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Abstract. Large-scale collaborative analysis of brain imaging data, in psychia-

try and neurology, offers a new source of statistical power to discover features 

that boost accuracy in disease classification, differential diagnosis, and outcome 

prediction. However, due to data privacy regulations or limited accessibility to 

large datasets across the world, it is challenging to efficiently integrate distrib-

uted information. Here we propose a novel classification framework through 

multi-site weighted LASSO: each site performs an iterative weighted LASSO 

for feature selection separately. Within each iteration, the classification result 

and the selected features are collected to update the weighting parameters for 

each feature. This new weight is used to guide the LASSO process at the next 

iteration. Only the features that help to improve the classification accuracy are 

preserved. In tests on data from five sites (299 patients with major depressive 

disorder (MDD) and 258 normal controls), our method boosted classification 

accuracy for MDD by 4.9% on average. This result shows the potential of the 

proposed new strategy as an effective and practical collaborative platform for 

machine learning on large scale distributed imaging and biobank data.  
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1 Introduction 

Major depressive disorder (MDD) affects over 350 million people worldwide [1] and 

takes an immense personal toll on patients and their families, placing a vast economic 

burden on society. MDD involves a wide spectrum of symptoms, varying risk factors, 

and varying response to treatment [2]. Unfortunately, early diagnosis of MDD is chal-

lenging and is based on behavioral criteria; consistent structural and functional brain 

abnormalities in MDD are just beginning to be understood. Neuroimaging of large 

cohorts can identify characteristic correlates of depression, and may also help to de-

tect modulatory effects of interventions, and environmental and genetic risk factors. 

Recent advances in brain imaging, such as magnetic resonance imaging (MRI) and its 

variants, allow researchers to investigate brain abnormalities and identify statistical 

factors that influence them, and how they relate to diagnosis and outcomes [12]. Re-

searchers have reported brain structural and functional alterations in MDD using dif-

ferent modalities of MRI. Recently, the ENIGMA-MDD Working Group found that 

adults with MDD have thinner cortical gray matter in the orbitofrontal cortices, insu-

la, anterior/posterior cingulate and temporal lobes compared to healthy adults without 

a diagnosis of MDD [3]. A subcortical study – the largest to date – showed that MDD 

patients tend to have smaller hippocampal volumes than controls [4]. Diffusion tensor 

imaging (DTI) [5] reveals, on average, lower fractional anisotropy in the frontal lobe 

and right occipital lobe of MDD patients. MDD patients may also show aberrant func-

tional connectivity in the default mode network (DMN) and other task-related func-

tional brain networks [6].  

 

Fig. 1. Overview of our proposed framework. 

      Even so, classification of MDD is still challenging. There are three major barriers: 

first, though significant differences have been found, these previously identified brain 

regions or brain measures are not always consistent markers for MDD classification 

[7]; second, besides T1 imaging, other modalities including DTI and functional mag-

netic resonance imaging (fMRI) are not commonly acquired in a clinical setting; last, 

it is not always easy for collaborating medical centers to perform an integrated data 

analysis due to data privacy regulations that limit the exchange of individual raw data 



and due to large transfer times and storage requirements for thousands of images. As 

biobanks grow, we need an efficient platform to integrate predictive information from 

multiple centers; as the available datasets increase, this effort should increase the 

statistical power to identify predictors of disease diagnosis and future outcomes, be-

yond what each site could identify on its own. 

      In this study, we introduce a multi-site weighted LASSO (MSW-LASSO) model 

to boost classification performance for each individual participating site, by integrat-

ing their knowledge for feature selection and results from classification. As shown in 

Fig. 1, our proposed framework features the following characteristics: (1) each site 

retains their own data and performs weighted LASSO regression, for feature selec-

tion, locally; (2) only the selected brain measures and the classification results are 

shared to other sites; (3) information on the selected brain measures and the corre-

sponding classification results are integrated to generate a unified weight vector 

across features; this is then sent to each site. This weight vector will be applied to the 

weighted LASSO in the next iteration; (4) if the new weight vector leads to a new set 

of brain measures and better classification performance, the new set of brain measures 

will be sent to other sites. Otherwise, it is discarded and the old one is recovered. 

