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ABSTRACT 

Flooding is a very costly natural hazard in Great Britain and is expected to increase further 

under future climate change scenarios. Flood defences are commonly deployed to protect 

communities and property from flooding, but in recent years flood management policy has 

looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted 

interventions throughout the catchment, sometimes using techniques which involve working 

with natural processes. This paper describes a project to provide a succinct summary of the 

natural science evidence base concerning the effectiveness of catchment-based “natural” flood 

management in the United Kingdom. The evidence summary is designed to be read by an 

informed but not technically-specialist audience. Each evidence statement is placed into one 

of four categories describing the nature of the underlying information. The evidence summary 

forms the appendix to this paper and an annotated bibliography is provided in the electronic 

supplementary material. 

1. Introduction 

Flooding is amongst the most damaging natural hazards globally, with inundation leading to 

disastrous consequences including the loss of lives and destruction of property. Flooding may 

be fluvial, pluvial, coastal, or groundwater related, or caused by a combination of these 

processes. Here we focus on fluvial (river) floods, which occur when the amount of water in a 

river exceeds the channel’s capacity. They are caused primarily by the downstream flow of 

runoff generated by heavy rainfall on wet ground. 

 

Flooding is a natural process, but floodplains are also ideal for agriculture and urban 

development close to water resources and navigation. Consequently, development in 

floodplains has increased the exposure of people, property and infrastructure to floods. In 

many cases it is not practical, cost effective, or politically feasible to relocate communities, 

property, and economic activities away from areas prone to flooding, so measures are put in 

place to manage flood risk by reducing the probability of inundation and/or the negative 

consequences when a flood does occur. 

 

In this restatement, we concentrate on the scientific evidence concerning the 

effectiveness of human interventions in river catchments that are intended to reduce fluvial 
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flood hazard1. This hazard is typically associated with high river flows. The hazard is 

characterized by the depth of water at locations where it may cause harm, and also by the 

velocity of that water, the rate of rise of water levels, duration of inundation, and water 

quality. Interventions in river channels and floodplains that have been widely used to manage 

flood risk include the building of flood detention reservoirs and flood defences, channel 

straightening, and dredging. 

 

Recent years have seen increasing interest in management interventions that seek to 

modify upland land use and land management, river channels, floodplains, and large upland 

reservoirs (where present), in order to reduce the frequency and severity of flooding, which 

we refer to here as “Catchment-Based Flood Management” (CBFM). One subset of CBFM is 

“Natural Flood Management” (NFM), which seeks to restore or enhance catchment processes 

that have been affected by human intervention. These activities aim to reduce flood hazard, 

while also sustaining or enhancing other potentially significant co-benefits including 

enhanced ecosystem services (aquatic, riparian, and terrestrial) such as: greater biodiversity, 

improved soil and water quality, carbon sequestration, reduced soil erosion, greater 

agricultural productivity, and improved public health and well-being. 

 

While it is recognized that implementation of CBFM or NFM can produce multiple co-

benefits, it is not easy to establish the precise nature and extent of those benefits. Often a 

complex set of trade-offs exists between costs and benefits that accrue to different stakeholder 

groups within and outside the catchment. Also, while the benefits are well understood in 

principle, uncertainty around the quantitative predictions of the potential for CBFM/NFM 

interventions to reduce local and downstream flood hazards remains high, especially in large 

catchments and for major floods. Differences between river catchments make it difficult to 

transfer empirical evidence from one location to another. The relative importance of the 

multiple factors that influence flooding varies spatially and with time, which means that even 

if an intervention may be beneficial locally, a positive impact on flooding downstream cannot 

be guaranteed for all possible events in all locations. 

 

                                                 

1 It is conventional to distinguish between the three components that constitute flood risk to people and 

economies: hazard is the phenomenon with potential to cause harm (i.e., unusually high water levels); exposure 

describes the people or assets in harm’s way; and vulnerability is the susceptibility of people and property to loss 

when exposed to a hazard.  
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The aim of this restatement is to review the scientific evidence for the impacts of 

CBFM and NFM strategies on downstream flood hazard in the UK. Here we focus on the 

natural science evidence base; the social sciences and economics also provide important 

evidence for policy making but this is not considered here. The objective is to review 

processes that impact flood frequency2 and hazard, principally with respect to flood volumes 

and flood levels but also velocity, duration and water depth. These include modifications to 

land cover and land management to retain water on and under the land before it flows into 

rivers, and modifications to and protection of channels and rivers to slow the flow of water 

and reduce water levels in floodplains downstream where there is a flood hazard (see Table 

1). 

 

  

                                                 

2 Flood frequency is a measure of likelihood, which in this restatement we measure using Annual Exceedence 

Probability (AEP). The AEP is the chance of a flood of this magnitude or greater occurring in any particular year 
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Table 1 Catchment-based measures that could contribute to flood management (after 

Beedell et al., 2011) 

FRM Theme Specific Measure Examples 

Retaining water in the 

landscape: water retention 

through management of 

infiltration and overland 

flow 

Land-use changes 

Arable to grassland conversion, forestry and woodland planting, 

restrictions on hillslope cropping (e.g., silage maize); moorland 

and peatland restoration 

Arable land-use practices 
Spring cropping vs. winter cropping; cover crops; 

extensification; set aside 

Livestock land practices Lower stocking rates, restriction of the grazing season 

Tillage practices Conservation tillage, contour/cross slope ploughing 

Field drainage (to increase storage) Deep cultivations and drainage to reduce impermeability 

Buffer strips and buffer zones 
Contour grass strips, hedges, shelter belts, bunds, riparian buffer 

strips, controls on bank erosion 

Machinery management Low ground pressures, avoiding wet conditions 

Urban land use Increased permeable areas and surface storage 

Retaining water in the 

landscape: managing 

connectivity and 

conveyance 

Management of hillslope 

connectivity 
Blockage of farm ditches and moorland grips 

Buffer strips and buffering zones to 

reduce connectivity 

Contour grass strips, hedges, shelter belts, bunds, field margins, 

riparian buffer strips 

Channel maintenance Modifications to maintenance of farm ditches 

Drainage and pumping operations Modifications to drainage and pumping regimes 

Field and farm structures Modifications to gates, yards, tracks and culverts 

On-farm retention Retention ponds and ditches 

River restoration 
Restoration of river profile and cross sections; channel 

realignment and changes to planform pattern 

Upland water retention Farm ponds, ditches, wetlands 

Making space for water: 

floodplain conveyance and 

storage 

Water storage areas 
On- or off-line storage, washlands, polders, impoundment 

reservoirs  

Wetlands 
Wetland creation, engineered storage scrapes, controlled water 

levels 

River restoration / retraining River re-profiling, channel works, riparian works 

River and water course 

management 
Vegetation clearance, channel maintenance and riparian works 

Floodplain restoration Setback of embankments, reconnecting rivers and floodplains 

 

2. Materials and methods 

The restatement is intended to provide a succinct summary of the natural science evidence 

relevant to policy-making in the UK as of June 2016. The restatement offers a consensus 

judgement on the strength of the different evidence components using the abbreviated codes 

established in previous Oxford Martin School restatements: 
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[Data] a strong evidence base involving experimental studies or field data collection, with 

appropriate detailed statistical or other quantitative analysis; 

 

[Exp_op] a consensus of expert opinion extrapolating results from relevant studies and well-

established principles; 

 

[Supp_ev] some supporting evidence but further work would improve the evidence base 

substantially; and 

 

[Projns] projections made using well-established models that are based on the available 

physical principles and/or robust empirical evidence gathered in a wide range of settings. 

 

The categories employed are based on those used in previous restatements (Godfray et al., 

2013, Godfray et al., 2014), which were themselves developed from the medical and climate 

change literature. The statements are qualitative in nature and are not intended to form a 

ranking. We note that, in many cases, evidence is context- or scale-specific. Moreover, 

interventions that may be effective in one location and at one scale may have a different effect 

in another setting. Where further gradation is necessary to reflect the quality of evidence, this 

is done in the accompanying text. 

 

We note in particular the wide range of models used in hydrological science. Some 

models are based on well-established physical principles such as conservation of mass, 

energy, and momentum, which are fundamental properties of physical systems but which 

nonetheless require generalisations about parameter values or model equations in order to be 

applied. Other models represent generalizations from necessarily limited sets of observations 

whose conclusions cannot be expected to hold in settings different from those in which they 

were generated. 

3. Results 

The summary of the natural science evidence base relevant to catchment-based “natural” 

flood management in the United Kingdom is given in the appendix, with an annotated 

bibliography provided as the electronic supplementary material. 
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4. Discussion 

In this restatement we have drawn attention to some important evidence gaps. We highlight 

several immediate priorities:  

1. National monitoring networks provide essential data for estimating flood risk and 

determining the efficacy of interventions. Maintenance and enhancement of monitoring 

systems should pay particular attention to the accurate measurement of high water levels 

and out-of-bank flows. Significant uncertainty about the impacts of different types of 

intervention both when used individually and in combination arises in part because there 

has not been sufficient research to establish causal links between CBFM and NFM actions 

and downstream effects. Long-term monitoring is necessary because major floods are rare 

events; it is also necessary that prospective studies establish good experimental controls 

and collect accurate baseline data. 

