted to and translocated into the ER lumen in order to enter the secretory pathway (green arrow). Mature proteins that have progressed

through the Golgi apparatus are then delivered to the plasma membrane (PM) where they may be either incorporated or secreted (red

arrow). (B) Representative structures of four classes of single-span TMPs: type I TMPs are equipped with an N-terminal signal sequence

(s.s.), a lumenally translocated N terminus and a stop-transfer sequence (ST) which acts as the TMD; type II and type III TMPs do not

possess an N-terminal signal sequence and have a signal-anchor sequence (SA) and, respectively, translocate their C and N termini into the

ER lumen; tail-anchored (TA) proteins are topologically and structurally similar to type II TMPs, but their extremely short C-terminal region

necessitates that their insertion into the ER occurs post-translationally. (C) The Sec61 complex can call on a diverse repertoire of additional

cellular machineries to facilitate various aspects of its role in co-translational TMP biogenesis including: ER targeting (top left inset), Sec61

channel gating (top right inset), TMD insertion and TMD folding/assembly (bottom left inset). Additional events, such as N-linked

glycosylation (via OST, oligosaccharyltransferase complex), signal sequence cleavage (via SPC, signal peptidase complex) and ER chaperone-

mediated lumenal folding (see BiP, binding immunoglobulin protein; Grp94; PDI, protein disulphide isomerase; ERp57; CRT, calreticulin), are

also coupled to the actions of the Sec61 translocon (bottom right inset), and we direct the reader to recent articles that review these

processes [9–12]. Schematics are illustrative only and are not drawn to scale.
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In mammals, the cytosolic targeting factor SRP is a

multimeric complex of six protein subunits assembled

onto a core 7S RNA (Fig. 2A) [20–22], and is first

recruited by signal sequences/anchors from within the

ribosomal exit tunnel [23,24]. As the exit tunnel typi-

cally shields the first ~ 40 amino acid residues of nas-

cent polypeptide chains from the cytosol [25], such early

SRP recruitment is presumed to occur via ribosome-

nascent chain (RNC)-induced structural rearrangements

within the actively translating ribosome [26]. Once

recruited, SRP binds to the ribosome at a location that

is partly occupied by the nascent polypeptide-associated

complex (NAC); a co-translational chaperone that

enhances SRP-dependent targeting by increasing the

fidelity of signal sequence recognition by SRP [27] and

preventing the promiscuous interaction of ribosomes

with Sec61 [28]. Thus, co-translationally bound and

NAC-regulated SRP [27] is suitably poised to ‘scan’

and engage ER signal sequences/anchors as soon as

they emerge from the ribosome [22,24,29,30].

Cellular levels of SRP are significantly lower than

the near stoichiometric concentrations of ribosomes

and NAC [27]. Thus, if an ER targeting signal is not

encountered quickly, SRP rapidly dissociates from the

RNC complex, effectively cycling on and off ribo-

somes in search of a substrate signal sequence [31]. In

the case of timely SRP engagement by an ER signal

sequence/anchor, a process that may be enhanced by

certain nonoptimal, ‘translation slowing’ mRNA

codons located downstream of the signal sequence

coding region [32], ribosomal translation is transiently

stalled by the Alu domain of SRP [33,34; see Fig. 2B,

left]. This translational stalling effectively maintains

the nascent chain in a ‘translocation competent’ state

during the time window available for successful ER

delivery, as dictated by the limiting number of SRP

receptor targeting sites [33].

Once at the membrane, and co-ordinated by the

concerted actions of two GTPases, the signal sequence

binding subunit of SRP (SRP54) and the membrane-

tethered alpha subunit of the SRP receptor (SRa), the
now quiescent SRP-RNC complex engages the SRP

receptor [35]. Complex formation between SRP and its

receptor leads to repositioning of both SRP54 and

SRa relative to the SRP RNA from the so-called

‘proximal’ site to an alternative ‘distal’ site (Fig. 1B).

This generates a ‘prehandover complex’, where the

Sec61 binding site of the ribosome that was previously

occluded by SRP54 now becomes accessible, whilst

also blocking GTP hydrolysis by SRP54 and SRa.
Subsequent arrival of this complex at the Sec61

translocon triggers handover of the ribosome and nas-

cent chain from the SRP/SRP receptor complex con-

comitantly with GTP hydrolysis by SRP54 and SRa.
Posthandover, and following the opening of the Sec61

translocon (see Gating of the Sec61 complex), transla-

tion is resumed as membrane translocation and/or

membrane insertion of the nascent polypeptides takes

place (Fig. 2B, right) and SRP is recycled for addi-

tional rounds of ER targeting [22].

Since the ‘signal hypothesis’ was postulated [36–39],
the mammalian SRP-delivery system outlined above

Fig. 2. Getting there in one piece: an SRP- and SGTA-assisted route to the ER membrane (A) A representation of bacterial and mammalian

SRP complexes indicating conserved RNA helices [54]. Assembled on the highly base-paired 7SL SRP RNA, the six mammalian SRP

proteins are organised into a functionally independent Alu domain, responsible for translational pausing, and an S domain which mediates

SRP binding to signal sequences/anchors and the SRP receptor. Subunits of the S domain are essential for SRP function, whereas those of

the Alu domain are dispensable [22]. (B) SRP-dependent ER membrane targeting involves distinct SRP-RNC-mediated events. The RNC with

a signal sequence/anchor is first bound by SRP. SRP next associates with the SRa subunit of the SRP receptor via its SRP54 subunit,

located at a ‘proximal site’ of the SRP RNA that is close to the ribosomal exit tunnel. Subsequent interaction of the SRP receptor with the

Sec61 translocon permits a structural rearrangement, in which SRa and SRP54 are relocated to a conserved ‘distal site’ in the SRP RNA

that primes for the handover of signal sequences to the Sec61 translocon. Signal handover, most likely coupled with the hydrolysis of GTP,

drives the dissociation of SRP from the SRP receptor [22]. Hydrophobic targeting signals are depicted as signal anchors only (and not signal

sequences) for simplicity. (C) A model of SRP-dependent targeting to the ER membrane: SRP ‘scans’ the emerging nascent chain of a

translating ribosome for hydrophobic targeting signals, binds the ribosome-nascent chain complex (RNC) and delivers it to the ER membrane

via its interaction with the SRP receptor (RNC-ER membrane docking), prior to membrane insertion [22]. If translational pausing is

inefficient, or there is only a short linker between two transmembrane domains, SGTA may be recruited to protect the second hydrophobic

region until it is membrane inserted (left). If such regions of hydrophobicity emerge from the RNC and remain un-chaperoned (right), these

nascent chains may become ubiquitinated and hence targeted for proteasomal degradation [44]. For clarity, only a membrane protein with a

short linker between two signal-anchor sequences is depicted as an example. (D) Three ways to the ER. If a TMD is located at the N

terminus or towards the middle of the protein, TMPs are targeted to the ER via SRP as described in parts A-C. However, if a TMD is

located at the C terminus, TMPs are targeted post-translationally to the ER via the mammalian equivalent (TRC40) of the GET pathway in

yeast [14]. Alternatively, hSnd2, the human orthologue of a component of the SND pathway in yeast [47], is involved in the biogenesis of

TMPs whose TMD is located in the mid to C-terminal region of the protein. hSnd2 additionally demonstrates redundancy with the SRP and

TRC40 pathways.
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has been extensively characterised [22,40]. Neverthe-

less, novel aspects of SRP-mediated co-translational

delivery to the ER continue to emerge. For example, it

has been suggested that SGTA [41], a cytosolic quality

control component involved in the post-translational

targeting of TA proteins to the ER [14,41–43] also

contributes to co-translational ER targeting. Hence,

SGTA may facilitate the biogenesis of TMPs contain-

ing two or more closely spaced hydrophobic signals by

binding prematurely exposed TMDs that do not

recruit the substoichiometric SRP [44] (Fig. 2C). In

this way, the actions of SGTA would complement the

ER targeting role of SRP by shielding potentially vul-

nerable TMDs in the nascent polypeptide from inap-

propriate, and possibly damaging, interactions [44].