2 Methods 

2.1 Data and demographics 

For this study, we used data from five sites across the world. The total number of 

participants is 557; all of them were older than 21 years old. Demographic infor-

mation for each site’s participants is summarized in Table 1. 
 Sites Total 

N 

Total N of 

MDD 

patients (%) 

Total N of 

Controls (%) 

Age of Controls 

(Mean ± SD; y) 

Age of MDD 

(Mean ± SD; 

y) 

% 

Female 

MDD 

% 

Female 

Total 

1 Groningen 45 22 (48.89%) 23 (51.11%) 42.78 ± 14.36 43.14 ± 13.8 72.73 73.33 

2 Stanford 110 54 (49.09%) 56 (50.91) 38.17 ± 9.97 37.75 ± 9.78 57.41 60.00 

3 BRCDECC 130 69 (53.08%) 61 (46.92%) 51.72 ± 7.94 47.85 ±  8.91 68.12 60.77 

4 Berlin 172 101 (58.72%) 71 (41.28%) 41.09 ± 12.85 41.21 ± 11.82 64.36 60.47 

5 Dublin 100 53 (53%) 47 (47%) 38.49 ± 12.37 41.81 ± 10.76 62.26 57.00 

 Combined 557 299 (53.68%) 258 (46.32$)     

Table 1. Demographics for the five sites participating in the current study. 

2.2 Data preprocessing 

As in most common clinical settings, only T1-weighted MRI brain scans were ac-

quired at each site; quality control and analyses were performed locally. Sixty-eight 

(34 left/34 right) cortical gray matter regions, 7 subcortical gray matter regions and 

the lateral ventricles were segmented with FreeSurfer [8]. Detailed image acquisition, 

pre-processing, brain segmentation and quality control methods may be found in [3, 

9]. Brain measures include cortical thickness and surface area for cortical regions and 

volume for subcortical regions and lateral ventricles. In total, 152 brain measures 

were considered in this study. 



2.3 Algorithm overview 

To better illustrate the algorithms, we define the following notations: 

1. 𝐹𝑖: The selected brain measures (features) of Site-i; 

2. 𝐴𝑖: The classification performance of Site-i; 

3. W: The weight vector; 

4. w-LASSO (W, 𝐷𝑖): Performing weighted LASSO on 𝐷𝑖  with weight vector – W; 

5. SVM (𝐹𝑖, 𝐷𝑖): Performing SVM classifier on 𝐷𝑖  using the feature set - 𝐹𝑖; 

The algorithms have two parts that are run at each site, and an integration server. At 

first, the integration server initializes a weight vector with all ones and sends it to all 

sites. Each site use this weight vector to conduct weighted LASSO (Section 2.6) with 

their own data locally. If the selected features have better classification performance, 

it will send the new features and the corresponding classification result to the integra-

tion server. If there is no improvement in classification accuracy, it will send the old 

ones. After the integration server receives the updates from all sites, it generates a 

new weight vector (Section 2.5) according to different feature sets and their classifi-

cation performance. The detailed strategy is discussed in Section 2.5. 
Algorithm 1 (Integration Server) 

                      1.             Initialize W (with all features weighted as one) 

                      2.             Send W to all sites 

                      3.             while at least one site has improvement on A 
                      4.                   update W (Section 2.5) 

                      5.                   Send W to all sites 

                      6.             end while 
                      7.             Send W with null to all sites 

Table 2. Main steps of Algorithm 1. 

Algorithm 2 (Site-i) 

                      1.             𝐹𝑖 ← ∅, 𝐴𝑖 ← 0 

                      2.             while received W is not null 

                      3.                   𝐹𝑖
′  ← w-LASSO (W, 𝐷𝑖)  (Section 2.6) 

                      4.                   if 𝐹𝑖
′ ≠ 𝐹𝑖 

                      5.                         𝐴𝑖
′ ← SVM (𝐹𝑖

′, 𝐷𝑖) 

                      6.                         if 𝐴𝑖
′ > 𝐴𝑖  

                      7.                               send 𝐹𝑖
′ and 𝐴𝑖

′ to Integration Server 

                      8.                               𝐹𝑖 ← 𝐹𝑖
′, 𝐴𝑖 ← 𝐴𝑖

′ 

                      9.                         else send 𝐹𝑖 and 𝐴𝑖 to Integration Server 

                      10.                       end if 
                      11.                 end if 

                      12.            end while 

Table 3. Main steps of Algorithm 2. 