2. Recent model studies have begun to reproduce field measurements from relatively small 

monitored catchments. These models could now be used to simulate the impact of 

changes in land use and management practices in larger catchments. Model studies of 

large recently-flooded catchments (e.g., Yorkshire Ouse, Eden, Parrett, Thames) could 

help to establish the scale and spatial location of different types of catchment-based 

intervention that might be required to have a noticeable effect on flooding. It is important 

to investigate whether the models’ findings can be extrapolated to regions larger than 

those for which they have been evaluated, given the constraints posed by their formulation 

and uncertainties in validation data, and to understand whether the benefits of 

CBFM/NFM measures are more, less, or equally predictable than the benefits of hard 

engineered assets. 

3. The Environment Agency’s Catchment Flood Management Plans (CFMPs) assess flood 

risks across a catchment and can include maintaining or restoring natural processes among 

the measures that might be taken in the course of flood risk management. Moreover, a 

large number of catchment-based schemes are currently under way, promoted by Rivers 

Trusts, Wildlife Trusts and flooded community groups, for example. Many of these local 

initiatives are neither being planned nor evaluated at larger spatial scales. The lack of 

monitored baselines and experimental controls creates a risk that the wider and scale-

dependent impacts cannot be properly investigated or used to inform decision-making. 

Research and data available within the water management industry (e.g., Water 

Companies, Internal Drainage Boards, land and estate management organizations) would 

add to the evidence base if it were disseminated more widely. 
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4. The performance, longevity and operation and maintenance of CBFM/NFM should be 

systematically compared with traditional engineering solutions. The risks and 

uncertainties and benefits associated with each approach need to be more fully understood 

and communicated. The interactions between fluvial floods and other flood types (e.g., 

pluvial, coastal and groundwater) also warrant further systematic study. The potential for 

CBFM/NFM interventions in groundwater-dominated and heavily-engineered and drained 

river systems needs further research. The extent to which these interventions add 

resilience to the impacts of climate change is also worthy of further investigation. 

5. A practitioner toolkit would help to share practical experience (whilst noting context-

specific issues), paying attention to appropriate design criteria. A practitioner toolkit 

might comprise a set of documents outlining best practices and the situations in which 

their effectiveness has been demonstrated, drawing on well-studied examples. This could 

be accompanied by a protocol for coordinated, high quality, monitoring of the catchment, 

river corridor and hydro-meteorological conditions, drawing on modern sensor, 

communications, and information technologies. 

6. There would be benefits from improved communication and collaboration between groups 

undertaking research in river catchments (e.g., water quality, sediment transport, river 

restoration, biodiversity, agriculture, forestry), which are all relevant to flood risk 

management. On the basis of current evidence, the cost-effectiveness of NFM at medium-

large scales is likely to rely on understanding interactions between flows, debris, and 

sediment management taking into account the range of ecosystem service benefits that 

accompany NFM. 
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Appendix A. A restatement of the natural science evidence concerning catchment-based 

“natural” flood management in the United Kingdom. 

(a) Introduction and aims 

(1) [Background] 

Flooding causes hundreds of millions of pounds of damage in the UK and climate change is 

projected to increase the frequency and intensity of heavy rainfall in the future. Flooding may 

be fluvial, pluvial3, coastal, or groundwater related, or a combination of these. Here we focus 

on fluvial floods, which are primarily caused by the downstream flow of runoff generated by 

heavy rainfall on wet ground. Most investment to reduce flood risk goes into engineered 

systems like flood defences and channel modification. “Catchment-Based Flood 

Management” (CBFM) consists of interventions of any kind that seek to modify land use, 

land management, upstream river channels and floodplains, in order to reduce the frequency 

and severity of flooding. CBFM aims to alter flood risk by making changes within the wider 

catchment rather than managing flood hazard locally at the point where flooding occurs. One 

subset of CBFM is “Natural Flood Management” (NFM4) which seeks to restore catchment 

and river processes that have been adversely affected by human intervention. CBFM and 

NFM may help reduce the frequency and severity of flooding as well as delivering other 

environmental, social and economic benefits. However, because CBFM and NFM 

interventions often occur alongside other factors that influence flooding, including spatial and 

temporal variability in rainfall and runoff, assessing the effectiveness of these interventions is 

challenging. 

(2) [Principles] 

The magnitude of fluvial flooding depends upon: (i) the rate of runoff from hillslopes into 

river channels, (ii) the rate of propagation of the runoff downstream in river channels and (iii) 

how runoff contributions from multiple hillslopes and sub-catchments combine via the 

channel network to generate the downstream flood hydrograph. In small catchments5, the 

peak of the flood hydrograph is dominated by runoff from hillslopes in response to storm 

                                                 

3 Pluvial flooding is caused by excess surface water during locally-intense rainfall. 
4 The terms Working with Natural Processes (WwNP), Nature Based Solutions (NBS), and Building with Nature 

(BwN) are often used synonymously with NFM.  
5 We assess interventions at the plot scale (~ 100 m2), hillslope scale (~ 0.1 km2), small catchment scale (< 20 

km2), medium catchment scale (20–100 km2) or large catchment scale (> 100 km2). 
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rainfall. In larger catchments, the river channel network determines which areas of the 

catchment contribute to the peak of the flood hydrograph to cause flooding [Data]. The impact 

of NFM/CBFM measures on flooding therefore depends on their location within the 

catchment, the size of the catchment and the connectivity of the channel network [Projns]. 

Simple extrapolation of small-scale changes to larger catchment areas is therefore not 

possible, and the effects of NFM/CBFM must be assessed within the context of the whole 

catchment [Exp_op]. Relatively few studies adopt such a catchment-scale framework; some of 

those that do are summarized in Section (20) [Exp_op]. 

(3) [Evidence] 

Many individual studies have investigated the direct effect on runoff and river flow of 

variations in natural land cover, human-modified land use, and specific details of land and 

river channel management practices. Several integrated studies have investigated the potential 

effect of CBFM and NFM on flooding. Together, these strands of research have generated a 

large amount of important, policy-relevant information. However, because each flood is a 

consequence of a unique combination of conditions, evidence needs to be interpreted with 

care. Here, we summarize the evidence base relevant to policy-making in the areas of CBFM 

and NFM, in the United Kingdom, as of June 2016. We look principally at evidence from the 

United Kingdom, but make reference to studies undertaken overseas where appropriate. We 

focus mainly on peer-reviewed academic studies, although we have indicated the existence of 

practitioner-led evidence databases and catalogues where relevant. 

(4) [Aim] 

We provide a consensus judgement on the nature of the different evidence components using 

the abbreviated codes, which are based on those used in previous Oxford Martin School 

Restatements: 

 

[Data] a strong evidence base involving experimental studies or field data collection, with 

appropriate detailed statistical or other quantitative analysis; 

 

[Exp_op] a consensus of expert opinion extrapolating results from relevant studies and well-

established principles; 

 

[Supp_ev] some supporting evidence but further work would improve the evidence base 

substantially; and 
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[Projns] projections made using well-established models that are based on the available 

physical principles and/or robust empirical evidence gathered in a wide range of settings. 

(b) Meteorological drivers of flooding 

(5) [Meteorological data and trends] 

The UK benefits from a meteorological observation network that is dense by global standards. 

Annual precipitation totals vary considerably from year to year, but there has been no 

detectable long-term change in spatially-averaged annual precipitation totals since the 18th 

Century [Data]. Over this time period the UK has, however, experienced a statistically-

significant increase in winter precipitation, and a reduction in summer precipitation (see 

Figure 1a) [Data]. Winter precipitation in uplands has increased more than in lowlands [Data]. 

 

 

Figure 1 Climate variability and flooding. (a) England and Wales precipitation 

seasonality (1776-2015); the blue line shows winter (DJF) precipitation; the red line 
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indicates summer (JJA) precipitation. Data: Alexander and Jones (2001); 

http://www.metoffice.gov.uk/hadobs/hadukp/. (B) Annual mean flood index (1871-2015). 

The blue and red shading shows flood-rich and flood-poor periods respectively Data: 

Wilby and Quinn (2013); https://crudata.uea.ac.uk/cru/data/lwt/. 

(6) [River flow variability and trends] 

Extensive catchment and river channel modifications including impoundments, diversions, 

and water withdrawals have modified river flow, making climate-driven trends, if present, 

difficult to detect. The challenge is exacerbated by changes in measurement techniques and 

instrument locations. ‘Benchmark’ river basins that have not experienced widespread channel 

modification, abstraction or urbanization during the period of record show a pattern of 

increased winter extremes between the 1960s and the early-2000s in the north and west of the 

UK, but this trend is not present in their south-eastern counterparts [Data]. 

(7) [Flood magnitude and frequency] 

Increases in flood frequency do not always imply increases in flood magnitude [Data]. The 

longest UK river flow datasets show that flood magnitudes observed since 1960 are not 

unusual compared with earlier observations. The Thames, which has the longest gauged 

record in the UK, shows no significant long-term trend in flood magnitude since 1883 [Data]. 

Similar results hold for the Wye and Scottish Dee, back to the 1930s [Data]. 

(8) [Flood rich and flood poor periods] 

Climate variability results in clusters of flood-rich (e.g., 1908–1934, and 1998–present) and 

flood-poor periods (e.g., 1950–1980; see Figure 1b) [Data]. Flood-rich episodes are associated 

with westerly airflows and cyclonic conditions across the UK [Data]. The flood-rich period 

starting in the late-1990s has been attributed to warmer conditions in the North Atlantic 

Ocean [Supp_ev]. Sedimentary deposits laid down after torrential flood flows in small 

catchments provide evidence for a similarly flood-rich period between 1840 and 1890; in the 

17th–19th centuries floods were both more frequent and more severe than those experienced 

since 1998 [Data]. 

