292 research outputs found

    An electrophysiological signal that precisely tracks the emergence of error awareness

    Get PDF
    Recent electrophysiological research has sought to elucidate the neural mechanisms necessary for the conscious awareness of action errors. Much of this work has focused on the error positivity (Pe), a neural signal that is specifically elicited by errors that have been consciously perceived. While awareness appears to be an essential prerequisite for eliciting the Pe, the precise functional role of this component has not been identified. Twenty-nine participants performed a novel variant of the Go/No-go Error Awareness Task (EAT) in which awareness of commission errors was indicated via a separate speeded manual response. Independent component analysis (ICA) was used to isolate the Pe from other stimulus- and response-evoked signals. Single-trial analysis revealed that Pe peak latency was highly correlated with the latency at which awareness was indicated. Furthermore, the Pe was more closely related to the timing of awareness than it was to the initial erroneous response. This finding was confirmed in a separate study which derived IC weights from a control condition in which no indication of awareness was required, thus ruling out motor confounds. A receiver-operating-characteristic (ROC) curve analysis showed that the Pe could reliably predict whether an error would be consciously perceived up to 400 ms before the average awareness response. Finally, Pe latency and amplitude were found to be significantly correlated with overall error awareness levels between subjects. Our data show for the first time that the temporal dynamics of the Pe trace the emergence of error awareness. These findings have important implications for interpreting the results of clinical EEG studies of error processing

    Uncovering the Neural Signature of Lapsing Attention: Electrophysiological Signals Predict Errors up to 20 s before They Occur

    Get PDF
    The extent to which changes in brain activity can foreshadow human error is uncertain yet has important theoretical and practical implications. The present study examined the temporal dynamics of electrocortical signals preceding a lapse of sustained attention. Twenty-one participants performed a continuous temporal expectancy task, which involved continuously monitoring a stream of regularly alternating patterned stimuli to detect a rarely occurring target stimulus whose duration was 40% longer. The stimulus stream flickered at a rate of 25 Hz to elicit a steady-state visual-evoked potential (SSVEP), which served as a continuous measure of basic visual processing. Increasing activity in the band (8 –14 Hz) was found beginning20 s before a missed target. This was followed by decreases in the amplitude of two event-related components over a short pretarget time frame: the frontal P3 (3– 4 s) and contingent-negative variation (during the target interval). In contrast, SSVEP amplitude before hits and misses was closely matched, suggesting that the efficacy of ongoing basic visual processing was unaffected. Our results show that the specific neural signatures of attentional lapses are registered in the EEG up to 20 s before an error

    Observation of peripheral charge induced low frequency capacitance-voltage behaviour in metal-oxide-semiconductor capacitors on Si and GaAs substrates

    Get PDF
    We report on experimental observations of room temperature low frequency capacitance-voltage (CV) behaviour in metal oxide semiconductor (MOS) capacitors incorporating high dielectric constant (high-k) gate oxides, measured at ac signal frequencies (2 kHz to 1 MHz), where a low frequency response is not typically expected for Si or GaAs MOS devices. An analysis of the inversion regions of the CV characteristics as a function of area and ac signal frequency for both n and p doped Si and GaAs substrates indicates that the source of the low frequency CV response is an inversion of the semiconductor/high-k interface in the peripheral regions outside the area defined by the metal gate electrode, which is caused by charge in the high-k oxide and/or residual charge on the high-k oxide surface. This effect is reported for MOS capacitors incorporating either MgO or GdSiOx as the high-k layers on Si and also for Al2O3 layers on GaAs(111B). In the case of NiSi/MgO/Si structures, a low frequency CV response is observed on the p-type devices, but is absent in the n-type devices, consistent with positive charge (>8 x 10(10) cm(-2)) on the MgO oxide surface. In the case of the TiN/GdSiOx/Si structures, the peripheral inversion effect is observed for n-type devices, in this case confirmed by the absence of such effects on the p-type devices. Finally, for the case of Au/Ni/Al2O3/GaAs(111B) structures, a low-frequency CV response is observed for n-type devices only, indicating that negative charge (> 3 x 10(12) cm(-2)) on the surface or in the bulk of the oxide is responsible for the peripheral inversion effect. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729331

    Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes

    Get PDF
    The relationship between structure and properties has been followed for different nanoscale forms of tungsten disulfide (2H-WS2) namely exfoliated monolayer and few-layer nanoplatelets, and nanotubes. The similarities and differences between these nanostructured materials have been examined using a combination of optical microscopy, scanning and high-resolution transmissionelectron microscopy (SEM and HRTEM) and atomic force microscopy (AFM). Photoluminescence (PL) and Raman spectroscopy have also been used to distinguish between monolayer and few-layer material. Strain induced phonon shifts have been followed from the changes in the positions of the A1g and E2g1 Raman bands during uniaxial deformation. This has been modelled for monolayer using density functional theory (DFT) with excellent agreement between the measured and predicted behaviour. It has been found that as the number of WS2 layers increases for few-layer crystals or nanotubes, the A1g mode hardens whereas the E2g1 mode softens. This is believed to be due to theA1g mode, which involves out of plane atomic movements, being constrained by the increasing number of WS2 layers whereas easy sliding reduces stress transfer to the individual layers for the E2g1mode, involving only in-plane vibrations. This finding has enabled the anomalous phonon shift behaviour in earlier pressure measurements on WS2 to be resolved, as well as similar effects in othertransition metal dichalcogenides, such as molybdenum disulfide (MoS2), to be explained. <br/

    A restatement of the natural science evidence concerning catchment-based "natural” flood management in the United Kingdom

    Get PDF
    Flooding is a very costly natural hazard in Great Britain and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based “natural” flood management in the United Kingdom. The evidence summary is designed to be read by an informed but not technically-specialist audience. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material
    corecore