105 research outputs found

    Psychosis-Proneness and Neural Correlates of Self-Inhibition in Theory of Mind

    Get PDF
    Impaired Theory of Mind (ToM) has been repeatedly reported as a feature of psychotic disorders. ToM is crucial in social interactions and for the development of social behavior. It has been suggested that reasoning about the belief of others, requires inhibition of the self-perspective. We investigated the neural correlates of self-inhibition in nineteen low psychosis prone (PP) and eighteen high PP subjects presenting with subclinical features. High PP subjects have a more than tenfold increased risk of developing a schizophrenia-spectrum disorder. Brain activation was measured with functional Magnetic Resonance Imaging during a ToM task differentiating between self-perspective inhibition and belief reasoning. Furthermore, to test underlying inhibitory mechanisms, we included a stop-signal task. We predicted worse behavioral performance for high compared to low PP subjects on both tasks. Moreover, based on previous neuroimaging results, different activation patterns were expected in the inferior frontal gyrus (IFG) in high versus low PP subjects in self-perspective inhibition and simple response inhibition. Results showed increased activation in left IFG during self-perspective inhibition, but not during simple response inhibition, for high PP subjects as compared to low PP subjects. High and low PP subjects showed equal behavioral performance. The results suggest that at a neural level, high PP subjects need more resources for inhibiting the self-perspective, but not for simple motor response inhibition, to equal the performance of low PP subjects. This may reflect a compensatory mechanism, which may no longer be available for patients with schizophrenia-spectrum disorders resulting in ToM impairments

    Neuroimaging genomics in psychiatry—a translational approach

    Get PDF
    Neuroimaging genomics is a relatively new field focused on integrating genomic and imaging data in order to investigate the mechanisms underlying brain phenotypes and neuropsychiatric disorders. While early work in neuroimaging genomics focused on mapping the associations of candidate gene variants with neuroimaging measures in small cohorts, the lack of reproducible results inspired better-powered and unbiased large-scale approaches. Notably, genome-wide association studies (GWAS) of brain imaging in thousands of individuals around the world have led to a range of promising findings. Extensions of such approaches are now addressing epigenetics, gene-gene epistasis, and gene-environment interactions, not only in brain structure, but also in brain function. Complementary developments in systems biology might facilitate the translation of findings from basic neuroscience and neuroimaging genomics to clinical practice. Here, we review recent approaches in neuroimaging genomics-we highlight the latest discoveries, discuss advantages and limitations of current approaches, and consider directions by which the field can move forward to shed light on brain disorders

    Comparing Cognitive and Somatic Symptoms of Depression in Myocardial Infarction Patients and Depressed Patients in Primary and Mental Health Care

    Get PDF
    Depression in myocardial infarction patients is often a first episode with a late age of onset. Two studies that compared depressed myocardial infarction patients to psychiatric patients found similar levels of somatic symptoms, and one study reported lower levels of cognitive/affective symptoms in myocardial infarction patients. We hypothesized that myocardial infarction patients with first depression onset at a late age would experience fewer cognitive/affective symptoms than depressed patients without cardiovascular disease. Combined data from two large multicenter depression studies resulted in a sample of 734 depressed individuals (194 myocardial infarction, 214 primary care, and 326 mental health care patients). A structured clinical interview provided information about depression diagnosis. Summed cognitive/affective and somatic symptom levels were compared between groups using analysis of covariance, with and without adjusting for the effects of recurrence and age of onset. Depressed myocardial infarction and primary care patients reported significantly lower cognitive/affective symptom levels than mental health care patients (F (2,682) = 6.043, p = 0.003). Additional analyses showed that the difference between myocardial infarction and mental health care patients disappeared after adjusting for age of onset but not recurrence of depression. These group differences were also supported by data-driven latent class analyses. There were no significant group differences in somatic symptom levels. Depression after myocardial infarction appears to have a different phenomenology than depression observed in mental health care. Future studies should investigate the etiological factors predictive of symptom dimensions in myocardial infarction and late-onset depression patients

    Cortical and subcortical brain structure in generalized anxiety disorder: findings from 28 research sites in the ENIGMA-Anxiety Working Group