(9) [Climate change projections]  

Projections from the latest global and regional climate models do not suggest a systematic 

change in annual rainfall totals in the UK between now and 2080 (80% of the simulations 

show between a 16% reduction and a 14% increase) [Projns]. The models suggest some change 

in the spatial distribution of rainfall, with a projected increase in winter rainfall on the west 

http://www.metoffice.gov.uk/hadobs/hadukp/
https://crudata.uea.ac.uk/cru/data/lwt/
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coast of between +9% and +70%, and reduction in summer precipitation in southern England 

of -65% to -6% by 2080 [Projns]. Higher rainfall maxima are expected, and storms are 

expected to occur more often, especially in the summer [Projns]. Winter upland rainfall totals 

may also increase [Projns]. Under warmer conditions, winter precipitation is more likely to be 

in the form of rain rather than snow [Projns]. 

(c) The effects of land cover and land management on flooding 

(10) [Historical changes in land cover]  

Land cover has changed radically in the UK due to human influence, with forest covering 

much of the UK in prehistoric times and declining to a minimum of 6% in 1930 and then 

increasing to 12% currently (2007 figures) [Data]. There have been major changes to 

agricultural practices, upland management, and to the extent and type of urbanization [Data]. 

(11) [The influence of land cover on flooding]  

At small spatial scales (< 20 km2) the effect of land cover and land management on flood 

flows is evident in some studies, but not for the most extreme floods [Supp_ev]. Measured data 

for land use impacts in larger catchments (> 100 km2) are lacking [Supp_ev]. The Flood Studies 

Report and Flood Estimation Handbook concluded (from studies of 553 and 943 catchments 

respectively) that urban extent was the only land cover factor that was significantly related to 

the magnitude of the mean annual flood in UK rivers [Data]. Numerical modelling suggests 

that the effect of land cover changes on river flows in the Thames catchment is small 

compared with natural climatic variability [Projns]. 

(12) [Effects of forest cover]  

The impacts of upland conifer forestry on water availability and runoff have been the subject 

of several experimental studies in the UK. One of the longest-running investigations was 

based in two UK experimental catchments at Plynlimon (10.6 km2 and 8.7 km2) in mid-Wales 

where: 

(a) Mature forest produced higher evaporative losses than grassland under equivalent 

conditions, owing to the greater amount of water intercepted within the tree canopy 

[Data]. 

(b) For smaller storms (less than 20% of the mean annual flood), flow peaks per unit area 

were smaller in the forested catchment than under grassland although it is noted that 

these storms do not usually pose a significant flood hazard [Data]. 
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(c) By contrast, during high flood flows no significant difference was found between 

flood peaks (per unit area) in the two Plynlimon catchments [Data]. 

 

Limited suppression of flood peaks in the forested catchment was attributed to the relatively 

small amount of canopy storage and generally drier soils beneath forest stands compared with 

grassland [Exp_op]. Under sustained winter rainfall, soil saturation will occur and little 

mitigation of high flood flows would be expected [Exp_op]. 

(13) [Timber planting and harvesting; forestry operations] 

Planting forests and harvesting timber can have long-lasting effects on runoff, stream flow 

and flood risk due to soil compaction by machinery, construction and use of forest roads, 

artificial drainage, and by increasing soil loss. The magnitude of these effects depends 

critically on management practices [Data]. 

(a) Evidence from Europe and North America shows timber harvesting can exacerbate 

peak flows and lead to flooding [Data]. UK studies (e.g., Plynlimon) show augmented 

low flows but not increased peak flows [Data]; the difference with international studies 

is attributed to good forestry practice [Exp_op]. 

(b) In two small highland catchments in Scotland, approximately 30 km northeast of 

Stirling at Balquhidder (6.85 and 7.70 km2), clear-felling of 50% of the catchment is 

estimated (with the aid of a model) to have led to a small increase in total flow of 

approximately 3%. The calculated difference is likely to be within the range of model 

calibration uncertainty [Projns]. 

(c) Establishment of conifer plantations in the 1.5 km2 Coalburn catchment in the Kielder 

Forest (NW England) on previously rough grazing land increased the rate of runoff 

after storms for 20 years [Data], likely due to improvements to drainage prior to 

planting [Exp_op]. Once the plantation forest in this location reached maturity, a 200–

300 mm decrease in annual runoff was observed, compared with that prior to 

afforestation [Data]. 

(d) Simulated peak flows are higher at Coalburn when small trees are present compared 

with taller trees, but the bigger the flood the smaller is the difference [Projns]. 

(14) [Impact of agricultural practices] 

Changing agricultural practices over the last century have led to: (i) removal of hedgerows to 

create larger fields; (ii) soil compaction; (iii) land drains; (iv) increased flow through cracks 

and sub-surface drains (macropore flow); (v) concentrated overland flow in ditches, tracks, 
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and wheel tracks; (vi) narrowing or removal of non-agricultural riparian corridors and buffer 

strips; and (vii) changes in crop type and switches from spring-sown to autumn-sown arable 

crops. Grassland management practices, including intensive grazing, have led to soil 

structural degradation in local cases and these changes have been shown to increase runoff 

production [Data]. Localised increases in flooding at the plot and hillslope scale have been 

attributed to changes in land cover, crop type (including the expansion of crops such as 

maize) and intensification of farming [Data]. 

(15) [Impact of land drainage] 

Drainage to control water levels has complex effects on runoff, which depend on the type of 

drainage used. 

(a) At the plot scale, drainage reduces peak flows from impermeable (e.g., clay) soils, but 

increases those from more permeable soils [Data]. 

(b) By drying soils, drainage increases their capacity to store water after a rainfall event, 

but when the soils become saturated drainage increases flows [Data].  

(c) At the plot scale, higher flow peaks result from open ditches compared with 

subsurface drains. Higher peaks arise from the use of a ‘mole plough’ to create sub-

surface channels in impermeable soils (‘mole’ drainage) in combination with other 

forms of subsurface drainage [Data]. 

(d) Extension of drainage networks up hillsides increases the speed with which runoff is 

transported to rivers [Data]. 

(16) [Soil compaction] 

Both arable and livestock agriculture practices can cause surface and sub-surface soil 

compaction, and at local scales this has been demonstrated to increase surface runoff [Data]. 

Effects at catchment scale have not been identified, though there have been few relevant 

studies [Exp_op]. 

(a) Soil compaction due to higher livestock density increased the flood peak after a storm 

in NW England by 7%, according to a model simulation in the 36 km2 Scandal Beck 

tributary of the River Eden in north-west England [Projns]. 

(b) A recent survey in south-west England has shown that 75% of survey plots that had 

been planted with late-harvested crops (e.g., maize or potatoes) suffered severe 

degradation of soil structure due to soil compaction, generating additional surface 

runoff and surface water pollution, and reducing aquifer recharge [Data]. 
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(c) In a plot-scale experiment at Pontbren in mid-Wales, tree-planted plots produced 

between 48% and 78% less runoff than the grazed control plots, although there was a 

high degree of variability between sites [Data]. Five years on, soil infiltration rates 

were 67 times higher in tree-planted plots compared with grazed pasture, and the 

effect of tree planting was separate from the effect of excluding sheep [Data]. 

 

(17) [Upland and peatland impacts] 

Upland areas often receive heavy rainfall. Management practices affect peak water flows 

downstream [Data]. Most evidence demonstrating flood response to upland interventions is at 

the small catchment scale (< 20 km2) rather than at the large catchment scale (> 100 km2). 

(a) Higher flood peaks and shorter times to reach peak flow are associated with peatland 

degradation and removal of vegetation cover [Data].  

(b) Locating dense ground cover such as Sphagnum moss along more gentle gradient 

slopes and near watercourses has the greatest impact on flood peak reduction (or the 

converse for bare ground) when compared to having the same proportion of dense 

surface cover elsewhere in the catchment [Projns]. 

(c) A study of the effects of heather burning to encourage grouse found mixed effects: 

slower runoff after moderate rainfall (owing to deeper water tables) but faster runoff 

for the highest 20% of events (owing to faster flow over sparsely-vegetated, saturated 

ground) [Supp_ev]. 

(18) [Upland ditch blocking]  

Upland ditches may increase or decrease flood peaks at the local scale depending on the 

layout of the drains, topography and flood peak synchronization in the main channel [Projns]. 

Upland ditch blocking (i.e., using sequences of dams along each ditch) has been common 

over the last 15 years in the UK, mainly to benefit biodiversity or water quality or both. 

(a) Ditch blocking in upland peat is effective in reducing flow peaks only in the steepest, 

smoothest drains; surface roughness of the surrounding vegetated peat may be more 

important than the presence or absence of ditches [Projns]. 

(b) A five-year monitoring study in the Peak District showed that the effects of drains 

depended on their configuration, and on the velocity differential between overland 

flow and flow in the drains themselves [Data]. Modelling studies have suggested that 

ditch blocking can sometimes reduce peak flows, though to a degree dependent on the 

details of topography and how ditches are blocked [Projns]. 
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(19) [Impacts of urbanization and Sustainable Drainage Systems (SuDS)] 

Urbanization tends to increase peak flood flows because of reduced infiltration under paved 

areas and rapid flow over the surface, along channelized streams, and through culverts and 

pipes [Data]. Urban flooding is generally greatest from intense convective storms in summer 

[Data]. 

