56 research outputs found

    Identifying key needs for the integration of social‐ecological outcomes in arctic wildlife monitoring

    Get PDF
    For effective monitoring in social‐ecological systems to meet needs for biodiversity, science, and humans, desired outcomes must be clearly defined and routes from direct to derived outcomes understood. The Arctic is undergoing rapid climatic, ecological, social, and economic changes and requires effective wildlife monitoring to meet diverse stakeholder needs. To identify stakeholder priorities concerning desired outcomes of arctic wildlife monitoring, we conducted in‐depth interviews with 29 arctic scientists, policy and decision makers, and representatives of Indigenous organizations and NGOs. Using qualitative content analysis, we identified and defined desired outcomes and documented links between outcomes. Using network analysis, we investigated the structure of perceived links between desired outcomes. We identified 18 desired outcomes from monitoring and classified them as either driven by monitoring information, monitoring process, or a combination of both. Highly cited outcomes were make decisions, conserve, detect change, disseminate, and secure food. These reflect key foci of arctic monitoring. Infrequently cited outcomes (e.g., govern) were emerging themes. Three modules comprised our outcome network. The modularity highlighted the low strength of perceived links between outcomes that were information driven or primarily information driven (e.g., detect change, make decisions, conserve or secure food) and process driven and derived outcomes (e.g., cooperate, learn, educate). The outcomes expand monitoring community and disseminate created connections between these modules. We identified key desired outcomes from monitoring that are widely applicable to social‐ecological systems within and outside the Arctic, particularly those with wildlife subsistence economies. Attributes and motivations associated with outcomes can guide future development of integrated monitoring goals for biodiversity conservation and human needs. Our results demonstrate the disconnect between information and process driven goals and how expanding the monitoring community and better integrating monitoring stakeholders will help connect information derived and process derived outcomes for effective ecosystem stewardship

    Fungal GH25 muramidases : New family members with applications in animal nutrition and a crystal structure at 0.78Å resolution

    Get PDF
    Muramidases/lysozymes hydrolyse the peptidoglycan component of the bacterial cell wall. They are found in many of the glycoside hydrolase (GH) families. Family GH25 contains muramidases/lysozymes, known as CH type lysozymes, as they were initially discovered in the Chalaropsis species of fungus. The characterized enzymes from GH25 exhibit both ÎČ-1,4-N-acetyl- and ÎČ-1,4-N,6-O-diacetylmuramidase activities, cleaving the ÎČ-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) moieties in the carbohydrate backbone of bacterial peptidoglycan. Here, a set of fungal GH25 muramidases were identified from a sequence search, cloned and expressed and screened for their ability to digest bacterial peptidoglycan, to be used in a commercial application in chicken feed. The screen identified the enzyme from Acremonium alcalophilum JCM 736 as a suitable candidate for this purpose and its relevant biochemical and biophysical and properties are described. We report the crystal structure of the A. alcalophilum enzyme at atomic, 0.78 Å resolution, together with that of its homologue from Trichobolus zukalii at 1.4 Å, and compare these with the structures of homologues. GH25 enzymes offer a new solution in animal feed applications such as for processing bacterial debris in the animal gut

    Module walking using an SH3-like cell-wall-binding domain leads to a new GH184 family of muramidases

    Get PDF
    Muramidases (also known as lysozymes) hydrolyse the peptidoglycan component of the bacterial cell wall and are found in many glycoside hydrolase (GH) families. Similar to other glycoside hydrolases, muramidases sometimes have noncatalytic domains that facilitate their interaction with the substrate. Here, the identification, characterization and X-ray structure of a novel fungal GH24 muramidase from Trichophaea saccata is first described, in which an SH3-like cell-wall-binding domain (CWBD) was identified by structure comparison in addition to its catalytic domain. Further, a complex between a triglycine peptide and the CWBD from T. saccata is presented that shows a possible anchor point of the peptidoglycan on the CWBD. A `domain-walking' approach, searching for other sequences with a domain of unknown function appended to the CWBD, was then used to identify a group of fungal muramidases that also contain homologous SH3-like cell-wall-binding modules, the catalytic domains of which define a new GH family. The properties of some representative members of this family are described as well as X-ray structures of the independent catalytic and SH3-like domains of the Kionochaeta sp., Thermothielavioides terrestris and Penicillium virgatum enzymes. This work confirms the power of the module-walking approach, extends the library of known GH families and adds a new noncatalytic module to the muramidase arsenal

    AMAP 2017. Adaptation Actions for a Changing Arctic: Perspectives from the Baffin Bay/Davis Strait Region

    Get PDF

    Thawing permafrost in Arctic coastal communities:a framework for studying risks from climate change

    No full text
    Abstract Thawing permafrost creates risks to the environment, economy and culture in Arctic coastal communities. Identification of these risks and the inclusion of the societal context and the relevant stakeholder involvement is crucial in risk management and for future sustainability, yet the dual dimensions of risk and risk perception is often ignored in conceptual risk frameworks. In this paper we present a risk framework for Arctic coastal communities. Our framework builds on the notion of the dual dimensions of risk, as both physically and socially constructed, and it places risk perception and the coproduction of risk management with local stakeholders as central components into the model. Central to our framework is the importance of multidisciplinary collaboration. A conceptual model and processual framework with a description of successive steps is developed to facilitate the identification of risks of thawing permafrost in a collaboration between local communities and scientists. Our conceptual framework motivates coproduction of risk management with locals in the identification of these risks from permafrost thaw and the development of adaptation and mitigation strategies
    • 

    corecore