2,258 research outputs found

    Impact-Induced Melting of Near-Surface Water Ice on Mars

    Get PDF
    All fresh and many older Martian craters with diameters greater than a few km are surrounded by ejecta blankets which appear fluidized, with morphologies believed to form by entrainment of liquid water. We present cratering simulations investigating the outcome of 10 km s–1 impacts onto models of the Martian crust, a mixture of basalt and ice at an average temperature of 200 K. Because of the strong impedance mismatch between basalt and ice, the peak shock pressure and the pressure decay profiles are sensitive to the mixture composition of the surface. For typical impact events, about 50% of the excavated ground ice is melted by the impact-induced shock. Pre-existing subsurface liquid water is not required to form observed fluidized ejecta morphologies, and the presence of rampart craters on different age terranes is a useful probe of ground ice on Mars over time

    Non-coding RNAs in Saccharomyces cerevisiae: What is the function?

    Get PDF
    New sequencing technologies and high-resolution microarray analysis have revealed genome-wide pervasive transcription in many eukaryotes, generating a large number of RNAs of no coding capacity. The focus of current debate is whether many of these non-coding RNAs are functional, and if so, what their function is. In this review, we describe recent discoveries in the field of non-coding RNAs in the yeast Saccharomyces cerevisiae. Newly identified non-coding RNAs in this budding yeast, their functions in gene regulation and possible mechanisms of action are discussed

    Ectopic cyclin E expression induces premature entry into S phase and disrupts pattern formation in the Drosophila eye imaginal disc

    Get PDF
    During animal development, cell proliferation is controlled in many cases by regulation of the G1 to S phase transition. Studies of mammalian tissue culture cells have shown that the G1-specific cyclin, cyclin E, can be rate limiting for progression from G1 to S phase. During Drosophila development, down-regulation of cyclin E is required for G1 arrest in terminally differentiating embryonic epidermal cells. Whether cyclin E expression limits progression into S phase in proliferating, as opposed to differentiating, cells during development has not been investigated. Here we show that Drosophila cyclin E (DmcycE) protein is absent in G1 phase cells but appears at the onset of S phase in proliferating cells of the larval optic lobe and eye imaginal disc. We have examined cells in the eye imaginal epithelium, where a clearly defined developmentally regulated G1 to S phase transition occurs. Ectopic expression of DmcycE induces premature entry of most of these G1 cells into S phase. Thus in these cells, control of DmcycE expression is required for regulated entry into S phase. Significantly, a band of eye imaginal disc cells in G1 phase was not induced to enter S phase by ectopic expression of DmcycE. This provides evidence for additional regulatory mechanisms that operate during G1 phase to limit cell proliferation during development. These results demonstrate that the role of cyclin E in regulating progression into S phase in mammalian tissue culture cells applies to some, but not all, cells during Drosophila development. Ectopic expression of DmcycE in the eye imaginal disc disrupts normal pattern formation, highlighting the importance of coordinating cell proliferation with developmental processes for correct patterning in the developing eye. These studies establish DmcycE as a target of regulatory mechanisms that coordinate cell proliferation with other developmental events

    Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV

    Get PDF
    Protein microbicides containing neutralizing antibodies and antiviral lectins may help to reduce the rate of infection with human immunodeficiency virus (HIV) if it is possible to manufacture the components in large quantities at a cost affordable in HIV‐endemic regions such as sub‐Saharan Africa. We expressed the antiviral lectin griffithsin (GRFT), which shows potent neutralizing activity against HIV, in the endosperm of transgenic rice plants (Oryza sativa), to determine whether rice can be used to produce inexpensive GRFT as a microbicide ingredient. The yield of (OS)GRFT in the best‐performing plants was 223 Όg/g dry seed weight. We also established a one‐step purification protocol, achieving a recovery of 74% and a purity of 80%, which potentially could be developed into a larger‐scale process to facilitate inexpensive downstream processing. (OS)GRFT bound to HIV glycans with similar efficiency to GRFT produced in Escherichia coli. Whole‐cell assays using purified (OS)GRFT and infectivity assays using crude extracts of transgenic rice endosperm confirmed that both crude and pure (OS)GRFT showed potent activity against HIV and the crude extracts were not toxic towards human cell lines, suggesting they could be administered as a microbicide with only minimal processing. A freedom‐to‐operate analysis confirmed that GRFT produced in rice is suitable for commercial development, and an economic evaluation suggested that 1.8 kg/ha of pure GRFT could be produced from rice seeds. Our data therefore indicate that rice could be developed as an inexpensive production platform for GRFT as a microbicide component

    Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences

    Get PDF
    Five distinct patterns of DNA replication have been identified during S-phase in asynchronous and synchronous cultures of mammalian cells by conventional fluorescence microscopy, confocal laser scanning microscopy, and immunoelectron microscopy. During early S-phase, replicating DNA (as identified by 5-bromodeoxyuridine incorporation) appears to be distributed at sites throughout the nucleoplasm, excluding the nucleolus. In CHO cells, this pattern of replication peaks at 30 min into S-phase and is consistent with the localization of euchromatin. As S-phase continues, replication of euchromatin decreases and the peripheral regions of heterochromatin begin to replicate. This pattern of replication peaks at 2 h into S-phase. At 5 h, perinucleolar chromatin as well as peripheral areas of heterochromatin peak in replication. 7 h into S-phase interconnecting patches of electron-dense chromatin replicate. At the end of S-phase (9 h), replication occurs at a few large regions of electron-dense chromatin. Similar or identical patterns have been identified in a variety of mammalian cell types. The replication of specific chromosomal regions within the context of the BrdU-labeling patterns has been examined on an hourly basis in synchronized HeLa cells. Double labeling of DNA replication sites and chromosome-specific alpha-satellite DNA sequences indicates that the alpha-satellite DNA replicates during mid S-phase (characterized by the third pattern of replication) in a variety of human cell types. Our data demonstrates that specific DNA sequences replicate at spatially and temporally defined points during the cell cycle and supports a spatially dynamic model of DNA replication