(a) Engineering interventions, including permeable paving, stormwater retention and 

storage basins and Sustainable Drainage Systems (SuDS), can avoid, mitigate or even 

reverse the adverse effects of urbanization on surface runoff [Data]; 

(b) Restoration of urban watercourses and their vegetated riparian corridors, plus 

reconnection of their floodplains can be used to convey or store urban runoff while 

encouraging infiltration and improving water quality [Data]. 

(20) [Catchment-scale effects of land management practices] 

Understanding how local changes in land cover and land management affect water flows and 

flood risk downstream in large catchments is a major research challenge, which has been 

addressed by several large projects including the Catchment Hydrology and Sustainable 

Management Programme (CHASM), Flood Risk Management Research Consortium 

(FRMRC), and Flood Risk from Extreme Events (FREE) research programmes. Nonetheless, 

the hydrological responses to land-use change tend to be context-specific and translating 

results between one context and another is difficult. 

(a) Under the United Utilities’ Sustainable Catchment Management Plan (SCaMP) 

project, changes to upland land-use management have been carried out in the 260 km2 

Hodder catchment (a tributary of the River Ribble, north-west England) primarily to 

reduce suspended sediment and colouration in water used for public supply. The 

changes, which covered 25 km2 within a 58 km2 sub-catchment, included moorland 

ditch blocking in areas of blanket peat, tree planting, and reduction in livestock 

stocking density. The possible consequences of these changes for downstream 

flooding were evaluated at multiple scales, to test whether small-scale impacts 

propagate through the river network. SCaMP changes had minimal short-term effects 

on the pattern of flood flows [Data]. No effects were found at the larger scale of the 

entire Hodder catchment (260 km2) during the period of study [Data]. This finding was 

corroborated by a modelling study that showed that the median reduction in the flood 

peak associated with an extreme rainfall event produced by a realistic suite of land-use 
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management changes was only 2%, assuming that channel conveyance did not change, 

but with an uncertainty range of a 1% increase to a 6% decrease [Projns]. 

(b) Results from the Pontbren multi-scale experiment illustrate the potential use of tree 

shelterbelts to reduce plot-scale runoff [Exp_op]. Plot-scale monitoring took place on 

12×12 m plots at four sites in a 12 km2 catchment in the headwaters of the Upper 

Severn in mid-Wales (see Section (16)). Field-scale monitoring and modelling 

included looking at the impacts of tree shelterbelts. Small catchment-scale monitoring 

looked at how land-use impacts flows and sediments (see Section (22)). 

i. A field-scale modelling study suggested that planting tree shelterbelts near the 

bottom of all improved grassland fields in a 6 km2 sub-catchment might reduce 

peak flows by 13–48% for the largest storm seen in the study period (peak 

rainfall intensity 54 mm hr-1), with a 15 minute reduction in time-to-peak 

[Projns]. 

ii. For a hypothetical extreme storm with rainfall of 140 mm over two days 

(estimated 0.6% Annual Exceedance Probability; AEP6) the simulated 

reduction in peak flows was 2–11% and there was no reduction in time-to-peak 

[Projns]. 

iii. The authors note the high levels of uncertainty associated with their model 

predictions and leave open the question of whether reductions in flood peaks 

would be possible at spatial scales larger than 6 km2 [Exp_op]. 

(c) In the River Axe catchment (288.5 km2) in south-west England, an assessment of the 

observable historical effects of land-use change on basin-scale runoff showed they are 

limited to high flows that arise from moderate rainfalls (10–30 mm day-1) after a 

period of dry weather [Data]. For flows of this magnitude (which usually remain within 

the river’s channel) the results suggest that farming practices that minimize soil 

degradation and compaction may produce a reduction in river flows in this catchment 

[Supp_ev]. The authors note, however, that in nine other catchments no significant 

changes could be identified, owing to natural variability and data limitations  [Data]. 

                                                 

6 AEP, Annual Exceedence Probability, the chance of a flood of this magnitude or greater occurring in any 

particular year. 
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(21)  [Summary] 

Summary  There is clear evidence that appropriately chosen land-use and land-cover 

interventions can reduce local peak water flows after moderate rainfall events [Data]. The 

evidence does not suggest these interventions will have a major effect on nearby downstream 

flood risk for the most extreme events [Supp_ev]. The evidence available for the downstream 

effects of upstream land-use changes at large catchment scales is more limited, but at present 

it does not suggest that realistic land-use changes will make a major difference to downstream 

flood risk [Exp_op]. Moreover, it should be recognised that, although the UK landscape has 

undergone extensive change due to the multiplicity of intensive farming interventions over 

many decades, the effects of these interventions on flooding have been difficult to detect. 

[Exp_op]. Long-term monitoring is needed to separate the effects of land management from 

those of climatic variability; without this it is unwise to extrapolate the findings from 

individual studies to larger scales, or to settings with different soil and vegetation types 

[Exp_op]. 

(d) Channel flow  

(22) [Geomorphic processes and river channel form] 

Erosion, transport, and deposition of sediment can, over time, result in major changes in 

channel morphology (cross-section and profile) and even channel pattern in some cases [Data]. 

If the amount of sediment flow from a catchment increases, some of it will tend to accumulate 

downstream in places where the pattern of water flow is insufficient to keep material in 

suspension. Sedimentation reduces the channel’s capacity to convey flow, resulting in higher 

water levels for a given discharge, and increasing the frequency of flooding [Data]. These 

processes are commonly overlooked in flood risk mapping exercises, but are likely to be 

important in any river system which receives high rates of sediment delivery and which in the 

past would have deposited much of its sediment on the floodplain [Exp_op]. 

(a) A simulation study of a river in Yorkshire showed that over a 16-month period 

changes in channel configuration due to coarse sediment deposition led to a 

substantial increase in the area that flooded for the highest flows that were recorded 

during the study period [Projns]. 

(b) In a simulation study of 41 rivers across England and Wales it has been calculated 

that, on average, a 10% reduction in channel capacity would increase flooding by 1.5 
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days per year and that, conversely, a 10% increase in channel capacity would decrease 

flooding by 1.5 days per year [Projns]. 

(c) Some agricultural land practices are known to cause sediments to accumulate in 

drainage channels and rivers [Exp_op]. Annual surveys of sediment accumulation in ten 

small wetlands built on four farms in Cumbria and Leicestershire have shown that on-

farm interventions can trap significant quantities of sediment (in this case 0.04–0.8 

t ha-1 yr-1), particularly during intense rainfall at times when crop cover is poor [Data]. 

(d) In Pontbren in mid-Wales (see Section (20)), sediment loads were 5–12 times higher 

in a stream draining improved grassland than in one draining traditionally-managed 

moorland, with implications for sediment delivery downstream [Data]. 

 

(23) [Hydraulic effects of channel modification] 

Traditional flood-control channel designs have included enlarging the natural channel cross 

section and straightening meanders to increase the hydraulic gradient and therefore 

conveyance of water. While increasing the channel cross-section will reduce local water 

levels, the resulting higher flows can increase the flood hazard downstream [Exp_op]. In a large 

flood, when much of the water flow is outside the river, the effect of channel modification is 

relatively small [Exp_op]. 

(24) [Sedimentary effects of channel modification] 

Excessive widening or deepening of natural watercourses can initiate channel instabilities 

resulting in erosion and sedimentation, requiring maintenance work to preserve the design 

capacity of the scheme [Exp_op]. Dredging to re-grade the channel slope in order to increase 

flood conveyance is particularly susceptible to such problems [Exp_op]. Greater flow velocities 

can result in more sediment from upstream riverbeds being transported and deposited in lower 

reaches, requiring further dredging at these sites to maintain the artificial channel form 

[Exp_op]. Removing sediment from the channel can have significant negative effects on aquatic 

biodiversity [Data]. 

(25) [Bank stabilization] 

River management that prevents flooding and the consequent deposit of sediment on the flood 

plain often results in the build up of sediment and a reduction in the capacity of the river to 

move water downstream [Exp_op]. Conversely, where past management has destabilized banks 

leading to erosion and unnatural widening, bank stabilization can reduce further erosion and 
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consequent sediment deposition and so reduce flood risk. In these cases stabilizing banks by 

re-vegetation can be particular effective [Exp_op]. Riverbank stabilization performed to prevent 

natural bank erosion is likely to exacerbate flood risk in aggrading river reaches because, 

without lateral shifting, channel conveyance capacity cannot be maintained [Exp_op]. 

(26) [River restoration] 

River restoration seeks to recreate natural channel properties in rivers that have been modified 

- often “channelized” - in the past. Where it increases the ability of the river to flow onto its 

floodplain, or creates storage in areas that were once part of the river’s floodplain, river 

restoration can reduce flood risk downstream [Exp_op]. In many cases the motive for river 

restoration is conservation of biodiversity, with the aim that there should be no negative flood 

impact. 

(a) In the New Forest, river restoration has been used to reconnect channelized rivers to 

their floodplains. For small and medium-sized drainage basins (< 100 km2) there is 

evidence that restoration of river channel morphology and floodplain woodland with 

associated large wood logjams may reduce flood risk, although only for high flows 

with Annual Exceedance Probability (see paragraph 20) greater than 50% [Data]. 