Such recruitment of SGTA thereby protects nascent

membrane proteins from potential proteasomal degra-

dation until they engage the Sec61 complex and initi-

ate membrane insertion (Fig. 2C) [44]. Exactly how

SGTA is recruited to and associates with the ribosome

and/or other ribosome-associated chaperones such as

NAC [45], why it does not compete with SRP despite

its comparative cytosolic abundance (~ 1 µM versus

~ 5–10 nM) [43,46] and how it is released upon delivery

to the ER membrane are all questions that remain to

be answered.

Despite the range of precursor proteins that are

catered for by the SRP-delivery system, at least two

other ER targeting pathways are operational in the

cytosol: a mammalian version [16] of the co-transla-

tional, SRP-independent or, ‘SND’ pathway first iden-

tified in yeast [47]; and a post-translational route for

TA protein biogenesis known as the TRC40 pathway

in mammals [14]. Whilst these pathways function in

parallel, they are also most likely overlapping and/or

partially redundant in terms of their substrate speci-

ficity. In principle, SRP typically caters for signal

sequences/anchors that are located at or near the N

terminus of nascent polypeptides, SND favours signal

anchors that are more central and TRC40 deals with

C-terminal tail anchor sequences (Fig. 2D) [17,47,48].

Only one mammalian orthologue of the three compo-

nents which make up the SND pathway in yeast has

been identified to date [16,47]. However, this compo-

nent, known as TMEM208 or hSnd2 [49], has been

implicated in the Sec61-mediated biogenesis of short

secretory proteins [50] and single- and multi-span

TMPs [16,51,52], with the wider hSnd2/SND targeting

pathway able to compensate for an absence of the

SRP or TRC40/GET pathways in yeast and mammals

[16,47,51]. The partial redundancy of these three ER

targeting pathways (see [17,47]), which most likely

allows cells to efficiently target membrane proteins

under a wide range of physiological conditions and/or

external stresses, probably explains why the hSnd2/

SND pathway remained undiscovered for so long [48].

Whilst bacteria typically contain only one location,

the inner membrane, to which newly synthesised pro-

teins are delivered, mammalian SRP must correctly

discriminate between the multiple membrane systems

that are accessible from the eukaryotic cytosol. When

compared to its bacterial equivalent, mammalian SRP

displays not only greater structural complexity

(Fig. 2A) but also increased functional complexity, as

evidenced by its early recruitment to the nascent chain,

regulation by the NAC complex and capacity to

induce a translational arrest. When combined with the

‘fail-safe’ option provided by SGTA recruitment, we

speculate that this additional complexity of eukaryotic

SRPs has most likely evolved to enhance the specificity

of, and lengthen the window for, nascent chain target-

ing to the ER membrane; a feat of increasing impor-

tance for TMPs containing multiple TMDs located

after the initial ER signal sequence that may even

require additional rounds of SRP-mediated targeting

to the ER [17,19,53].

We further suggest that in the event that SRP fails to

engage the TMD of a protein client, whether as a con-

sequence of a nonfunctional SRP-delivery pathway, a

more C-terminal location of its ER targeting signal or

for some other reason, the hSnd2/SND pathway pro-

vides an alternative and/or additional system to ensure

that co-translational protein clients continue to be tar-

geted to the ER membrane. We anticipate that uncover-

ing the mechanistic details of the hSnd2/SND pathway

will help to delineate the extent of the substrates that it

caters for, why SRP ‘loses’ its ability to engage TMDs

as a polypeptide chain extends and whether the hSnd2/

SND pathway integrates with the SRP-dependent deliv-

ery pathway at the ER membrane.

Gating of the Sec61 complex

Following signal sequence/anchor-mediated SRP-de-

pendent delivery and transfer of RNCs to the Sec61

complex (cf. Fig. 2), these hydrophobic targeting sig-

nals perform a second key action to fulfil their role as

an ‘ER-entry tag’; they must open the Sec61 channel.

Organised into two distinct halves, with TMDs 1–5
and 6–10 surrounding a central pore (Fig. 3A), the

hourglass-shaped conduit of Sec61a appears empty on

the cytosolic side of the ER membrane whereas a ring

of hydrophobic residues, known as the ‘plug domain’,

seals the ER lumenal side of the pore [5,55,56], effec-

tively preventing the free movement of small molecules

across the Sec61 translocon when inactive (see [57]).
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Opening of the Sec61 channel involves three major

steps. First, the channel is primed to open via the

docking of RNCs to the Sec61 complex (Fig. 3Ai).

Secondly, docking-induced conformational changes

‘crack’ the cytosolic end of the lateral gate (comprised

by TMDs 2, 3, 7 and 8) which facilitates the engage-

ment and intercalation of the signal sequence/anchor

between TMDs 2 and 7. Thirdly, the signal sequence/

anchor-mediated displacement of TMD2 finally results

in movement of the plug domain and opening of the

lateral gate (Fig. 3Aii) [5,55,56]. In situ studies of the

native Sec61 translocon suggest that the lateral gate

can be opened by ribosome binding alone, even in the

absence of a nascent chain [58], although in the case

of bacterial SecYEG [59] the presence of a signal

sequence on a nascent chain enhances opening of the

equivalent lateral gate [60]. These conformational

changes enable co-translational movement of the grow-

ing polypeptide chain across the membrane and into

the ER lumen (Fig. 3Aiii,iv) [5,55,56]. In contrast to

these actively translocated hydrophilic regions of

polypeptide, hydrophobic targeting signals are laterally

inserted into the lipid bilayer via the lateral gate. In

the case of N-terminal signal sequences, they are

cleaved from the nascent chain by the signal peptidase

complex (SPC) [11] (Fig. 3Aiv) and, ultimately, subject

to further processing and/or degradation by signal

peptide peptidase [61]. In contrast, signal-anchor

sequences form a stable membrane tether for the newly

synthesised TMPs. Following translation termination

and the exit of newly synthesised polypeptides from

the channel, the ribosome dissociates from the Sec61

complex and the Sec61a plug domain returns to its

original position (Fig. 3Av).