2.4 Ordinary LASSO and weighted LASSO 

LASSO [11] is a shrinkage method for linear regression. The ordinary LASSO is 

defined as: 

 β̂(LASSO) = arg min ‖y − ∑ xiβi
n
i=1 ‖2 + λ∑ |βi|

n
i=1  (1) 



Y and x are the observations and predictors. λ is known as the sparsity parameter. It 

minimizes the sum of squared errors while penalizing the sum of the absolute values 

of the coefficients - β. As LASSO regression will force many coefficients to be zero, 

it is widely used for variable selection [11].  

      However, the classical LASSO shrinkage procedure might be biased when esti-

mating large coefficients [12]. To alleviate this risk, adaptive LASSO [12] was devel-

oped and it tends to assign each predictor with different penalty parameters. Thus it 

can avoid having larger coefficients penalized more heavily than small coefficients. 

Similarly, the motivation of multi-site weighted LASSO (MSW-LASSO) is to penal-

ize different predictors (brain measures), by assigning different weights, according to 

its classification performance across all sites. Generating the weights for each brain 

measure (feature) and the MSW-LASSO model are discussed in Section 2.5 and 2.6. 

2.5 Generation of a Multi-Site Weight  

In Algorithm 1, after the integration server receives the information on selected fea-

tures (brain measures) and the corresponding classification performance of each site, 

it generates a new weight for each feature. The new weight for the 𝑓𝑡ℎ feature is: 

 𝑊𝑓 =  ∑ 𝛹𝑠,𝑓 𝐴𝑠 𝑃𝑠
𝑚
𝑠=1 𝑚⁄  (2) 

 𝛹𝑠,𝑓 = {
1, 𝑖𝑓  the 𝑓𝑡ℎ feature was selected  in site − s

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

Here m is the number of sites. 𝐴𝑠 is the classification accuracy of site-s. 𝑃𝑠 is the pro-

portion of participants in site-s relative to the total number of participants at all sites. 

Eq. (3) penalizes the features that only “survived” in a small number of sites. On the 

contrary, if a specific feature was selected by all sites, meaning all sites agree that this 

feature is important, it tends to have a larger weight. In Eq. (2) we consider both the 

classification performance and the proportion of samples. If a site has achieved very 

high classification accuracy and it has a relatively small sample size compared to 

other sites, the features selected will be conservatively “recommended” to other sites. 

In general, if the feature was selected by more sites and resulted in higher classifica-

tion accuracy, it has larger weights. 

2.6 Multi-Site weight LASSO 

In this section, we define the multi-site weighted LASSO (MSW-LASSO) model: 

 β̂MSW−Lasso= arg min ‖y − ∑ xiβi
n
i=1 ‖2 + λ∑ (1 − ∑ 𝛹𝑠,𝑖  𝐴𝑠 𝑃𝑠

𝑚
𝑠=1 𝑚⁄ )|βi|

n
i=1  (4) 

Here xi represents the MRI measures after controlling the effects of age, sex and in-

tracranial volume (ICV), which are managed within different sites. y is the label indi-

cating MDD patient or control. n is the 152 brain measures (features) in this study. In 

our MSW-LASSO model, a feature with larger weights implies higher classification 

performance and/or recognition by multiple sites. Hence it will be penalized less and 

has a greater chance of being selected by the sites that did not consider this feature in 

the previous iteration. 



3 Results 

3.1 Classification improvements through the MSW-LASSO model 

In this study, we applied Algorithm 1 and Algorithm 2 on data from five sites across 

the world. In the first iteration, the integration server initialized a weight vector with 

all ones and sent it to all sites. Therefore, these five sites conducted regular LASSO 

regression in the first round. After a small set of features was selected using similar 

strategy in [9] within each site, they performed classification locally using a support 

vector machine (SVM) and shared the best classification accuracy to the integration 

server, as well as the set of selected features. Then the integration server generated the 

new weight according to Eq. (2) and sent it back to all sites. From the second itera-

tion, each site performed MSW-LASSO until none of them has improvement on the 

classification result. In total, these five sites ran MSW-LASSO for six iterations; the 

classification performance for each round is summarized in Fig. 2 (a-e). 

