699 research outputs found

    Midpalatal implants vs headgear for orthodontic anchorage - a randomized clinical trial: Cephalometric results

    Get PDF
    OBJECTIVE: To compare the clinical effectiveness of the mid-palatal implant as a method of reinforcing anchorage during orthodontic treatment with that of conventional extra-oral anchorage. DESIGN: A prospective, randomized, clinical trial Setting: Chesterfield and North Derbyshire Royal Hospital NHS Trust and the Charles Clifford Dental Hospital, Sheffield. SUBJECTS AND METHODS: 51 orthodontic patients between the ages of 12 and 39, with a class II division 1 malocclusion and ‘absolute anchorage’ requirements were randomly allocated to either receive a mid-palatal implant or headgear to reinforce orthodontic anchorage. The main outcome of the trial was to compare the mesial movement of the molars and incisors of the two treatment groups between T1 (start) and T2 (end of anchorage reinforcement) as measured from cephalometric radiographs. RESULTS: The reproducibility of the measuring technique was acceptable. There were significant differences between the T1 and T2 measurements within the implant group for the position of the maxillary central incisor (p<0.001), position of the maxillary molar (p=0.009) and position of the mandibular molar (p<0.001). There were significant differences within the headgear group for the position of the mandibular central incisor (p<0.045), position of the maxillary molar (p=<0.001) and position of the mandibular molar (p<0.001). All the skeletal and dental points moved mesially more in the headgear group during treatment than in the implant group. These ranged from an average of 0.5mm more mesial for the mandibular permanent molar to 1.5mm more mesial for the maxillary molar and mandibular base. None of the treatment changes between the implant and headgear groups were statistically significant. CONCLUSIONS: Mid-palatal implants are an acceptable technique for reinforcing anchorage in the orthodontic patient

    Midpalatal implants vs headgear for orthodontic anchorage - a randomized clinical trial: Cephalometric results

    Get PDF
    OBJECTIVE: To compare the clinical effectiveness of the mid-palatal implant as a method of reinforcing anchorage during orthodontic treatment with that of conventional extra-oral anchorage. DESIGN: A prospective, randomized, clinical trial Setting: Chesterfield and North Derbyshire Royal Hospital NHS Trust and the Charles Clifford Dental Hospital, Sheffield. SUBJECTS AND METHODS: 51 orthodontic patients between the ages of 12 and 39, with a class II division 1 malocclusion and ‘absolute anchorage’ requirements were randomly allocated to either receive a mid-palatal implant or headgear to reinforce orthodontic anchorage. The main outcome of the trial was to compare the mesial movement of the molars and incisors of the two treatment groups between T1 (start) and T2 (end of anchorage reinforcement) as measured from cephalometric radiographs. RESULTS: The reproducibility of the measuring technique was acceptable. There were significant differences between the T1 and T2 measurements within the implant group for the position of the maxillary central incisor (p<0.001), position of the maxillary molar (p=0.009) and position of the mandibular molar (p<0.001). There were significant differences within the headgear group for the position of the mandibular central incisor (p<0.045), position of the maxillary molar (p=<0.001) and position of the mandibular molar (p<0.001). All the skeletal and dental points moved mesially more in the headgear group during treatment than in the implant group. These ranged from an average of 0.5mm more mesial for the mandibular permanent molar to 1.5mm more mesial for the maxillary molar and mandibular base. None of the treatment changes between the implant and headgear groups were statistically significant. CONCLUSIONS: Mid-palatal implants are an acceptable technique for reinforcing anchorage in the orthodontic patient

    Non-Perturbative Tachyon Potential from the Wilsonian Renormalization Group

    Full text link
    The derivative expansion of the Wilsonian renormalization group generates additional terms in the effective beta-functions not present in the perturbative approach. Applied to the nonlinear sigma model, to lowest order the vanishing of the beta-function for the tachyon field generates an equation analogous to that found in open string field theory. Although the nonlinear term depends on the cut-off function, this arbitrariness can be removed by a rescaling of the tachyon field.Comment: 6 pages, further references adde

    User Studies for Digital Library Development

    Get PDF
    As the information environment becomes increasingly electronic, digital libraries have proliferated, but the focus has often been on innovations in technology and not the user. Research and analysis of users is essential to fine-tune the content and approach of digital libraries to the diverging requirements and expectations of incredibly varied communities and to ensure libraries are effective, accessible and sustainable in the long term. This book provides a clear overview of the user studies domain and user issues in digital libraries