The central role of the Sec61 translocon during the

biogenesis of secretory proteins, type I and type II

TMPs has been well established for many years

(Fig. 3A,B; see Membrane insertion via the EMC for

type III TMPs). However, there is now a growing body

of evidence that signal sequences can provide an addi-

tional, as yet poorly defined, level of control during

membrane translocation [62]. Highly diverse in terms

of their hydrophobicity, length, charge and specific

amino acid composition [8,13,63], ER targeting signals

appear to regulate the opening, or ‘gating’ of the Sec61

translocon [62], particularly since SRP effectively caters

for targeting signals seemingly irrespective of their

intrinsic ability to gate the translocon which, in some

cases, is ‘inefficient’ and ‘slow’ (Fig. 3C) [64,65].

The defining structural feature of an archetypically

efficient and ‘strongly gating’ signal sequence appears

to be that its core h-region (Fig. 3D) is of sufficient

hydrophobicity to successfully engage with, and insert

‘head-on’ into, the Sec61 translocon (Fig. 3A, stage ii)

and then subsequently re-orientate to form a hairpin

conformation within the channel (Fig. 3A, stage iii).

During both of these apparently discrete stages, the

RNC is subject to a distinct force that pulls the nas-

cent chain away from the ribosome (Fig. 3Ci) [64]. In

contrast, if an ‘inefficient’ signal sequence is appended

to the same polypeptide, the nascent chain experiences

a single, weaker pulling force that reflects its inability

to successfully engage the translocon and undergo in-

channel re-orientation (Fig. 3Ci) [64]. We speculate

that hydrophobic signal-anchor sequences [66,67],

some of which can also reorient inside the Sec61

translocon [68], will be subject to pulling forces com-

parable to those experienced by signal sequences dur-

ing their membrane insertion at the ER [65,69].

Likewise, it seems plausible that the profiles and

strength of the pulling forces experienced by signal

sequences and/or signal anchors may be influenced by

the drivers and determinants of signal orientation/

TMD topology, such as the ‘positive-inside’ rule, the

degree of N-terminal folding and, perhaps, even the

lipid composition of the bilayer [7,8].

In cases where inefficient signal sequences (see [70])

and/or signal anchors require extra help to gate the

translocon, the Sec61 complex may employ ‘gating

assistants’. Hence, the tetrameric TRAP (translocon-

associated protein) complex, composed of a, b, c and

@ subunits [71–73], and/or the Sec62/Sec63 proteins

[74] (Fig. 3D), contribute to the second pulling event

that occurs during secretory protein translocation

(Fig. 3Cii) [75]. Despite subtle differences in the fea-

tures that facilitate their recruitment (Fig. 3D), these

gating assistants exhibit a common propensity to assist

signal sequences/anchors that are of lower hydropho-

bicity [72,74] and/or contain clusters of positive charge

in regions of polypeptide that must be translocated

[74–76]. Furthermore, given that different gating assis-

tants can contribute to the efficient translocation of

the same protein substrate, whether a secretory protein

or TMP (Fig. 3Ei, Tables 1–4) [74], and cellular levels

of TRAP-b are upregulated following depletion of

Sec62 [74], it seems likely that the TRAP complex and

Sec62/Sec63 perform overlapping, but nonidentical,

functions during Sec61-mediated protein translocation

[62].

Such a notion is supported by the behaviour of the

mammalian prion protein (PrP) during its ER translo-

cation [75] where TRAP is required for both signal

sequence engagement with Sec61 and its in-channel

inversion, whereas Sec62/63 only influence the latter

event, and to a lesser extent [75] (see Fig. 3cii). Thus,

it appears that Sec62/63 supports the translocation of
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polypeptides with suboptimal ER targeting features

that may first be recognised by the cytosolic portion of

TRAP [76], prior to TRAP-mediated opening of the

Sec61 complex [72,75–78]. Previous studies established

that Sec62/63 contribute strongly to Sec61 gating dur-

ing the post-translational translocation of certain sub-

strates, including short secretory proteins [50].

However, structural studies strongly suggest that in

order to stabilise RNCs that co-translationally engage

the Sec61 translocon, either alone [5], or in its TRAP-

assisted mode [78], the Sec62/63 complex must adopt a

different conformation to its posttranslational one

[9,79–81].
By subjecting a broader range of TRAP- and Sec62/

63-dependent clients of the Sec61 translocon [72,74] to

detailed force-pulling studies [64,65,69,75,76], it should

be possible to discover mechanistic detail about these

gating assistants that is currently lacking. Currently

unanswered questions include: is the constitutively

Sec61-bound TRAP complex [78] the only ‘gating

assistant’ capable of exerting a pulling force on RNCs

(see [75]); can the Sec62/63 complex compensate for

the loss of TRAP-mediated assistance; is TRAP- and/

or Sec62/63-assisted translocation used to regulate the

flux of protein substrates through the Sec61 translocon

[72,74]? Likewise, although the translocating chain-as-

sociated membrane (TRAM1) protein is closely associ-

ated with the active Sec61 translocation complex [7,8],

a recent ‘global’ analysis suggests that it is not a gating

assistant [82]. Rather it seems that TRAM1 may facili-

tate the egress of hydrophobic regions from the Sec61

lateral gate into the phospholipid bilayer [82], a possi-

bility that clearly merits further exploration. Answer-

ing these questions may also help us to finally

reconcile the long-standing enigma surrounding the

broad sequence diversity that is seen across ER target-

ing signals [13].

Membrane insertion via the EMC

Analogous to the recruitment of ‘gating assistants’ by

ER targeting signals that the Sec61 complex finds chal-

lenging, the multisubunit ER membrane complex

(EMC) (Fig. 4A) provides a membrane insertase for

TMDs that also appear to be more ‘demanding’ of the

ER translocon [83,84]. The EMC was first implicated

in membrane protein biogenesis when gene disruption

of its subunits was found to have pleiotropic effects on

the expression of multi-span TMPs in several species

[85–88]. Multi-span TMPs were subsequently found to

be significantly enriched amongst putative EMC-de-

pendent protein clients (Fig. 4A, Table 5) [89,90], and

the EMC was also identified as an ER membrane

insertase that can facilitate the post-translational inser-

tion of certain TA proteins [15,91]. In light of several

recent structural studies, we now have a better

Fig. 3. ‘With a little help from my friends’: TRAP and/or Sec62/63-assisted gating of Sec61 (A) Schematics of the heterotrimeric Sec61

complex (a, b, c) and the regulation of Sec61a via its plug domain and lateral gate during the co-translational translocation of secretory

proteins [5,9]. Schematics are not drawn to scale. (B) Models for the Sec61-mediated insertion of type I and type II single-pass TMPs. (Bi)

For type I TMPs, a cleavable N-terminal signal sequence enters the Sec61 translocon ‘headfirst’ and is then inverted allowing the

subsequent stop-transfer sequence to become laterally inserted as a TMD with an Nexo/Ccyt topology [8]. (Bii) The Ncyt/Cexo topology of type