(b) Floodplain forest restoration can reduce peak discharge at the catchment outlet by a 

combination of the processes described in (27)–(29). For an event with Annual 

Exceedance Probability of 3%, peak discharge was reduced by up to 19% under 

mature forest. In areas where only 20–35% of the overall catchment area was restored 

to forest, peak discharge was reduced by 6% [Data]. 

(27)  [Channel and bank vegetation] 

Vegetation growing on banks and in the river itself can increase “channel roughness” which 

slows water flows and increase sediment deposition. Reduced vegetation in winter reduces 

roughness and accounts for higher seasonal flows (by up to 50% in a study of the River Stour 

in Dorset) [Data].  The cultivation and maintenance of bankside and river channel vegetation 

(often of value for biodiversity) can induce a small decrease in water flow (and hence reduce 

downstream flood risk) in their immediate vicinity in narrow rivers (where the width is less 

than 16 times the depth) [Data]. 

(28) [Riparian buffer strips] 

Non-agricultural riparian buffer strips of 10–30 m around channels limit catchment sediment 

inputs to river channels, which is important in maintaining channel conveyance [Data]. Buffer 
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strips also provide co-benefits in the form of reducing movements of agricultural pollutants 

into watercourses, and shading of river channels from excess heat which benefits aquatic 

biodiversity [Data]. Wider buffer strips maintain habitat diversity and ecological functioning 

better than narrow ones [Exp_op]. 

(29) [Large Wood] 

At local scales (~1 km river reaches), large items of wood caught in the channel can 

significantly increase the amount of water that flows over the bank, the quantity depending on 

the size of the items and how they are trapped (often by bridges and other manmade 

structures) [Data]. This causes local flooding but the water stored decreases flood risk 

downstream [Data]. During floods, wood can be mobilized and deposited at natural or artificial 

entrapment points in the channel. Blockage of bridges, trash racks and culverts with large 

wood can cause flooding upstream of the blockage [Data]. Log-jams can be installed to store 

flood water; their effectiveness depends on log size and the density of wood entrapment sites 

[Data]. 

(30) [Beavers] 

In general, beaver dams reduce the mean velocity and discharge downstream of dams. Beaver 

ponds also trap sediment, the depth and volume of which substantially increases with dam age 

and frequency [Data]. No evidence is available on their effects on extreme flows. Dam failures 

can cause minor flood waves [Exp_op]. 

(a) The effects of beaver reintroductions on flood hydrology in the UK remain to 

be established. The introduction of beavers in Knapdale, Argyll, Scotland in 

2009 resulted in slight changes in the configuration of woody debris in 

streams, although the animals in the study constructed only 0.3 dams km-1 (cf. 

0.14–19 dams km-1 observed in other countries) [Data], because the catchment 

concerned already contained well-vegetated standing water [Exp_op]. 

(31)  [Summary] 

Summary  The effect of modifications to river channels depends on channel cross-section, 

roughness, and slope [Data] and on where they are situated within river networks. 

Inappropriately located interventions may even worsen flooding due to synchronization of 

flood peaks. Interventions intended to reduce flooding are also likely to have effects on 

sedimentary, geomorphological and ecological processes in the river, as well as direct 

hydrological effects [Exp_op]. The role of sediment transport in affecting flood hazard is less 
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well understood than that of hydraulics, but it is known that accelerated sedimentation in 

rivers can significantly increase downstream flood hazards, and that CBFM and NFM have 

the potential to reduce catchment sediment yields elevated by intensive farming [Exp_op]. 

(e) Flood storage and floodplain conveyance 

(32) [Storage] 

Water is stored naturally in catchments in forest canopies, wetlands, soils, aquifer rocks, river 

channels and floodplains. Management actions to increase storage may range from 

widespread small-scale impoundments (such as blocked ditches and micro-ponds) to large-

scale flood detention reservoirs, which are major engineering works. All of these schemes 

store water upstream and then release it slowly over varying lengths of time depending on 

capacity and flood conditions. Their effectiveness at reducing flood hazard downstream 

depends on whether the stored water would have contributed to the flood peak. Small stores 

may fill up early and have no further effect in a large flood, while controllable larger storage 

(i.e., with gates or sluices) can be synchronized to maximize the effect on the peak of the 

forecast flood wave. 

(a) In the 5.7 km2 Belford Burn catchment in North Northumberland, a pond adjacent to 

the river with 800–1,000 m3 storage capacity was installed in a 0.5 km2 sub-

catchment. During a storm in September 2008, which delivered 96 mm rainfall in 36 

hours (estimated to be a rainfall event with Annual Exceedance Probability of 2%), the 

pond increased the average time-to-peak by 15 minutes [Data]. Several such features 

would thus be necessary in order to achieve a major reduction in flood hazard (and 

once full cannot help if a further event occurs before they have drained) [Exp_op]. 

(b) The ‘Slowing the Flow at Pickering’ scheme, within the 69 km2 Pickering Beck 

catchment, is designed to protect the North Yorkshire town through: (i) measures in 

the upland landscape (tree planting, large woody debris dams, timber-built bunds, 

heather bale dams within moorland drains and gullies, farm woodland, riparian 

woodland and buffer strips), and (ii) a clay bund and engineered offline storage 

(designed to protect against a flood with 4% Annual Exceedance Probability). Initial 

analysis of the scheme during a period of heavy rainfall in December 2015 showed a 

complex relationship between rainfall and river flow, and the need for more data to 

assess the performance of the measures, especially against the most extreme rainfall 

events [Exp_op]. 
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Figure 2  Hypothesized impact of three types of engineering activities on the flood 

frequency curve. After Hall et al. (2014). 

(33)  [Floodplain cross-section] 

River flows that just exceed the bank-full level are stored in the floodplain, whilst the channel 

remains the main mechanism for conveying water downstream. For higher flood flows, 

velocities on the floodplain approach that in the channel and the floodplain has an active role 

in conveyance. Modifications to the floodplain cross-section, typically by encroachment of 

built-up development protected with flood defences, will modify these floodplain functions – 

by reducing the natural floodplain storage and reducing the floodplain conveyance during 

extreme floods. Reducing the floodplain cross-section in this way will increase the water 

depth in the flood plain for a given flow. On the other hand, removing these obstructions 

increases the floodplain cross-section and reduced water depths [Data]. When flood defences 

are overtopped or breaches occur, their effect on water levels diminishes, although they may 

provide additional floodplain roughness and resistance to flow [Exp_op]. These modifications 

will not only influence local water levels but will also have downstream impacts, which can 

be verified with a well-calibrated hydrodynamic model. In a model study of a 5 km reach of 

the River Cherwell, central England, construction of embankments separating the river from 

its floodplain (thus reducing the floodplain cross-section) increased peak flood flows 

downstream by 50 to 150% and raised water levels by up to 0.5 m [Projns]. 

(34) [Floodplain roughness] 

Riparian and floodplain forests provide “floodplain roughness” which dissipates flood energy 

and provides resistance at times of high flow [Exp_op]. Removing floodplain roughness will 

increase flow velocities and reduce water levels locally, although this may exacerbate 

flooding downstream [Exp_op]. However the effects of changes in floodplain roughness tend to 

be very small, as floodplain flow velocities tend to be low in all but the largest of floods. 
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(35)  [Summary] 

Summary Increasing the cross-sectional area of the floodplain (by retreating flood defences or 

removing other obstructions from the floodplain) provides additional storage and conveyance 

capacity. The relative importance of storage versus conveyance depends on the flow, with the 

conveyance effect dominating as floodplain flows increase. The effect of storage on flooding 

downstream depends on whether the stored water would have contributed to the flood peak 

[Exp_op]. Increasing the floodplain cross-section will reduce flood water levels locally [Exp_op]. 

Increasing floodplain roughness (for example by afforestation or other obstructive vegetation) 

has a very small effect on flood levels, unless flow velocities on the floodplain are of the same 

order as the river channel, in which case increasing roughness will slow the flow [Exp_op]. The 

downstream effects of modifications to channel conveyance can be verified with 

hydrodynamic models [Exp_op]. 

(f) Co-benefits 

(36) [Co-benefits] 

CBFM and NFM can yield multiple co-benefits, including mitigation of diffuse pollution 

from agricultural land, reduced water discolouration from peatland-fed watercourses, and 

mitigation of soil erosion impacts on in-stream and lake ecology. The creation and restoration 

of terrestrial (riparian, moorland, forest) and aquatic (river, wetland) habitats and associated 

carbon storage may also be significant. Additional co-benefits may include aquifer recharge 

and retention of water upstream that can supplement water resources at times of low flow, and 

protection from the adverse ecological impacts of high water temperatures. These benefits can 

help to reduce downstream water treatment costs, sustain the productivity of agricultural soils, 

preserve and enhance ecosystems and biodiversity, enhance recreational value and help build 

the resilience of ecosystems to other stressors, including climate change. Whilst there are 

many co-benefits that might arise from CBFM/NFM, to date there have few studies that have 

systematically quantified these co-benefits [Exp_op]. 