    Get PDF
    The goal of this study was to compare brain structure between individuals with generalized anxiety disorder (GAD) and healthy controls. Previous studies have generated inconsistent findings, possibly due to small sample sizes, or clinical/analytic heterogeneity. To address these concerns, we combined data from 28 research sites worldwide through the ENIGMA-Anxiety Working Group, using a single, pre-registered mega-analysis. Structural magnetic resonance imaging data from children and adults (5–90 years) were processed using FreeSurfer. The main analysis included the regional and vertex-wise cortical thickness, cortical surface area, and subcortical volume as dependent variables, and GAD, age, age-squared, sex, and their interactions as independent variables. Nuisance variables included IQ, years of education, medication use, comorbidities, and global brain measures. The main analysis (1020 individuals with GAD and 2999 healthy controls) included random slopes per site and random intercepts per scanner. A secondary analysis (1112 individuals with GAD and 3282 healthy controls) included fixed slopes and random intercepts per scanner with the same variables. The main analysis showed no effect of GAD on brain structure, nor interactions involving GAD, age, or sex. The secondary analysis showed increased volume in the right ventral diencephalon in male individuals with GAD compared to male healthy controls, whereas female individuals with GAD did not differ from female healthy controls. This mega-analysis combining worldwide data showed that differences in brain structure related to GAD are small, possibly reflecting heterogeneity or those structural alterations are not a major component of its pathophysiology

    Classification of Major Depressive Disorder via Multi-Site Weighted LASSO Model

    Get PDF
    Large-scale collaborative analysis of brain imaging data, in psychiatry and neurology, offers a new source of statistical power to discover features that boost accuracy in disease classification, differential diagnosis, and outcome prediction. However, due to data privacy regulations or limited accessibility to large datasets across the world, it is challenging to efficiently integrate distributed information. Here we propose a novel classification framework through multi-site weighted LASSO: each site performs an iterative weighted LASSO for feature selection separately. Within each iteration, the classification result and the selected features are collected to update the weighting parameters for each feature. This new weight is used to guide the LASSO process at the next iteration. Only the features that help to improve the classification accuracy are preserved. In tests on data from five sites (299 patients with major depressive disorder (MDD) and 258 normal controls), our method boosted classification accuracy for MDD by 4.9% on average. This result shows the potential of the proposed new strategy as an effective and practical collaborative platform for machine learning on large scale distributed imaging and biobank data

    Neuroimaging young children and associations with neurocognitive development in a South African birth cohort study.

    Get PDF
    Magnetic resonance imaging (MRI) is an indispensable tool for investigating brain development in young children and the neurobiological mechanisms underlying developmental risk and resilience. Sub-Saharan Africa has the highest proportion of children at risk of developmental delay worldwide, yet in this region there is very limited neuroimaging research focusing on the neurobiology of such impairment. Furthermore, paediatric MRI imaging is challenging in any setting due to motion sensitivity. Although sedation and anesthesia are routinely used in clinical practice to minimise movement in young children, this may not be ethical in the context of research. Our study aimed to investigate the feasibility of paediatric multimodal MRI at age 2-3 years without sedation, and to explore the relationship between cortical structure and neurocognitive development at this understudied age in a sub-Saharan African setting. A total of 239 children from the Drakenstein Child Health Study, a large observational South African birth cohort, were recruited for neuroimaging at 2-3 years of age. Scans were conducted during natural sleep utilising locally developed techniques. T1-MEMPRAGE and T2-weighted structural imaging, resting state functional MRI, diffusion tensor imaging and magnetic resonance spectroscopy sequences were included. Child neurodevelopment was assessed using the Bayley-III Scales of Infant and Toddler Development. Following 23 pilot scans, 216 children underwent scanning and T1-weighted images were obtained from 167/216 (77%) of children (median age 34.8 months). Furthermore, we found cortical surface area and thickness within frontal regions were associated with cognitive development, and in temporal and frontal regions with language development (beta coefficient ?0.20). Overall, we demonstrate the feasibility of carrying out a neuroimaging study of young children during natural sleep in sub-Saharan Africa. Our findings indicate that dynamic morphological changes in heteromodal association regions are associated with cognitive and language development at this young age. These proof-of-concept analyses suggest similar links between the brain and cognition as prior literature from high income countries, enhancing understanding of the interplay between cortical structure and function during brain maturation

    Subcortical brain volumes in young infants exposed to antenatal maternal depression: Findings from a South African birth cohort.