II TMPs necessitates that they are membrane inserted in the opposite orientation; this may be achieved either by the ‘headfirst’ insertion of

a signal-anchor sequence followed by its inversion within the Sec61 translocon (shown in brackets) or via a ‘hairpin integration’ mechanism

whereby the signal-anchor engages the translocon in a looped conformation [8]. (C) Schematic overview of the pulling forces experienced

by; (Ci) the protein substrate preprolactin equipped with its normal, archetypically strong, signal sequence (PPL, black solid line) versus its

replacement with an inefficient signal sequence (*PPL, red dashed line; see [64]); (Cii) the Prion protein (PrP) in control cells (red solid line)

and cells depleted of the Sec62/63 (purple dashed line) or the TRAP complex (green dashed line) [75]. (D) TRAP- and/or Sec62/63-

dependent cleavable signal (orange) or signal-anchor (yellow) sequences typically include reduced hydrophobicity in the signal and/or clusters

of positive charge in the early mature domain [72,74,75]. Cleavable signal sequences are N-terminal and typically composed of three

regions: a polar n-region that facilitates signal sequence insertion/inversion at the ER translocon (hatched orange section), a central

hydrophobic h-region that is recognised by SRP (plain orange) and a polar C-terminal region that contains the site for signal sequence

cleavage (dotted orange). Other features of ER signal sequences that necessitate a Sec61-‘gating assistant’ include a high glycine/proline

content (TRAP complex) [72], a longer core h-region (Sec62/63 [74]) and regions of decreased polarity (Sec62/63; [74]). Whilst favouring

different groups of clients, the roles of the TRAP complex and Sec62/63 may be partially redundant. (E) Classification of membrane and

secretory protein clients of Sec62, Sec63 and TRAP based on previous global studies [72,74]. (Ei) Proteins that were negatively affected by

the absence/depletion of one or more of Sec62, Sec63 and TRAP were classified (see Eii) as secretory proteins, single-span TMPs (type I,

type II, type III, TA protein, undefined) or multi-span TMPs (type I-like, type II-like, type III-like, undefined) based on their features and the

topology of their first TMD. The proportion of the putative clients that belong to each of these groups is shown as a percentage of the total

number of proteins (n) that were a negatively affected in each case: Sec62 (n = 84), Sec63 (n = 56) and TRAP (n = 61) (Tables 1–4).

Proteins that do contain an ER targeting sequence and any subunits of Sec61 ‘gating assistant’ were discounted from the analysis.

Figure 3D has been reproduced from Ref. [62].
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understanding of how the evolutionarily conserved

EMC acts in concert with the Sec61 complex to per-

form two important, yet apparently discrete, roles dur-

ing co-translational TMP biogenesis [92]. Firstly, the

EMC acts as a membrane insertase that enables the

stable integration of certain types of TMD into the

lipid bilayer [92–95]. Hence, following SRP-dependent

delivery to the ER (cf. Fig. 2), membrane proteins des-

tined to assume a type III orientation do not employ

the canonical Sec61 translocon [97]. Rather, following

engagement of the SRP receptor, these nascent type

III TMPs can uniquely access the membrane insertase

activity of the EMC [96,97, our unpublished data]; an

action that may potentially be assisted by the Sec61

complex acting as a ribosomal docking site and/or via

Sec61-stimulated release of ribosome-nascent chains

from the SRP receptor (see [98]). Secondly, the EMC

acts as a chaperone/holdase for multi-span TMPs with

TMDs that contain suboptimal features [99–101].
Whilst some multi-span TMPs have cleavable ER

targeting signals (cf. Fig. 1B), many employ signal-an-

chor sequences to enable their SRP-dependent delivery

to the ER. These signal-anchor sequences form the

first TMD and, as for single-span TMPs (cf. Fig. 1B),

this sequence can be inserted into the ER membrane

either with its N terminus remaining in the cytosol

(type II-like, see Fig. 4) or with its N terminus translo-

cated into the lumen (type III-like, see Fig. 4). When a

type III-like multi-span TMP is truncated to enable

the membrane insertion of its first TMD to be studied

in isolation, its integration can be mediated by the

EMC alone [96]. Hence, TMDs that assume a type III

orientation, either in the context of a single-span TMP

or as the first TMD of a multi-span TMP, employ the

EMC for the membrane insertion. The ability of type

III and type III-like TMPs to access the membrane

insertase capacity of the EMC also provides a molecu-

lar level explanation of their unusual capacity to

bypass the otherwise extremely potent blockade of the

Sec61 translocon that can be achieved using small

molecule inhibitors such as ipomoeassin-F and myco-

lactone [97,102–105]. We also note that type III and

type III-like TMPs appear to show a reduced depen-

dence on Sec61 translocon gating assistants when com-

pared to obligate Sec61 clients (Fig. 3E, Table 5, cf.

secretory proteins, type I and type II TMPs versus

type III TMPs), further supporting their use of an

alternative site for translocation into and across the

ER membrane.

Whilst the precise molecular mechanisms that enable

the integration of type III and type III-like TMDs via

the EMC remain to be determined, a conserved hydro-

philic vestibule formed by the EMC3, EMC4 and

EMC6 subunits within the cytosolic side of the bilayer

is most likely its de facto insertase site [92–95]. Like

other members of the Oxa1 ‘superfamily’ of membrane

protein biogenesis factors [106,107], EMC3 is a struc-

tural homologue of YidC [95], a bacterial insertase

which acts downstream of SRP and whose flexible

cytosolic domains transiently contact SecY (a Sec61a

Table 1. Negatively affected secretory proteins and TMPs following Sec61 and accessory factor depletion; analysis of data presented in

Ref. [74]. Putative Sec63 clients that were identified in cells transiently depleted of Sec63 but not in Sec63 knockout cells are denoted in

brackets (X).

Uniprot ID Protein name Protein class Single/Multi Sec61A1 Sec62 Sec63 TRAP TMD number

Q10589 BST2 Type II TMP Single X X X 1

Q9H6E4 CCDC134 Secretory N/A X X X 0

O75503 CLN5 Type II TMP Single X X X 1

Q96HD1 CRELD1 Type I-like Multi X X X 2

Q9UBS4 DNAJB11 Secretory N/A X X (X) 0

Q9UM22 EPDR1 Secretory N/A X X X 0

Q96AY3 FKBP10 Secretory N/A X X 0

P06280 GLA Secretory N/A X X X 0

Q14554 PDIA5 Secretory N/A X X (X) 0

Q15262-2 PTPRK Secretory N/A X X X 0

Q9NXG6 P4HTM Type II TMP Single X X 1

O00584 RNASET2 Secretory N/A X X (X) 0

Q99470 SDF2 Secretory N/A X X (X) 0

Q9H173 SIL1 Secretory N/A X X (X) X 0

Q08357 SLC20A2 Type III-like Multi X X X 12

Q9ULF5 SLC39A10 Type III-like Multi X X X 7

O15533 TAPBP Type I Single X X 1

Q15582 TGFBI Secretory N/A X X 0

Q9Y3A6 TMED5 Type I Single X X (X) X 1
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Table 2. Negatively affected secretory proteins and TMPs in Sec62 knockout HeLa cells; analysis of data presented in Ref. [74]. Protein

substrates with an undefined topology of the 1st TMD (Uniprot) are in red.