    Observation of HCN hyperfine line anomalies towards low- and high-mass star-forming cores

    Full text link
    HCN is becoming a popular choice of molecule for studying star formation in both low- and high-mass regions and for other astrophysical sources from comets to high-redshift galaxies. However, a major and often overlooked difficulty with HCN is that it can exhibit non-local thermodynamic equilibrium (non-LTE) behaviour in its hyperfine line structure. Individual hyperfine lines can be strongly boosted or suppressed. In low-mass star-forming cloud observations, this could possibly lead to large errors in the calculation of opacity and excitation temperature, while in massive star-forming clouds, where the hyperfine lines are blended due to turbulent broadening, errors will arise in infall measurements that are based on the separation of the peaks in a self-absorbed profile. The underlying line shape cannot be known for certain if hyperfine anomalies are present. We present a first observational investigation of these anomalies across a range of conditions and transitions by carrying out a survey of low-mass starless cores (in Taurus & Ophiuchus) and high-mass protostellar objects (in the G333 giant molecular cloud) using hydrogen cyanide (HCN) J=1-0 and J=3-2 emission lines. We quantify the degree of anomaly in these two rotational levels by considering ratios of individual hyperfine lines compared to LTE values. We find that all the cores observed show some degree of anomaly while many of the lines are severely anomalous. We conclude that HCN hyperfine anomalies are common in both lines in both low-mass and high-mass protostellar objects, and we discuss the differing hypotheses for the generation of the anomalies. In light of the results, we favour a line overlap effect for the origins of the anomalies. We discuss the implications for the use of HCN as a dynamical tracer and suggest in particular that the J=1-0, F=0-1 hyperfine line should be avoided in quantitative calculations.Comment: 17 pages, 8 figure

    Chitosan gel film bandages: correlating structure, composition, and antimicrobial properties

    Get PDF
    Chitosan gel films were successfully obtained by evaporation cast from chitosan solutions in aqueous acidic solutions of organic acids (lactic and acetic acid) as gel film bandages, with a range of additives that directly influence film morphology and porosity. We show that the structure and composition of a wide range of 128 thin gel films, is correlated to the antimicrobial properties, their biocompatibility and resistance to biodegradation. Infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy was used to correlate film molecular structure and composition to good antimicrobial properties against 10 of the most prevalent Gram positive and Gram negative bacteria. Chitosan gel films reduce the number of colonies after 24 h of incubation by factors of ∌105–107 CFU/mL, compared with controls. For each of these films, the structure and preparation condition has a direct relationship to antimicrobial activity and effectiveness. These gel film bandages also show excellent stability against biodegradation with lysozyme under physiological conditions (5% weight loss over a period of 1 month, 2% in the first week), allowing use during the entire healing process. These chitosan thin films and subsequent derivatives hold potential as low-cost, dissolvable bandages, or second skin, with antimicrobial properties that prohibit the most relevant intrahospital bacteria that infest burn injuries

    Radiology teaching improves anatomy scores for medical students

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate if small group teaching in Radiology impacted Anatomy scores in the summative end of year examination. METHODS: Small group teaching in Radiology was incorporated into Anatomy of year one medical students during the academic years 2016/17 and 2017/18. Examination outcome for 2 years before and 1 year after the study period were compared.Question papers for end of year summative examinations were retrieved; questions relating to Anatomy were identified and anonymised scores for students were obtained. RESULTS: Student numbers ranged 238 to 290/year. Mean Anatomy scores ranged 62-74%, this compared with mean total exam score of 62-65%. No significant difference in Anatomy and Total examination scores for 2015, 2016 and 2019. Mean (SD) Anatomy scores were significantly higher than the Total examination scores for the study period of 2017 and 2018 [68.97 (17.32) vs 63.12 (11.51) and 73.77 (17.85) vs 64.99 (10.31) (p < 0.001)]. Combined Anatomy scores 2017 and 2018 were significantly higher than 2015 and 2016, difference of 5.50 (95% C.I. 3.31-7.70; p < 0.001). CONCLUSION: This is the first study to objectively demonstrate Radiology small group teaching significantly improved Anatomy scores for medical students in the summative end of year examination. ADVANCES IN KNOWLEDGE: No evidence in the literature that Radiology teaching improves examination outcomes for medical students.This is the first study to directly link Radiology teaching with improved Anatomy examination result.Small group teaching in Radiology is a feasible way to teach Anatomy

    PhylOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data.