(g) Conclusions 

(37)  [Conclusions I] 

The hazard associated with small floods in small catchments may be significantly reduced by 

CBFM and NFM although the evidence does not suggest these interventions will have a 

major effect on the most extreme events. Large fluvial floods are caused primarily by heavy 



 27 

rainfall on wet, frozen or impermeable ground. It is possible that a flood will occur that is so 

extreme that it will overwhelm any risk management measures or flood defences, natural or 

otherwise. Land use and channel form influence the severity of these floods in a fairly subtle 

way [Exp_op]. The effectiveness of NFM and CBFM varies with the severity of the event – for 

example, tree shelterbelts or drain blocking may offer mitigation against small floods, but are 

likely to be less effective during extremely intense or prolonged high rainfall [Exp_op]. Actions 

that provide small-scale local benefits have not been shown to provide significant benefits at 

the spatial scale of a larger catchment [Supp_ev]. Although a simple extrapolation would imply 

that many small interventions (each creating local benefits) should combine to create large 

benefits at large scale, this is not always the case because: (i) local benefits are attenuated 

downstream by the channel network, and (ii) interactions amongst local events mean that 

slowing water flow in one catchment can make a flood worse further downstream when 

waters from several catchments meet [Exp_op]. Where multiple interventions have taken place 

it can be difficult to disentangle the effects of an individual intervention, the effect of which 

depends upon catchment properties (in particular size, shape, topography, geology, soils, and 

both hydrological and sediment connectivity) and the extent and location of the intervention 

within the catchment [Exp_op]. With the current state of scientific knowledge, it is not possible 

to state unequivocally whether the lack of demonstrable effect at large scale is because 

noticeable flood mitigation could not be achieved in a large catchment, or because a 

sufficiently large-scale set of interventions have not yet been implemented [Exp_op]. 

(38)  [Conclusions II] 

The larger the catchment and the larger the flood, the smaller is the scope for slowing the 

flood or storing the floodwater to reduce the flood hazard. We highlight the following main 

conclusions, which are summarized graphically in Figure 3a,b: (i) Interventions that increase 

the ability of soils to absorb and retain water (through changes to land cover and land 

management) are at their most effective in smaller floods and at smaller scales. Once soils 

become saturated the effect is no longer noticeable; (ii) Storage (from distributed micro-

ponds, through natural floodplains, to large detention basins) can be effective in reducing 

flood risk, depending on how much storage is provided, where it is located, and how and 

when it is used; and (iii) Increasing the cross-sectional area of floodplains by setting back 

flood defences that have disconnected areas of the floodplain from the river can reduce peak 

river flows and flood water levels. 
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Figure 3 Schematic diagram showing relative effects of catchment-scale interventions on 

flood peaks. (a) Effect of different types of intervention on flood peak reduction [Exp_op]; 

(b) combined effect of CBFM interventions with flood magnitude and catchment scale 

[Exp_op]. We note that the effects achievable in practice will depend on the details of the 

particular intervention and the context in which it is deployed.  
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catchment scale are given by O’Connell et al. (2007) and McIntyre et al. (2013). Theoretical 

work on the decomposition of risk into its components: hazard, exposure and vulnerability is 

summarized by Rougier et al. (2013), and discussed in detail in relation to flooding by Beven 

and Hall (2014).  

 

(4) [Aim] Further examples of studies in other fields in which the strength of scientific 

evidence is judged in order to inform policy are given by Godfray et al. (2013), Godfray et al. 

(2014). 

 

(5) [Meteorological data and trends] The basic principles of hydrology and hydrometry are 

covered in a range of introductory textbooks (Ward and Robinson, 1999, Shaw et al., 2011, 

Beven, 2012). The UK hydrometric network is described in Dixon et al. (2013). Historical 

trends in rainfall since 1961 are described by Jones and Conway (1997) and Osborn et al. 

(2000). Analysis of upland and lowland precipitation is based on Burt and Holden (2010). 

 

(6) [River flow variability and trends] Several writers have sought to identify trends in river 

flow data (Mudelsee et al., 2003, Kundzewicz et al., 2005, Svensson et al., 2006). In the UK, 

there are several recent accounts of historical changes in runoff and river flows (Wilby et al., 

2008, Hannaford and Marsh, 2008, Hannaford, 2015, Watts et al., 2015). Trends in daily 

maxima and 30-day maxima between 1960 and the early 2000s have been identified in some 

parts of the UK, notably the north and west (Hannaford and Marsh, 2008), who also comment 

on the continuity of these trends in earlier periods. 

 

(7) [Flood frequency] The review by Hannaford (2015) is particularly comprehensive. The 

long-term study for the Thames is by Marsh and Harvey (2012). 

 

(8) [Flood rich and flood poor periods] Flood-rich and flood-poor periods during the 

twentieth century are identified by Wilby and Quinn (2013), Burt et al. (2015), and Foulds 

and Macklin (2015), in the context of prevailing weather types. The North Atlantic 

Oscillation (NAO) influences the pattern of wet winters and dry summers experienced in parts 
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of the British Isles. The NAO is controlled partly by sea surface temperatures in the Atlantic 

Ocean, via the Atlantic Multi-decadal Oscillation (AMO). There is much recent work on the 

link between NAO and hydro-climatic regime in the UK (Hannaford and Marsh, 2008, Burt 

and Howden, 2013, Burt et al., 2015). The role of the North Atlantic Ocean in driving the 

pattern of anomalously wet summers in northern Europe since the 1990s is explained by 

Sutton and Dong (2012). Emerging evidence suggests that the North Atlantic may be affected 

by climate variability in the tropical Pacific (e.g., El Niño; Hoerling et al., 2001) and the 

stratosphere (explained by Scaife et al., 2005). 

 

The role of atmospheric rivers in bringing anomalously wet winters is introduced by Lavers et 

al. (2011) who subsequently rule out any effect on summer precipitation (Champion et al., 

2015). The effect of arctic sea ice on Northern Hemisphere circulation is documented by 

Cohen et al. (2014). The frequency of cyclonic conditions is analysed by Matthews et al. 

(2015). Slingo and Palmer (2011) summarize the state of the art with respect to seasonal 

predictability in a UK context. Evidence from the sedimentary record – in the form of boulder 

berm and debris flow deposits dated by using lichenometry – is catalogued by Macklin and 

Rumsby (2007) and interpreted in the context of recent UK flooding by Foulds and Macklin 

(2015). 

 

(9) [Climate change projections] Several recent reviews of the hydrological impacts of 

climate change are global in scope (Bates et al., 2008, Trenberth, 2011). The theoretical link 

between warming and precipitation is discussed by Allen and Ingram (2002). The most 

accessible review of current state of the art is given by Watts et al. (2015), from which 

estimates of future precipitation changes quoted in this paragraph are taken. Several model-

based results showing the projected effects of climate change on river flows are available 

(Prudhomme et al., 2012, Christierson et al., 2012, Kay et al., 2014, Kundzewicz et al., 2014) 

along with projections of future impacts on flood risk (Sayers et al., 2015b). 

 

(10) [Historical changes in land cover] The history of British forest is covered by Hoskins 

(1955), Rackham (1976), and the palaeo-ecological basis for reconstructing land cover during 

pre-historic times is summarized by Roberts (1998). Modern data on land cover in Great 

Britain are from Fuller et al. (1994) and Morton et al. (2011). Land management practices are 

widely known to affect magnitude and timing of runoff generation in the local vicinity 

(Ferrier and Jenkins, 2009). 
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(11) [The influence of land cover on flooding] International studies indicate an important link 

between land cover and hydrological response (De Roo et al., 2003, Oudin et al., 2008). 

Nonetheless, in large UK catchments the influence of land-cover on flood peaks is hard to 

discern (e.g., in the Thames, Crooks and Davies, 2001). Extensive analysis of the impact of 

catchment properties on flooding is contained within the Flood Studies Report and the Flood 

Estimation Handbook (Natural Environment Research Council, 1975, Institute of Hydrology, 

1999). More recent studies include the EPSRC-funded FRMRC projects and NERC-funded 

Flooding from Intense Rainfall projects, which are summarized in (1). 

 

(12) [Effects of forest cover] Houghton-Carr (2013a) and Houghton-Carr (2013b) provide a 

rapid evidence assessment for the effects of forest cover on water balance. See Marc and 

Robinson (2007) for a comprehensive review of the Plynlimon catchment experiments. 

Further information is also given in Hudson and Crane (1997) and Howe et al. (1967).  

 

(13) [Timber harvesting; forestry operations] Findings relating to timber harvesting and its 

effects on flood peaks are documented by Robinson and Dupeyrat (2005). Time-dependent 

effects of plantation forestry have been noted in many settings (e.g., Hudson and Crane, 1997, 

Scott and Prinsloo, 2008). Robinson et al. (2003) review the effects of forestry in several 

European settings. Effects of timber harvesting on stream flows through soil compaction, 

construction and use of forest roads, and changes in vegetation are documented by Jones and 

Grant (1996), while scale dependence is shown by Dung et al. (2012). Results from the 

Balquhidder and Coalburn experiments are described by Johnson (1995) and Robinson 

(1998), respectively. The effects of mature forest and simulations of peak flows at Coalburn 

are reported in Birkinshaw et al. (2014).  

 

(14) [Impact of agricultural practices] For comprehensive reviews of the impacts of land 

management on flood generation see O’Connell et al. (2004), Beven et al. (2006), O’Connell 

et al. (2007) and Lane et al. (2007a). The total number of sheep and lambs in England peaked 

in 1990 at 20.8 million and has since declined by approximately 27%; over the same period 

the number of cattle and calves has declined by approximately 20% to 5.4 million (DEFRA, 

2016). The effects of pasture and arable management practices on soil structural degradation 

in local cases are documented by Holman et al. (2003). Several studies have examined the 

impacts of agriculture on local-scale runoff production (Heathwaite et al., 1989, Heathwaite et 
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al., 1990, O’Connell et al., 2004) and specifically in flood generation (Boardman et al., 1994, 

Boardman et al., 2003). 