Uniprot ID Protein name Protein class Single/Multi Sec61A1 Sec62 Sec63 TRAP TMD number

P11117 ACP2 Type I TMP Single X X 1

O14672 ADAM10 Type I TMP Single X X 1

P78536 ADAM17 Type I TMP Single X 1

P20933 AGA Secretory N/A X 0

Q9NRZ7 AGPAT3 Type II-like Multi X 2

Q9NRZ5 AGPAT4 Undefined Multi X X 4

Q8N6S5 ARL6IP6 Undefined Multi X X 3

Q86WA6 BPHL Secretory N/A X 0

Q10589 BST2a Type II TMP Single X X X 1

Q6Y288 B3GALTL Type II TMP Single X 1

P54289 CACNA2D1 Type I TMP Single X 1

Q8NFZ8 CADM4 Type I TMP Single X X 1

O43852-1 CALU Secretory Single X 0

O43852-4 CALU Secretory Single X 0

Q9H6E4 CCDC134a Secretory N/A X X X 0

Q9BWS9 CHID1 Secretory N/A X 0

O75503 CLN5 Type II TMP Single X X X 1

Q9H8M5 CNNM2 Type III-like Multi X X 4

P12109 COL6A1 Secretory N/A X X 0

P16870 CPE Secretory N/A X X 0

Q9H3G5 CPVL Secretory N/A X 0

Q96HD1 CRELD1a Type I-like Multi X X X 2

P07858 CTSB Secretory N/A X 0

P07339 CTSD Secretory N/A X 0

Q9UBR2 CTSZ Secretory N/A X 0

Q9UBS4 DNAJB11a Secretory N/A X X (X) 0

Q13217 DNAJC3 Secretory N/A X 0

Q9UM22 EPDR1a Secretory N/A X X X 0

Q9NZ08 ERAP1 Type II TMP Single X 1

Q96DZ1 ERLEC1 Secretory N/A X 0

Q9BS26 ERP44 Secretory N/A X 1

O75063 FAM20B Type II TMP Single X X 1

P98173 FAM3A Secretory N/A X 0

P26885 FKBP2 Secretory N/A X 0

Q9Y680 FKBP7 Secretory N/A X 0

Q96AY3 FKBP10a Secretory N/A X X 0

Q9NWM8 FKBP14 Secretory N/A X 0

P10253 GAA Secretory N/A X 0

Q14697-2 GANAB Secretory N/A X 0

Q92820 GGH Secretory N/A X 0

P06280 GLAa Secretory N/A X X X 0

P08236 GUSB Secretory N/A X X 1

P23229 ITGA6 Type I TMP Single X 1

Q14573 ITPR3 Type II-like Multi X 6

Q7Z4H8 KDELC2 Secretory N/A X 0

P49257 LMAN1 Type I TMP Single X 1

Q9UIQ6 LNPEP Type II TMP Single X X 1

Q8TDW0 LRRC8C Type II-like Multi X X 4

Q17RY6 LY6K Secretory N/A X X 0

Q14165 MLEC Type I TMP Single X 1

Q13724 MOGS Type II TMP Single X 1

P17050 NAGA Secretory N/A X 0

P13591 NCAM1 Type I TMP N/A X X 1

Q8TEM1 NUP210 Type I TMP Single X 1
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orthologue) during membrane protein insertion

[108,109]. By analogy with YidC, it may be envisaged

that an equivalent cytosolic region of EMC3, for

example the methionine-rich C1 loop and/or C termi-

nus [95], might somehow selectively capture type III

and/or type III-like TMDs and direct them towards

the EMC insertase site. We additionally speculate that,

as for YidC [110,111], positively charged regions

within one or more cytosolic domains may promote

RNC binding and thereby enable co-translational

insertion via the EMC. Like YidC and SecYEG in

bacteria [110], the EMC may support co-translational

membrane insertion both alone and when acting in

concert with the Sec61 complex. In the latter case, this

would provide a flexible site for the membrane inser-

tion of multi-span proteins containing closely spaced

TMDs with distinct requirements for Sec61 and EMC-

mediated integration (Fig. 4B; see also [83]).

The role of the EMC during the co-translational

biogenesis of multi-span TMPs is not strictly limited

to protein clients whose first TMD is type III-like

(Fig. 4A), additionally extending to the stabilisation

and/or insertion of downstream TMDs [99–
101,112,113] irrespective of the orientation of the first

TMD [89,90]. The decisive feature for the EMC-depen-

dence of these multi-span TMPs is reduced hydropho-

bicity and/or increased polarity or charge, as further

evidenced by the ability to create artificial EMC

dependency by introducing polar/charged residues into

a TMD [90,99,100]. Likewise, the observation that a

multi-span TMP containing such a suboptimal TMD

is diverted into to a pre-emptive ribosome quality con-

trol pathway in the absence of a functional EMC [114]

implicates the EMC in a chaperone-like protective role

akin to, but distinct from, that of the Sec61 translocon

(Fig. 4C) [115].

Informed by structural and functional studies [92–
97], we propose that, together, the Sec61 complex and

the EMC provide a flexible hub for co-translational

membrane insertion which can effectively mitigate the

potentially error-prone biogenesis of a diverse range of

client TMPs. We anticipate that future studies will

Table 2. (Continued).

Uniprot ID Protein name Protein class Single/Multi Sec61A1 Sec62 Sec63 TRAP TMD number

Q9UHG3 PCYOX1 Secretory N/A X 0

Q14554 PDIA5a Secretory N/A X X (X) 0

Q92508 PIEZO1 Undefined Multi X 36

O95427 PIGN Type II-like Multi X 15

Q8TEQ8 PIGO Undefined Multi X 14

Q8NBL1 POGLUT1 Secretory N/A X 0

P42785 PRCP Secretory N/A X 0

Q13162 PRDX4 Secretory N/A X 0

P14314 PRKCSH Secretory N/A X 0

Q13308-6 PTK7 Type I TMP Single X 1

P10586 PTPRF Type I TMP Single X 1

P23470 PTPRG Type I TMP Single X X 1

Q15262-2 PTPRKa Secretory N/A X X X 0

Q9NXG6 P4HTMa Type II TMP Single X X 1

Q15293 RCN1 Secretory N/A X 0

O00584 RNASET2a Secretory N/A X X (X) 0

Q9HB40 SCPEP1 Secretory N/A X 0

Q99470 SDF2a Secretory N/A X X (X) 0

P07093 SERPINE2 Secretory N/A X 0

P51688 SGSH Secretory N/A X 0

Q9H173 SIL1a Secretory N/A X X (X) X 0

Q08357 SLC20A2a Type III-like Multi X X X 12

Q9ULF5 SLC39A10a Type I-like Multi X X X 7

O15533 TAPBPa Type I TMP Single X X 1

Q9Y3A6 TMED5a Type I TMP Single X X (X) X 1

O14656 TOR1A Secretory N/A X 0

Q8NFQ8 TOR1AIP2 Type II TMP Single X 1

Q8NBZ7 UXS1 Type II TMP Single X X 1

Q9ULK5 VANGL2 Type II-like Multi X X 4

Q9BWQ6 YIPF2 Type II-like Multi X X 5

aProtein substrates that were also negatively affected following Sec61 depletion.
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Table 3. Negatively affected secretory proteins and TMPs in Sec63 knockout HeLa cells; analysis of data presented in Ref. [74]. Protein

substrates with an undefined topology of the 1st TMD (Uniprot) are in red.