    Get PDF
    Microbial diversity is typically characterized by clustering ribosomal RNA (SSU-rRNA) sequences into operational taxonomic units (OTUs). Targeted sequencing of environmental SSU-rRNA markers via PCR may fail to detect OTUs due to biases in priming and amplification. Analysis of shotgun sequenced environmental DNA, known as metagenomics, avoids amplification bias but generates fragmentary, non-overlapping sequence reads that cannot be clustered by existing OTU-finding methods. To circumvent these limitations, we developed PhylOTU, a computational workflow that identifies OTUs from metagenomic SSU-rRNA sequence data through the use of phylogenetic principles and probabilistic sequence profiles. Using simulated metagenomic data, we quantified the accuracy with which PhylOTU clusters reads into OTUs. Comparisons of PCR and shotgun sequenced SSU-rRNA markers derived from the global open ocean revealed that while PCR libraries identify more OTUs per sequenced residue, metagenomic libraries recover a greater taxonomic diversity of OTUs. In addition, we discover novel species, genera and families in the metagenomic libraries, including OTUs from phyla missed by analysis of PCR sequences. Taken together, these results suggest that PhylOTU enables characterization of part of the biosphere currently hidden from PCR-based surveys of diversity

    Bayesian Power Spectrum Analysis of the First-Year WMAP data

    Full text link
    We present the first results from a Bayesian analysis of the WMAP first year data using a Gibbs sampling technique. Using two independent, parallel supercomputer codes we analyze the WMAP Q, V and W bands. The analysis results in a full probabilistic description of the information the WMAP data set contains about the power spectrum and the all-sky map of the cosmic microwave background anisotropies. We present the complete probability distributions for each C_l including any non-Gaussianities of the power spectrum likelihood. While we find good overall agreement with the previously published WMAP spectrum, our analysis uncovers discrepancies in the power spectrum estimates at low l multipoles. For example we claim the best-fit Lambda-CDM model is consistent with the C_2 inferred from our combined Q+V+W analysis with a 10% probability of an even larger theoretical C_2. Based on our exact analysis we can therefore attribute the "low quadrupole issue" to a statistical fluctuation.Comment: 5 pages. 4 figures. For additional information and data see http://www.astro.uiuc.edu/~iodwyer/research#wma

    Cost-effectiveness of alternative methods of surgical repair of inguinal hernia

    Get PDF
    Objectives: To assess the relative cost-effectiveness of laparoscopic methods of inguinal hernia repair compared with open flat mesh and open non-mesh repair. Methods: Data on the effectiveness of these alternatives came from three systematic reviews comparing: (i) laparoscopic methods with open flat mesh or non-mesh methods; (ii) open flat mesh with open non-mesh repair; and (iii) methods that used synthetic mesh to repair the hernia defect with those that did not. Data on costs were obtained from the authors of economic evaluations previously conducted alongside trials included in the reviews. A Markov model was used to model cost-effectiveness for a five-year period after the initial operation. The outcomes of the model were presented using a balance sheet approach and as cost per hernia recurrence avoided and cost per extra day at usual activities. Results: Open flat mesh was the most cost-effective method of preventing recurrences. Laparoscopic repair provided a shorter period of convalescence and less long-term pain compared with open flat mesh but was more costly. The mean incremental cost per additional day back at usual activities compared with open flat mesh was €38 and €80 for totally extraperitoneal and transabdominal preperitoneal repair, respectively. Conclusions: Laparoscopic repair is not cost-effective compared with open flat mesh repair in terms of cost per recurrence avoided. Decisions about the use of laparoscopic repair depend on whether the benefits (reduced pain and earlier return to usual activities) outweigh the extra costs and intraoperative risks. On the evidence presented here, these extra costs are unlikely to be offset by the short-term benefits of laparoscopic repair.Luke Vale, Adrian Grant, Kirsty McCormack, Neil W. Scott and the EU Hernia Trialists Collaboratio
    • 

    corecore