 

(15) [Impact of land drainage] Comprehensive data on the effects of land drainage on river 

flows are compiled by Robinson (1990) and reviewed by Robinson and Rycroft (1999). A 

summary of the state-of-the-art and a list of studies into the effects of drainage is given by 

(CREW, 2012). The impact of agricultural drainage on historical channel network extent is 

documented by Ovenden and Gregory (1980). The key practitioner reference work is Buisson 

et al. (2008). 

 

(16) [Soil compaction] The survey of soil compaction in arable and grassland plots in south-

west England by Palmer and Smith (2013) shows that the effects of intensive farming depend 

on soil type, crop type. O'Donnell (2007) used modelling to explore the possible effect of soil 

compaction in the Scandal Beck sub-catchment of the River Eden on downstream flood 

flows. The studies on soil compaction at Pontbren are by Marshall et al. (2009) and Marshall 

et al. (2014). 

 

(17) [Upland and peatland impacts] The complexities of managing peat in uplands are 

reviewed by Holden et al. (2004). Specific details of runoff production mechanisms in upland 

areas are outlined in Evans et al. (1999), Holden and Burt (2003), and Holden (2008). The 

study on overland flow velocities across peat surfaces was conducted by Holden et al. (2008) 

and the 11.4 km2 catchment study at Trout Beck in the North Pennines was by Grayson et al. 

(2010). The burning study by Holden et al. (2015) compared five catchments with and five 

without patch burning, examining differences in peat properties, water tables and streamflow 

response to rainfall. Modelling studies highlighting the importance of surface roughness in 

upland peatlands include Ballard et al. (2011), Lane and Milledge (2013b), and Gao et al. 

(2015) while experiments on spatial sensitivity to surface roughness within headwater 

catchments were conducted by Gao et al. (in press) The complexities of flow responses to 

upland peat drainage are discussed by Holden et al. (2004), Holden (2005), Acreman and 

Holden (2013), and O’Connell et al. (2007). The Exmoor Mires Project has demonstrated the 

benefits for ecosystem services (e.g., water and carbon storage and improvements to water 

quality) that can arise from the restoration of peatlands (Grand-Clement et al., 2013). 
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(18) [Upland ditch blocking] Ramchunder et al. (2009) investigate the effectiveness of drain 

blocking. Lane and Milledge (2013b) quantify the effects of upland drains on downstream 

flood risk. The simulation study by Ballard et al. (2012) looked in detail at when drain 

blocking can be effective in upland peat catchments while the other modelling studies 

indicated the importance of surrounding peat surface roughness (Ballard et al., 2011, Lane 

and Milledge, 2013a). The Peak District peatland revegetation and gully blocking study was 

documented in detail by Pilkington et al. (2015). 

 

(19) [Impacts of urbanization and Sustainable Drainage Systems (SuDS)] Urban surfaces are 

often assumed to be highly impervious thus converting large proportions of rainfall into 

surface runoff. However, empirical studies have demonstrated that the hydrological properties 

of urban surfaces depend on the type of surfacing and its condition with potentially complex, 

seasonally variable hydrological behaviour shown for some surfaces. The hydrological 

properties of different urban surfaces are covered by Mansell and Rollet (2006). Kjeldsen 

(2009) gives some examples of current approaches to flood frequency estimation in urban 

areas. Urban flooding during extreme summer convective storms was typified by the Summer 

2007 floods in England and Wales (Marsh and Hannaford, 2007). Several studies have 

evaluated the role and effectiveness of Sustainable Drainage Systems (Smith et al., 2002, 

Nelson et al., 2006). The definitive technical work is The SuDS Manual (Woods Ballard et 

al., 2015) published by the Construction Industry Research and Information Association 

(CIRIA; ciria.org). The multiple-benefits of restoring natural functions in urban drainage 

systems and watercourses as part of ‘Blue-Green’ approaches to urban flood risk and water 

management have received attention in research (http://www.bluegreencities.ac.uk/) and 

practice-led (http://bgd.org.uk/) consortia.  

 

(20) [Catchment-scale effects of land management practices] McIntyre and Thorne (2013) 

give a comprehensive review of the effects of land management on flooding. The conceptual 

difficulties associated with the extrapolation of results from one site and scale to another are 

discussed by several scholars (Blöschl et al., 2007, Viglione et al., 2010, Pattison and Lane, 

2012), and results from numerical simulations reinforce this apparent complexity (Dunn and 

Mackay, 1995, Ewen et al., 2013). O’Connell et al. (2007) reviews how local-scale changes 

propagate downstream, both individually and collectively, and several catchment-scale 

demonstrations have been documented in the literature (Marshall et al., 2009, McIntyre and 

Ballard, 2012, McIntyre et al., 2013). O'Donnell (2007) has developed a modelling method 

http://www.bluegreencities.ac.uk/
http://bgd.org.uk/
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for tracking impacts through the river channel network while O'Donnell et al. (2011) have 

used modelling to provide catchment sensitivity maps for the impacts of land management 

changes. There have been several recent advances in modelling methods to investigate land 

management impacts on flood flows at larger scales (Bulygina et al., 2011, Bulygina et al., 

2012, McIntyre et al., 2013, Bulygina et al., 2013, Ewen et al., 2013)  

 

The Hodder study is described in O'Donnell et al. (2011) and Ewen et al. (2015). Source area 

risk attribution is pioneered by Ewen et al. (2013). The SCaMP programme is described by 

McGrath and Smith (2006) and the results concerning the impacts of changes on the flood 

hydrograph are given by Ewen et al. (2015). 

 

The Pontbren study is documented in Wheater et al. (2008), Marshall et al. (2009), and 

Marshall et al. (2014). Modelled impacts on flood peaks at the 6 km2 catchment scale are 

reported by Wheater et al. (2008), Jackson et al. (2008), and McIntyre and Marshall (2010). 

Results from the River Axe are reported by Climent-Soler et al. (2009) and Archer et al. 

(2010). 

 

Parrott et al. (2009) discuss the way in which the effectiveness of NFM diminishes with 

catchment size. The role of tributary timing on flood risk is explored in a modelling study by 

Pattison et al. (2014). Runoff and sediment transfer are scale-dependent processes, and hence 

cannot be transferred directly between scales (Deasy et al., 2011, Deasy et al., 2014). 

 

(21) [Summary] Peer-reviewed evaluations of the effectiveness of NFM and CBFM 

interventions are listed in Table 2. Further practitioner-led implementations of NFM and 

CBFM can be found in databases compiled by the Environment Agency (Barlow et al., 2014), 

James Hutton Institute, and the JBA Trust. 

(https://www.gov.uk/government/publications/working-with-natural-processes-to-reduce-

flood-risk-a-research-and-development-framework; http://www.crew.ac.uk/content/natural-

flood-management-database; http://naturalprocesses.jbahosting.com/). An evidence directory 

compiled by the Environment Agency (SC15005 – Working with Natural Processes – 

evidence base & catchment/coastal laboratories), gives a synthesis of best practice drawn 

from twenty projects that have implemented CBFM/NFM measures in England and Wales 

(http://evidence.environment-agency.gov.uk/FCERM/en/Default/FCRM/Project.aspx? 

ProjectID=d17370c6-135f-4ceb-8ed7-23867eaa2efd&PageID=4c167c62-3bba-475d-8965-

https://www.gov.uk/government/publications/working-with-natural-processes-to-reduce-flood-risk-a-research-and-development-framework
https://www.gov.uk/government/publications/working-with-natural-processes-to-reduce-flood-risk-a-research-and-development-framework
http://www.crew.ac.uk/content/natural-flood-management-database
http://www.crew.ac.uk/content/natural-flood-management-database
http://naturalprocesses.jbahosting.com/
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d6528b5d5f61). Details of the Environment Agency’s Catchment Flood Management Plans 

can be found here: https://www.gov.uk/government/collections/catchment-flood-

management-plans 

[TABLE 2] 

 

(22) [Geomorphic processes and river channel form] Channel morphology and stability 

reflect the net sediment budget, which in turn reflects: (i) the net erosion and deposition 

observed; and (ii) the supply and connectivity of sediment from the hillslopes and upstream 

reaches. Effects on floodplain and channel morphology are widely discussed in the 

geomorphological literature (e.g., Hey, 1979, Kleinhans et al., 2013). For sediment budgets 

see Hooke (2003). The simulation by Lane et al. (2007b) shows the effects of flood related 

sedimentation on river channel form. Slater et al. (2015), Slater (2016) detect the effects of 

channel capacity changes by quantifying the non-stationarity in stage-discharge records. The 

role of fine sediments in nutrient transport is summarized by Owens and Walling (2002). The 

implications of UK farming intensification for sediment-related flood risks in upland and 

lowland basins are investigated in doctoral theses by Henshaw (2009) and Dangerfield 

(2013), respectively. Results of field experiments with on-farm wetlands in Cumbria and 

Leicestershire are reported by Ockenden et al. (2014). The comparison of sediment yields in 

basins dominated by improved grassland with those from traditionally-managed8 moorland at 

Pontbren is by Henshaw (2009) and Thorne et al. (2011b). 

 

(23) [Hydraulic effects of channel modification] The hydraulic effects of modifications to the 

geometry of channels are governed by known physical laws of steady and unsteady flow 

(Jain, 2001). Hall et al. (2014) review these principles in the context of changes to the flood 

regime in Europe. 