Uniprot ID Protein name Protein class Single/Multi Sec61A1 Sec62 Sec63 TRAP

TMD

number

Q9NRZ5 AGPAT4 Undefined Multi X X 4

Q9H6U8 ALG9 Type III-like Multi X 8

Q9HDC9 APMAP Type II TMP Single X 1

Q8N6S5 ARL6IP6 Undefined Multi X X 3

P15848 ARSB Secretory N/A X 0

P98194-7 ATP2C1 Type II-like Multi X 10

Q10589 BST2a Type II TMP Single X X X 1

Q7KYR7 BTN2A1 Type I TMP Single X 1

Q8NFZ8 CADM4 Type I TMP Single X X 1

Q9H6E4 CCDC134a Secretory N/A X X X 0

Q4G0I0 CCSMST1 Type I TMP Single X 1

P13987 CD59 Secretory N/A X 0

Q8TCZ2 CD99L2 Type I TMP Single X 1

O75503 CLN5a Type II TMP Single X X X 1

P10909 CLU Secretory N/A X 0

Q9H8M5 CNNM2 Type III-like Multi X X 4

Q9BT09 CNPY3 Secretory N/A X 0

Q8NBJ5 COLGALT1 Secretory N/A X 0

P12109 COL6A1 Secretory N/A X X 0

P16870 CPE Secretory N/A X X 0

Q96HD1 CRELD1a Type I-like Multi X X X 2

P81605 DCD Secretory N/A X 0

P52429 DGKE Undefined Single X 1

Q9BW60 ELOVL1 Undefined Multi X 7

O75063 FAM20B Type II TMP Single X X 1

P06280 GLAa Secretory N/A X X X 0

Q68CQ7 GLT8D1 Type II TMP Single X X 1

Q70UQ0 IKBIP Type II TMP Single X 1

A1L0T0 ILVBL Undefined Single X 1

P53708 ITGA8 Type I TMP Single X 1

Q8TDW0 LRRC8C Type II-like Multi X X 4

Q6NSJ5 LRRC8E Type II-like Multi X 4

Q17RY6 LY6K Secretory N/A X X 0

Q9UKM7 MAN1B1 Type II Single X 1

Q8N4S9 MARVELD2 Type II-like Multi X 6

Q10469 MGAT2 Type II TMP Single X 1

P13591 NCAM1 Type I TMP Single X X 1

Q8N5Y8 PARP16 Type II TMP Single X 1

P23470 PTPRG Type I TMP Single X X 1

Q15262-1 PTPRK Type I TMP Single X 1

Q15262-2 PTPRKa Secretory N/A X X X 0

P02753 RBP4 Secretory N/A X 0

Q08357 SLC20A2a Type III-like Multi X X X 12

P46977 STT3A Type II-like Multi X 13

Q66K14 TBC1D9B Undefined Single X 1

Q9P2C4 TMEM181 Undefined Multi X 9

Q6ZXV5 TMTC3 Undefined Multi X 9

Q8N2C7 UNC80 Undefined Multi X 4

Q8NBZ7 UXS1 Type II TMP Single X X 1

Q9ULK5 VANGL2 Type II-like Multi X X 4

Q9BWQ6 YIPF2 Type II-like Multi X X 5

aProtein substrates that were also negatively affected following Sec61 depletion.
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Table 4. Negatively affected secretory proteins and TMPs in siRNA-mediated TRAP depleted HeLa cells; analysis of data presented in Ref.

[72]. Protein substrates with an undefined topology of the 1st TMD (Uniprot) are in red.

Uniprot ID Protein name Protein class Single/Multi Sec61A1 Sec62 Sec63 TRAP TMD number

P11117 ACP2 Type I TMP Single X X 1

O14672 ADAM10 Type I TMP Single X X 1

Q9BRR6 ADPGK Secretory N/A X 0

Q9NW15-2 ANO10 Type II-like Multi X 8

Q9H6X2 ANTXR1 Type I TMP Single X 1

Q9BXK5 BCL2L13 Undefined Single X 1

P08962 CD63 Type II-like Multi X 4

Q8N129 CNPY4 Secretory N/A X 0

P08572 COL4A2 Secretory N/A X 0

O75629 CREG1 Secretory N/A X 0

O00622 CYR61 Secretory N/A X 0

P61803 DAD1 Type II-like Multi X 3

P39656 DDOST Type I TMP Single X 1

O15121 DEGS1 Undefined Multi X 6

P00533 EGFR Type I TMP Single X 1

Q9UM22 EPDR1a Secretory N/A X X X 0

P02751 FN1 Secretory N/A X 0

Q68CQ7 GLT8D1 Type II TMP Single X X 1

Q5VW38-2 GPR107 Type I-like Multi X 7

P08236 GUSB Secretory N/A X X 0

Q8TCT9 HM13 Type III-like Multi X 9

P56937 HSD17B7 Type III TMP Single X 1

P08069 IGF1R Type I TMP Single X 1

P06756 ITGAV Type I TMP Single X 0

Q8IWB1 ITPRIP Type I TMP Single X 1

Q08380 LGALS3BP Secretory N/A X 0

Q12907 LMAN2 Type I TMP Single X 1

Q9UIQ6 LNPEP Type II TMP Single X X 1

Q643R3 LPCAT4 Undefined Multi X 2

Q9H0U3 MAGT1 Type I TMP Single (X) X 1

Q8NHP6 MOSPD2 TA protein Single X 1

P15941 MUC1 Type I TMP Sinle X 1

P54802 NAGLU Secretory N/A X 0

Q969V3 NCLN Type I TMP Single X 1

Q9UMX5 NENF Secretory N/A X 0

Q99519 NEU1 Secretory N/A X 0

Q5JPE7 NOMO2 Type I TMP Single X 1

H0Y858 N/A Type I TMP Single X 1

Q96E52 OMA1 Undefined Single X 1

Q9UBV2 SEL1L Type I TMP Single X 1

Q13214 SEMA3B Secretory N/A X 0

Q9H173 SIL1a Secretory N/A X X (X) X 0

P11166 SLC2A1 Type II-like Multi X 12

Q8TB61 SLC35B2 Undefined Multi X 9

Q9ULF5 SLC39A10a Type III-like Multi X X X 7

P04920 SLC4A2 Type II-like Multi X 11

P35610 SOAT1 Type II-like Multi X 9

Q15005 SPCS2 Type II-like Multi X 2

Q8TCJ2 STT3B Type II-like Multi X 13

Q15582 TGFBIa Secretory N/A X X 0

P55061 TMBIM6 Type II-like Multi X 7

Q9Y3A6 TMED5a Type I TMP Single X X (X) X 1

Q6UW68 TMEM205 Undefined Multi X 4

A0PJW6 TMEM223 Undefined Multi X 2
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establish how individual TMDs are directed to either

the EMC or Sec61 complex as appropriate, how the

EMC governs TMD release into the membrane and

further explore the regulation and potential interplay

between the insertase activity of the EMC and its role

as a chaperone/holdase. Given that EMC disruption

negatively affects the levels of several secretory pro-

teins [89], some of which also require Sec62 and/or

TRAP (Fig. 4A) [72,74], we speculate that Sec61

dgating assistants and/or the EMC may also exert

some, as yet undefined, regulatory role during Sec61-

mediated co-translational translocation. Likewise, how

the actions of this Sec61/EMC membrane insertion

hub are co-ordinated with other recently identified

TMD insertases/assemblases such as TMCO1 and the

PAT complex (see New routes for insertion and fold-

ing: TMCO1 and the PAT complex) and various mem-

brane protein complexes responsible for co-

translational modifications including N-glycosylation

(for a review see [9]) is a fascinating question.