 

Fig. 2. Applying MSW-LASSO to the data coming from five sites (a-e). Each subfigure shows 

the classification accuracy (ACC), specificity (SPE) and sensitivity (SEN) at each iteration. (f) 

shows the improvement in classification accuracy at each site after performing MSW-LASSO. 

Though the Stanford and Berlin sites did not show any improvements after the second 

iteration, the classification performance at the BRCDECC site and Dublin continued 

improving until the sixth iteration. Hence our MSW-LASSO terminated at the sixth 

round. Fig. 2f shows the improvements of classification accuracy for all five sites - 

the average improvement is 4.9%. The sparsity level of the LASSO is set as 16% - 

which means that 16% of 152 features tend to be selected in the LASSO process. 

Section 3.3 shows the reproducibility of results with different sparsity levels. When 

conducing SVM classification, the same kernel (RBF) was used, and we performed a 

grid search for possible parameters. Only the best classification results are adopted.  

3.2 Analysis of MSW-LASSO features  

In the process of MSW-LASSO, only the new set of features resulting in improve-

ments in classification are accepted. Otherwise, the prior set of features is preserved. 

The new features are also “recommended” to other sites by increasing the correspond-



ing weights of the new features. Fig. 3 displays the changes of the involved features 

through six iterations and the top 5 features selected by the majority of sites. 

 

Fig. 3. (a) Number of involved features through six iterations. (b-f) The top five consistently 

selected features across sites. Within each subfigure, the top showed the locations of the corre-

sponding features and the bottom indicated how many sites selected this feature through the 

MSW-LASSO process. (b-c) are cortical thickness and (d-f) are surface area measures. 

At the first iteration, there are 88 features selected by five sites. This number decreas-

es over MSW-LASSO iterations. Only 73 features are preserved after six iterations 

but the average classification accuracy increased by 4.9%. Moreover, if a feature is 

originally selected by the majority of sites, it tends to be continually selected after 

multiple iterations (Fig. 3d-e). For those “promising” features that are accepted by 

fewer sites at first, they might be incorporated by more sites as the iteration increased 

(Fig. 2b-c, f). 

3.3 Reproducibility of the MSW-LASSO 

Selected 

Features 

Improvement, in % Selected 

features 

Improvement, in % 

ACC SPE SEN ACC SPE SEN 

13% 3.1 1.8 4.4 33% 2.6 3.1 2.5 

20% 3.9 1.4 6.0 36% 1.7 2.1 1.5 

23% 3.8 2.9 4.4 40% 2.5 4.1 1.4 

26% 4.3 3.4 5.2 43% 3.1 1.1 5.0 

30% 2.9 3.0 2.9 46% 2.8 3.9 1.9 

Table 4. Reproducibility results with different sparsity levels. The column of selected 

features represents the percentage of features preserved during the LASSO procedure, 

and the average improvement in accuracy, sensitivity, and specificity by sparsity. 

For LASSO-related problems, there is no closed-form solution for the selection of 

sparsity level; this is highly data dependent. To validate our MSW-LASSO model, we 

repeated Algorithm 1 and Algorithm 2 at different sparsity levels, which leads to 

preservation of different proportions of the features. The reproducibility performance 

of our proposed MSW-LASSO is summarized in Table 4. 



4 Conclusion and Discussion  

Here we proposed a novel multi-site weighted LASSO model to heuristically improve 

classification performance for multiple sites. By sharing the knowledge of features 

that might help to improve classification accuracy with other sites, each site has mul-

tiple opportunities to reconsider its own set of selected features and strive to increase 

the accuracy at each iteration. In this study, the average improvement in classification 

accuracy is 4.9% for five sites. We offer a proof of concept for distributed machine 

learning that may be scaled up to other disorders, modalities, and feature sets. 
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