 

(24) [Sedimentary effects of channel modification] Tracking and predicting river channel 

adjustment and the complex interrelationships between flood conveyance, sediment transport, 

channel morphology and adjustment to natural and artificial disturbance is a mainstay of 

fluvial geomorphology (Gilbert, 1880, Mackin, 1948, Hack, 1957, Schumm, 1979). Work on 

the effects of channel modification on channel stability is summarized by Darby and Thorne 

                                                 

8 Moorland managed through lower stocking densities of local breeds of sheep (Welsh Mountain instead of 

Merino), conservation of native vegetation and no underdrainage. 
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(1996). The effect of bed lowering on bank stability is considered in detail in several studies 

(Schumm, 1979, Thorne and Osman, 1988, Sear et al., 1995, Harvey, 2001, Hooke, 2003). A 

modern set of tools provided to assess the problem of dealing with sediment in flood risk 

management is given by Thorne et al. (2011a). 

 

(25) [Bank stabilization] Advances in understanding river bank erosion, its natural controls 

and its management are covered by Lawler et al. (1997) and Midgley et al. (2012).  The 

impacts of artificially restricting lateral channel movement on sedimentation and in-channel 

conveyance are explained by Raven et al. (2010). A good practice guide to using bank 

stabilization as part of sustainable river and flood risk management is provided by the 

Scottish Environmental Protection Agency (SEPA, 2008, SEPA, 2012). The importance of 

vegetation in controlling bank erosion is reviewed by Solari et al. (2016). 

 

(26) [River restoration] The type and scale of river restoration in the UK is summarized by 

Sear et al. (2000) and Newson et al. (2002), with updates available via the River Restoration 

Centre website (http://www.therrc.co.uk). Examples of the hydrological effects of river 

restoration are given in modelling studies (Acreman et al., 2003) and field and modelling data 

(Dixon et al., 2016). Local hydraulic impacts of restoration can be found in Sear et al. (2004) 

with reviews in Brookes and Shields (1996). The role of large wood in headwater streams in 

the New Forest is investigated by Dixon and Sear (2014) and the reduction in flood risk that 

might be achieved with floodplain forest restoration is quantified by Dixon et al. (2016). 

 

(27) [Channel and bank vegetation] In-channel vegetation can reduce water velocity and 

elevate water levels significantly thus enhancing the flood hazard at that site and upstream.  

Early flow-resistance guides such as those of Chow (1959) and Barnes (1967) assist with the 

estimation of channel roughness parameters but do not properly account for composite 

roughness nor the time-varying roughness of vegetation subject to different depths and flow 

velocities (Masterman and Thorne, 1992). HR Wallingford’s more advanced Conveyance 

Estimation System, which partitions hydrodynamic roughness between its various 

components, is described in McGahey et al. (2006) and reviewed comprehensively by (Knight 

et al., 2010). Alternatives for representing vegetation effects on roughness are reviewed by 

Marjoribanks et al. (2014). The study in the River Stour is documented by Bates et al. (1998); 

the effect of vegetation on conveyance in summer floods is widely noted (Marsh and 

Hannaford, 2007). 
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(28) [Riparian buffer strips] The effects of interventions in riparian vegetation on flood 

conveyance are covered by Downs and Thorne (2000). The broader range of benefits 

conferred by riparian buffer strips is the subject of many papers in the hydrological and 

freshwater biological literatures, which are reviewed by Broadmeadow and Nisbet (2004). 

The co-benefits for sediment management are illustrated by Owens et al. (2007) and the co-

benefits for biodiversity are articulated by Correll (2005). 

 

(29) [Large Wood] The general effects of wood in rivers are documented by Abbe and 

Montgomery (1996) and more recently by USBR (2016). As the size of debris approaches the 

order of the channel width, their role alters from simply providing additional resistance to 

fluid flow in the channel, to a role in which the debris can exert a strong structural control on 

channel morphology and stability. In a UK context, the reach-scale hydraulic effects are 

considered by Jeffries et al. (2003) and Sear et al. (2010). 

 

(30) [Beavers] The role of beavers is reviewed by Gurnell (1998). International evidence 

concerning the effectiveness of beaver dams at trapping sediment is presented by 

Meentemeyer and Butler (1999) and Butler and Malanson (2005). Pollock et al. (2015) give 

practical information on the role of beavers in river restoration. Scottish Natural Heritage has 

published results from the Scottish Beaver Trial in a series of reports, including Perfect et al. 

(2015). Several additional studies of the reintroduction of beaver are underway (e.g., the Mid-

Devon Beaver Trial and the River Otter Beaver Trial) but results were not available at the 

time of writing 

 

(31) [Summary] No referencess 

 

(32) [Storage] A series of European studies consider the issues associated with managing 

offline storage (Hooijer et al., 2004, Bronstert et al., 2007, Salazar et al., 2012). Work at 

Belford is described by Wilkinson et al. (2010). Similar storage features are in use at other 

locations, e.g., Lustrum Beck, Stockton-on-Tees, although full evaluations of their 

performance have not been published at the time of writing. The Pickering scheme is 

documented by Lane et al. (2011) and Nisbet et al. (2015). A briefing note on post-event 

analysis following heavy rain in December 2015 is available here: Slowing the Flow 

Partnership Briefing: Boxing Day 2015 Flood Event 
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http://www.forestry.gov.uk/pdf/160329_PBeck_Boxing_Day_2015_Final.pdf/$FILE/160329

_PBeck_Boxing_Day_2015_Final.pdf 

 

 

(33) [Floodplain cross-section] International studies have examined floodplain modification 

on the Mekong (Hoa et al., 2008), Po (Di Baldassarre et al., 2009), Rhine (Vorogushyn and 

Merz, 2013), and Danube (Blöschl et al., 2013). Work on flood risk in the Cherwell 

associated with disconnection from the flood plain and the potential effects of floodplain and 

channel restoration is presented by Acreman et al. (2003). The effect of wetlands on flood risk 

is discussed by Bullock and Acreman (2003). 

 

(34) [Floodplain roughness] The effects of riparian forest on resistance to flow are 

documented widely in the international literature (Everitt, 1968, Swanson and Sparks, 1990, 

Hupp and Osterkamp, 1996, Stromberg et al., 1993). Controls on flood peak attenuation are 

investigated by Valentová et al. (2010) and sensitivity to floodplain roughness is presented by 

Hall et al. (2005b). A study that documents a case where floodplain friction has only a limited 

impact on flooding is reported by Aronica et al. (2002). 

 

(35) No references cited 

 

(36) The need for further quantitative evaluation of the co-benefits associated with nature-

based solutions like CBFM/NFM is articulated by Jones et al. (2012). 

 

(37)–(38) No references cited. 

  

http://www.forestry.gov.uk/pdf/160329_PBeck_Boxing_Day_2015_Final.pdf/$FILE/160329_PBeck_Boxing_Day_2015_Final.pdf
http://www.forestry.gov.uk/pdf/160329_PBeck_Boxing_Day_2015_Final.pdf/$FILE/160329_PBeck_Boxing_Day_2015_Final.pdf
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Table 2 Studies evaluating the effectiveness of CBFM/NFM techniques (After: Environment Agency, JBA Consulting)   

Name of Scheme Type of intervention Location 
Study 

area 
Summary of effect Sponsor / Funder Ref 

Belford Off-channel storage Northumberland 5.7 km2 
Runoff attenuation by off-channel storage feature resulted in 
increased time-to-peak during a 2% AEP rainfall event for 0.5 

km2 sub-catchment. 

Environment Agency 1 

Pontbren Tree planting; ditch blocking Mid Wales  12.5 km2 

Infiltration rates up to 67 times higher in woodland compared 

with pasture; tree shelterbelts simulated to reduce peak flows by 

2-11% for a 0.6% AEP rainfall event in a 6 km2 sub-catchment. 

Flood Risk Management 
Consortium (FRMRC), Coed 

Cymru, Coed Cadw Woodland 

Trust 

2 

Pickering 
Off-channel storage, and upland 
land management measures 

North Yorkshire 69 km2 

Off-channel storage, and other woodland, moorland and 

farmland interventions are estimated to provide protection 

against a 4% AEP flood. The Pickering project has two types of 
intervention: NFM in the upland landscape, and a clay bund and 

engineered offline storage. The latter is what gives the 4% AEP 

flood protection but at a cost of approximately £3m. 

Ryedale District Council North 

Yorkshire County Council; 
Local Flood Levy; Defra, 

Forestry Commission 

3 

New Forest LIFE3 
(Blackwater) 

Runoff attenuation features Hampshire 12 km2 Attenuation of flood peak due to added roughness and storage 

Forestry Commission, 

Environment Agency, Natural 

England 

4 

Berwyn Drain Blocking Drain blocking Mid Wales  100 km2 
Drain blocking led to raised water tables and diminished flood 

peaks 
RSPB, EU-LIFE-Nature 6 

SCaMP Hodder Tree planting, ditch blocking Lancashire 260 km2 
Modelling study showing that upland restoration over would 
lead to only 2% reduction in flood peak 

Environment Agency, United 
Utilities 

5 

 

AEP, Annual Exceedance Probability, the chance of a flood of this magnitude or greater occurring in any particular year; 1. 

Wilkinson et al. (2010); 2. Jackson et al. (2008); 3. Nisbet et al. (2015); 4. http://www.newforestlife.org.uk/life3/; 5. Ewen et al. 

(2013); 6. Wilson et al. (2011). 
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