    DNA Methylation of the ABO Promoter Underlies Loss of ABO Allelic Expression in a Significant Proportion of Leukemic Patients

    Get PDF
    Background: Loss of A, B and H antigens from the red blood cells of patients with myeloid malignancies is a frequent occurrence. Previously, we have reported alterations in ABH antigens on the red blood cells of 55% of patients with myeloid malignancies. Methodology/Principal Findings: To determine the underlying molecular mechanisms of this loss, we assessed ABO allelic expression in 21 patients with ABH antigen loss previously identified by flow cytometric analysis as well as an additional 7 patients detected with ABH antigen changes by serology. When assessing ABO mRNA allelic expression, 6/12 (50%) patients with ABH antigen loss detected by flow cytometry and 5/7 (71%) of the patients with ABH antigen loss detected by serology had a corresponding ABO mRNA allelic loss of expression. We examined the ABO locus for copy number and DNA methylation alterations in 21 patients, 11 with loss of expression of one or both ABO alleles, and 10 patients with no detectable allelic loss of ABO mRNA expression. No loss of heterozygosity (LOH) at the ABO locus was observed in these patients. However in 8/11 (73%) patients with loss of ABO allelic expression, the ABO promoter was methylated compared with 2/10 (20%) of patients with no ABO allelic expression loss (P = 0.03). Conclusions/Significance: We have found that loss of ABH antigens in patients with hematological malignancies is associated with a corresponding loss of ABO allelic expression in a significant proportion of patients. Loss of ABO allelic expression was strongly associated with DNA methylation of the ABO promoter.Tina Bianco-Miotto, Damian J. Hussey, Tanya K. Day, Denise S. O'Keefe and Alexander Dobrovi

    On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model

    Get PDF
    Phenology, the timing of recurring life cycle events, controls numerous land surface feedbacks to the climate system through the regulation of exchanges of carbon, water and energy between the biosphere and atmosphere. <br><br> Terrestrial biosphere models, however, are known to have systematic errors in the simulation of spring phenology, which potentially could propagate to uncertainty in modeled responses to future climate change. Here, we used the Harvard Forest phenology record to investigate and characterize sources of uncertainty in predicting phenology, and the subsequent impacts on model forecasts of carbon and water cycling. Using a model-data fusion approach, we combined information from 20 yr of phenological observations of 11 North American woody species, with 12 leaf bud-burst models that varied in complexity. <br><br> Akaike's Information Criterion indicated support for spring warming models with photoperiod limitations and, to a lesser extent, models that included chilling requirements. <br><br> We assessed three different sources of uncertainty in phenological forecasts: parameter uncertainty, model uncertainty, and driver uncertainty. The latter was characterized running the models to 2099 using 2 different IPCC climate scenarios (A1fi vs. B1, i.e. high CO<sub>2</sub> emissions vs. low CO<sub>2</sub> emissions scenario). Parameter uncertainty was the smallest (average 95% Confidence Interval – CI: 2.4 days century<sup>−1</sup> for scenario B1 and 4.5 days century<sup>−1</sup> for A1fi), whereas driver uncertainty was the largest (up to 8.4 days century<sup>−1</sup> in the simulated trends). The uncertainty related to model structure is also large and the predicted bud-burst trends as well as the shape of the smoothed projections varied among models (±7.7 days century<sup>−1</sup> for A1fi, ±3.6 days century<sup>−1</sup> for B1). The forecast sensitivity of bud-burst to temperature (i.e. days bud-burst advanced per degree of warming) varied between 2.2 days °C<sup>−1</sup> and 5.2 days °C<sup>−1</sup> depending on model structure. <br><br> We quantified the impact of uncertainties in bud-burst forecasts on simulated photosynthetic CO<sub>2</sub> uptake and evapotranspiration (ET) using a process-based terrestrial biosphere model. Uncertainty in phenology model structure led to uncertainty in the description of forest seasonality, which accumulated to uncertainty in annual model estimates of gross primary productivity (GPP) and ET of 9.6% and 2.9%, respectively. A sensitivity analysis shows that a variation of ±10 days in bud-burst dates led to a variation of ±5.0% for annual GPP and about ±2.0% for ET. <br><br> For phenology models, differences among future climate scenarios (i.e. driver) represent the largest source of uncertainty, followed by uncertainties related to model structure, and finally, related to model parameterization. The uncertainties we have quantified will affect the description of the seasonality of ecosystem processes and in particular the simulation of carbon uptake by forest ecosystems, with a larger impact of uncertainties related to phenology model structure, followed by uncertainties related to phenological model parameterization

    Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors

    Get PDF
    We have examined the functional significance of the organization of pre-mRNA splicing factors in a speckled distribution in the mammalian cell nucleus. Upon microinjection into living cells of oligonucleotides or antibodies that inhibit pre-mRNA splicing in vitro, we observed major changes in the organization of splicing factors in vivo. Interchromatin granule clusters became uniform in shape, decreased in number, and increased in both size and content of splicing factors, as measured by immunofluorescence. These changes were transient and the organization of splicing factors returned to their normal distribution by 24 h following microinjection. Microinjection of these oligonucleotides or antibodies also resulted in a reduction of transcription in vivo, but the oligonucleotides did not inhibit transcription in vitro. Control oligonucleotides did not disrupt splicing or transcription in vivo. We propose that the reorganization of splicing factors we observed is the result of the inhibition of splicing in vivo
    • 

    corecore