    Get PDF
    BACKGROUND: Several studies have reported enlarged amygdala and smaller hippocampus volumes in children and adolescents exposed to maternal depression. It is unclear whether similar volumetric differences are detectable in the infants' first weeks of life, following exposure in utero. We investigated subcortical volumes in 2-to-6 week old infants exposed to antenatal maternal depression (AMD) from a South African birth cohort. METHODS: AMD was measured with the Beck Depression Inventory 2nd edition (BDI-II) at 28-32 weeks gestation. T2-weighted structural images were acquired during natural sleep on a 3T Siemens Allegra scanner. Subcortical regions were segmented based on the University of North Carolina neonatal brain atlas. Volumetric estimates were compared between AMD-exposed (BDI-II ⩾ 20) and unexposed (BDI-II < 14) infants, adjusted for age, sex and total intracranial volume using analysis of covariance. RESULTS: Larger volumes were observed in AMD-exposed (N = 49) compared to unexposed infants (N = 75) for the right amygdala (1.93% difference, p = 0.039) and bilateral caudate nucleus (left: 5.79% difference, p = 0.001; right: 6.09% difference, p < 0.001). A significant AMD-by-sex interaction was found for the hippocampus (left: F(1,118) = 4.80, p = 0.030; right: F(1,118) = 5.16, p = 0.025), reflecting greater volume in AMD-exposed females (left: 5.09% difference, p = 0.001, right: 3.54% difference, p = 0.010), but not males. CONCLUSIONS: Volumetric differences in subcortical regions can be detected in AMD-exposed infants soon after birth, suggesting structural changes may occur in utero. Female infants might exhibit volumetric changes that are not observed in male infants. The potential mechanisms underlying these early volumetric differences, and their significance for long-term child mental health, require further investigation

    Early structural brain development in infants exposed to HIV and antiretroviral therapy in utero in a South African birth cohort.

    Get PDF
    INTRODUCTION: There is a growing population of children who are HIV-exposed and uninfected (HEU) with the successful expansion of antiretroviral therapy (ART) use in pregnancy. Children who are HEU are at risk of delayed neurodevelopment; however, there is limited research on early brain growth and maturation. We aimed to investigate the effects of in utero exposure to HIV/ART on brain structure of infants who are HEU compared to HIV-unexposed (HU). METHODS: Magnetic resonance imaging using a T2-weighted sequence was undertaken in a subgroup of infants aged 2-6 weeks enrolled in the Drakenstein Child Health Study birth cohort, South Africa, between 2012 and 2015. Mother-child pairs received antenatal and postnatal HIV testing and ART per local guidelines. We compared subcortical and total grey matter volumes between HEU and HU groups using multivariable linear regression adjusting for infant age, sex, intracranial volume and socio-economic variables. We further assessed associations between brain volumes with maternal CD4 cell count and ART exposure. RESULTS: One hundred forty-six infants (40 HEU; 106 HU) with high-resolution images were included in this analysis (mean age 3 weeks; 50.7% male). All infants who were HEU were exposed to ART (88% maternal triple ART). Infants who were HEU had smaller caudate volumes bilaterally (5.4% reduction, p 0.2). Total grey matter volume was also reduced in infants who were HEU (2.1% reduction, p < 0.05). Exploratory analyses showed that low maternal CD4 cell count (<350 cells/mm3 ) was associated with decreased infant grey matter volumes. There was no relationship between timing of ART exposure and grey matter volumes. CONCLUSIONS: Lower caudate and total grey matter volumes were found in infants who were HEU compared to HU in the first weeks of life, and maternal immunosuppression was associated with reduced volumes. These findings suggest that antenatal HIV exposure may impact early structural brain development and improved antenatal HIV management may have the potential to optimize neurodevelopmental outcomes of children who are HEU

    ENIGMA-anxiety working group : rationale for and organization of large-scale neuroimaging studies of anxiety disorders

    Get PDF
    Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders

    Antenatal maternal intimate partner violence exposure is associated with sex-specific alterations in brain structure among young infants: Evidence from a South African birth cohort.

    Get PDF
    Maternal psychological distress during pregnancy has been linked to adverse outcomes in children with evidence of sex-specific effects on brain development. Here, we investigated whether in utero exposure to intimate partner violence (IPV), a particularly severe maternal stressor, is associated with brain structure in young infants from a South African birth cohort. Exposure to IPV during pregnancy was measured in 143 mothers at 28-32 weeks' gestation and infants underwent structural and diffusion magnetic resonance imaging (mean age 3 weeks). Subcortical volumetric estimates were compared between IPV-exposed (n = 63; 52% female) and unexposed infants (n = 80; 48% female), with white matter microstructure also examined in a subsample (IPV-exposed, n = 28, 54% female; unexposed infants, n = 42, 40% female). In confound adjusted analyses, maternal IPV exposure was associated with sexually dimorphic effects in brain volumes: IPV exposure predicted a larger caudate nucleus among males but not females, and smaller amygdala among females but not males. Diffusivity alterations within white matter tracts of interest were evident in males, but not females exposed to IPV. Results were robust to the removal of mother-infant pairs with pregnancy complications. Further research is required to understand how these early alterations are linked to the sex-bias in neuropsychiatric outcomes later observed in IPV-exposed children
    • …
    corecore