New routes for insertion and folding:
TMCO1 and the PAT complex

TMCO1 belongs to the same family of membrane pro-

tein insertases as EMC3/YidC (see [95,106,107]), and it

can transiently associate with the ribosome-bound

Sec61 complex [117]. In addition to the Sec61 complex,

TMCO1 associates with CCDC47 [118] and the Nica-

lin-TMEM147-NOMO complex [119] to form a higher

order collective referred to as the ‘TMCO1 translocon’

(Fig. 4A), which is implicated in the biogenesis of mul-

tispan TMPs [117]. Like the EMC, the TMCO1

translocon appears widely conserved and its disruption

leads to reduced cellular fitness [120] and various

organismal phenotypes [117,121]. Thus, although the

precise biochemical function of the TMCO1 translocon

remains unclear, structural and functional analogy

with the EMC suggest that it may integrate insuffi-

ciently hydrophobic TMDs alone. Alternatively, given

its association with the active Sec61 complex, it might

assist the ‘core’ Sec61 translocon with the membrane

insertion of suboptimal TMDs and/or help to shield

newly integrated TMDs during the biogenesis and

assembly of multi-span TMPs [117]. As with the EMC,

we anticipate that a fuller understanding of TMCO1

protein clients, together with high-resolution structures

of Sec61-TMCO1 bound RNCs, will be required to

provide a unifying model for the concerted actions of

the Sec61 and TMCO1 complexes. Despite clear paral-

lels between the EMC and TMCO1 complex, including

their potential dual activities as both a TMD insertase

and chaperone/holdase [92,117], one feature firmly sets

them apart; subunits of the TMCO1 translocon do not

stably associate in the absence of ribosomes [117].

Thus, unlike the EMC, the TMCO1 translocon

appears to exist as a short-lived entity that transiently

assembles and disassembles according the needs of the

Sec61 complex and the RNCs that it is presented with.

The availability of TMCO1 subunits for transient

assembly into the TMCO1 translocon may also be reg-

ulated by ER calcium levels. Hence, TMCO1 subunits

homotetramerise to form calcium release channels in

response to critically high levels of ER lumenal cal-

cium, but rapidly disassemble once calcium levels are

restored [121].

Structural evidence that the EMC has distinct TMD

chaperone and TMD insertase activities is only begin-

ning to emerge [92]. However, a protein complex that

acts as a bona fide chaperone for TMDs that have

exited the Sec61 translocon has recently been identi-

fied, firmly establishing the physiological necessity of

such components [122]. The existence of the PAT com-

plex was first apparent from in vitro studies of multi-

span TMP biogenesis, which characterised a

component named PAT10 [123]. Following its lateral

exit from the Sec61 translocon, the first TMD of a

model multi-span TMP was shown to next encounter

PAT10 and remain associated with this component as

subsequent TMDs from the same nascent multi-span

TMP were integrated via the Sec61 complex [123–125].
Only now do we know that PAT10 is in fact a protein

Table 4. (Continued).

Uniprot ID Protein name Protein class Single/Multi Sec61A1 Sec62 Sec63 TRAP TMD number

Q8N2U0 TMEM256 Type III-like Multi X 2

O14773 TPP1 Secretory N/A X 0

Q15629 TRAM1 Type II-like Multi X 8

Q13454 TUSC3 Type I-like Multi X 4

Q9GZX9 TWSG1 Secretory N/A X 0

Q5T9L3 WLS Type II-like Multi X 8

P41221 WNT5A Secretory N/A X 0

aProtein substrates that were also negatively affected following Sec61 depletion.
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called Asterix, which forms an obligate heterodimer

with CCDC47 that has been termed the PAT complex

[122] (Fig. 5B). Most significantly, the PAT complex

chaperones the assembly of multi-span TMPs, acting

after their TMDs are inserted into the membrane but

before protein folding is complete (Fig. 5C) [122]. Fur-

thermore, whilst the substrate-binding Asterix subunit

co-translationally engages membrane inserted TMDs

with charged/polar residues that are exposed to the

lipid bilayer, the PAT complex may remain associated

with client TMDs even after translation termination,

effectively shielding suboptimal TMDs until they are

correctly packed into a natively structured multi-span

TMP [122–124]. Interestingly an earlier genome-wide
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screen had implicated both Asterix (also known as

WDR83OS) and hSnd2 (see ER membrane targeting:

the SRP-delivery system) in the biogenesis of multi-

span TMPs [52].

Significantly, both the apparent preference of the

PAT complex for TMDs of a more hydrophilic nature

and its ability to engage TMDs irrespective of their

transmembrane orientation [122,123] mirror the chap-

erone/holdase activity of the EMC (cf. Fig. 4). Fur-

thermore, at least some multi-span TMPs that are

dependent on the insertase activity of the EMC also

require the PAT complex in order to assume a native

conformation [122]. However, the EMC does not com-

pensate for loss of the PAT complex, whilst the depen-

dence of a TMP client on the PAT complex is

unaffected if the EMC is bypassed during membrane

insertion [122], suggesting that any functional redun-

dancy between the two complexes is limited. Rather, it

seems likely that the molecular basis for TMD recogni-

tion by each complex is sufficiently distinct that speci-

fic protein clients are able to access the chaperone

activity of one complex whilst being precluded from

engaging with the other (Fig. 5C). In the case of

TMDs that are inserted via the Sec61-containing

TMCO1 translocon, one possibility is that hydrophilic

TMDs may be sequentially handed over to the PAT

complex until the assembly of a multi-span TMP is

complete (Fig. 5C) [126]. In this scenario, the interac-

tion of CCDC47 with the Sec61-bound ribosome near

its exit tunnel could provide an important physical link

that enables client TMDs to access the substrate-bind-

ing Asterix subunit of the PAT complex. However, it

should be noted that at present there is no direct evi-

dence that TMCO1-associated CCDC47 is also in

complex with Asterix [117,126].

Whether or not Asterisk is an as yet unidentified

component of the TMCO1 translocon, or specific to a

distinct PAT complex (Fig. 5A,B), is an urgent ques-

tion that needs to be addressed. Likewise, determining

how specific TMDs are directed to the PAT complex,

how it helps these proteins assemble into a native fold

and how correctly folded TMPs are eventually

released, are all key steps towards fully understanding

exactly how these recently identified Sec61 assistants

contribute to the biogenesis of multi-span TMPs.

Given that CCDC47 was named calumin on the basis

of its calcium binding properties [127], and that cal-

cium levels affect the homomerisation state of the

TMCO1 subunit [121], the possibility that calcium

levels might influence the biogenesis of multi-span

TMPs via CCDC47 and/or the TMCO1 subunit

should also be considered (for a review see [128]).

Concluding remarks: where do we go
from here?

Over the past few years, our understanding of the

molecular machineries that can be recruited by, and in

at least one case completely bypass, the core Sec61

complex has skyrocketed. Various studies have rede-

fined the roles of cytosolic components, including NAC

and SGTA, during co-translational TMP biogenesis at

the ER, discovered new routes for TMD insertion via

the EMC and TMCO1 translocon, and identified the

Fig. 4. The role of the EMC in co-translational integration: two sides of the same coin (A) Schematics of the human EMC depicting its

tripartite organisation in the ER membrane: a basket-shaped cytosolic region comprised of EMC2 and either of the functional paralogues

EMC8 or EMC9; a membrane spanning core containing both gated and lipid-filled membrane cavities; and an L-shaped ER lumenal domain

comprised of EMC1, EMC7 and EMC10 [92,94,95]. The insertase site formed by EMC3/EMC4/EMC6 is near the cytosolic vestibule, whilst

the hydrophobic cleft may have a role in client TMD capture [92,94,95]. EMC subunits identified as structurally integral are based on

depletion studies of individual subunits which destabilise the wider EMC complex [116] and the classification of EMC subunits relies on

structural studies and/or topology prediction software, with the topology of EMC4 remaining ambiguous and that of EMC6 dependent on its

assembly with EMC5 [92,94,95]. (Aii) The types of potential client proteins that were negatively affected using a mass-spectrometry-based

proteomic approach in EMC2, EMC4 and EMC6 knockout HeLa cells are indicated [89,90]. The percentage of each substrate class is shown

relative to the total number of putative EMC clients (n = 58) in the combined datasets [89,90], clearly illustrating that the majority of EMC

clients are multi-span proteins. In a small number of cases, EMC clients are also dependent on Sec62 and/or TRAP as indicated [72,74]; see

also Fig. 3E, Table 5). Proteins that do contain an ER targeting signal were discounted for the purposes of this analysis. (B) A unifying

model for the co-translational insertion of type III TMPs whereby, following presumed SRP-dependent targeting to the ER membrane, the

noncanonical Sec61 complex supports the insertase activity of the EMC via its gated cavity in some way [92, 97, our unpublished data]. As

suggested for TMD1 of type III-like multi-span TMPs [96], and analogous to the bacterial insertase YidC, co-translational TMD insertion may

also be facilitated by the EMC acting alone. These depictions are not representative of the relative orientations of Sec61, the EMC and the

RNC which are currently unknown, although it has been proposed that the minimum distance from the Sec61 lateral gate to the membrane

spanning core of the EMC is ~ 110 �A [94]. (C) The chaperone/holdase activity of the EMC, which stabilises and/or inserts suboptimal TMDs

of multi-span TMPs, manifests via the lipid cavity [92]. Absence of a functional EMC leads to defective TMD handling resulting in the

degradation of multi-span TMPs via a pre-emptive ribosome-associated quality control pathway [114]. TIC, translation initiation complex.
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Fig. 5. TMCO1 translocon and PAT complex: one or two more Sec61-assistants for multi-span TMPs? (A) Schematics of the TMCO1

translocon and the topologies and domain structures of each subunit [117]: TMEM147 is the core subunit of the Nicalin-TMEM147-NOMO

complex [119] which, when assembled into the Sec61-TMCO1-RNC complex (NOMO not depicted), lines a lipid cavity at the centre of this

transient complex. (B) The CCDC47 and Asterix subunits of the PAT complex form a stable heterodimer [122], but its precise relationship to

the TMCO1 translocon, if any, is unclear [126]. Based on its proximity to the ribosomal exit tunnel [117], CCDC47 may be able to sense

hydrophilic TMD residues and recruit Asterix into the wider TMCO1 complex. Alternatively, the PAT complex may function as an

independent entity, closely associated with the Sec61 complex [123], that shields and assembles TMDs following their initial membrane

insertion [122]. (C) A snapshot of multi-span TMP biogenesis at the ER. Following SRP-dependent targeting, TMPs may access the ER

membrane via a Sec61-mediated pathway, a Sec61/EMC-mediated pathway or a TMCO1 translocon-mediated pathway. Irrespective of the

initial mechanism of TMD integration in the ER membrane, the PAT complex can associate with membrane inserted TMDs that would

otherwise expose polar residues to the lipid bilayer, and chaperone them until they can be assembled with other TMDs to form a stable

multi-span TMP.
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PAT complex as a TMD chaperone and assemblase.

Likewise, we now understand that Sec62, Sec63 and the

TRAP complex modulate and enhance the capabilities

of the core Sec61 translocon in order to expand its cli-

ent base. When all of these elements are taken together,

they provide an amazingly flexible platform that is cap-

able of synthesising an incredibly diverse and challeng-

ing range of secretory and TMP clients. On the basis of

our current understanding, we propose that the Sec61

complex provides the central component of this flexible

platform, acting as a dynamic hub for membrane

translocation at the ER. This begs the question as to

how alternative membrane insertion pathways or partic-

ular Sec61-assistants are engaged by different client

TMPs and how their actions can be co-ordinated; a feat

that becomes increasingly complex when one considers

the recent finding that both homomeric and heteromeric

TMP complexes can begin their assembly co-transla-

tionally [129,130].

Another important contribution to our increased

knowledge and understanding of TMP biogenesis has

been the discovery and characterisation of small mole-

cules and toxins, which selectively inhibit the Sec61

translocon [131–133]. Hence, via the study of individ-

ual proteins [6,97,104] together with a global pro-

teomics-based approach [103], it was the resistance of

type III and type III-like TMPs to such compounds

which revealed a previously unanticipated level of

complexity that was incompatible with the prevailing

models of TMP biogenesis [7,8,83]. Given that many

of the TMP clients of the Sec61 complex are drug tar-

gets [133], Sec61 inhibitors are promising candidates

for therapeutic development; particularly since they

appear well tolerated in vivo [134–137] and have

demonstrated promising analgesic [134], antibacterial

[138], anti-inflammatory [135], antitumour [136] and

antiviral [139–141] activity.
As evidenced by studies of proteins from influenza

and SARS-CoV-2 viruses, the antiviral activity of these

compounds typically relies on their host-targeted inhi-

bition of the canonical Sec61 translocon, effectively

blocking the biogenesis of important viral proteins at

the host cell ER [97,103]. Dengue and Zika viruses

likewise co-opt the TMP biosynthetic machinery of the

host cell ER [141], whilst cell-based studies of influen-

za, HIV and dengue have firmly established proof of

concept for the inhibition of viral growth and propa-

gation through the selective perturbation of Sec61-me-

diated protein translocation [139]. Thus, Sec61

inhibitors may provide one route for developing much

needed broad-spectrum agents that can be mobilised

against many different viruses [142]. Likewise, the dis-

covery of the EMC, TMCO1 translocon and PAT

complex make them valid candidates for developing

complementary small molecule inhibitors which target

the biogenesis of specific classes and/or groups of

TMPs at the ER. In short, as we gain more insight

into the components, pathways and molecular mecha-

nisms utilised by our cells to create functional mem-

brane proteins, this knowledge will in turn present us

with new and exciting opportunities to modulate these

processes for the benefit of human health [143,144].
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