41 research outputs found

    Molecular Epidemiology of Rotavirus Strains in Symptomatic and Asymptomatic Children in Manhiça District, Southern Mozambique 2008–2019

    Get PDF
    ..870-15 SC; the United States Agency for International Development (USAID), grant number AID-656-F-16-00002 and Fundo Nacional de Investiga??o (FNI), Mo?ambique, grant number 245-INV, within the context of diarrhoeal disease surveillance platform implementation. F.M PhD is supported by Calouste Gulbenkian Foundation, grant number 234066. The authors convey many thanks to all the caregivers who consented to their children?s participation in both studies (GEMS and the diarrhoeal disease platform). They would also like to thank all the professionals in the hospitals and those on field recruitment for their full dedication and effort in children enrolment and collection of data and samples whenever possible. Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Group A rotaviruses remain the leading cause of diarrhoea in children aged <5 years. Mozambique introduced rotavirus vaccine (Rotarix® ) in September 2015. We report rotavirus geno-types circulating among symptomatic and asymptomatic children in Manhiça District, Mozambique, pre-and post-vaccine introduction. Stool was collected from enrolled children and screened for ro-tavirus by enzyme-immuno-sorbent assay. Positive specimens were genotyped for VP7 (G genotypes) and VP4 (P genotypes) by the conventional reverse transcriptase polymerase chain reaction. The combination G12P[8] was more frequently observed in pre-vaccine than in post-vaccine introduction, in moderate to severe diarrhoea (34%, 61/177 vs. 0, p < 0.0001) and controls (23%, 26/113 vs. 0, p = 0.0013) and mixed genotypes (36%, 24/67 vs. 7% 4/58, p = 0.0003) in less severe diarrhoea. We observed changes in post-vaccine compared to pre-vaccine introduction, where G3P[4] and G3P[8] were prevalent in moderate to severe diarrhoea (10%, 5/49 vs. 0, p = 0.0002; and 14%, 7/49 vs. 1%, 1/177, p < 0.0001; respectively), and in less severe diarrhoea (21%, 12/58 vs. 0, p = 0.003; and 24%, 14/58 vs. 0, p < 0.0001; respectively). Our surveillance demonstrated the circulation of similar genotypes contemporaneously among cases and controls, as well as switching from pre-to post-vaccine introduction. Continuous surveillance is needed to evaluate the dynamics of the changes in genotypes following vaccine introduction.publishersversionpublishe

    Genetic characterisation of South African and Mozambican bovine rotaviruses reveals a typical bovine-like artiodactyl constellation derived through multiple reassortment events

    Get PDF
    This study presents whole genomes of seven bovine rotavirus strains from South Africa and Mozambique. Double-stranded RNA, extracted from stool samples without prior adaptation to cell culture, was used to synthesise cDNA using a self-annealing anchor primer ligated to dsRNA and random hexamers. The cDNA was subsequently sequenced using an Illumina MiSeq platform without prior genome amplification. All strains exhibited bovine-like artiodactyl genome constellations (G10/G6-P[11]/P[5]-I2-R2-C2-M2-A3/A11/A13-N2-T6-E2-H3). Phylogenetic analysis revealed relatively homogenous strains, which were mostly related to other South African animal strains or to each other. It appears that these study strains represent a specific bovine rotavirus population endemic to Southern Africa that was derived through multiple reassortment events. While one Mozambican strain, MPT307, was similar to the South African strains, the second strain, MPT93, was divergent from the other study strains, exhibiting evidence of interspecies transmission of the VP1 and NSP2 genes. The data presented in this study not only contribute to the knowledge of circulating African bovine rotavirus strains, but also emphasise the need for expanded surveillance of animal rotaviruses in African countries in order to improve our understanding of rotavirus strain diversity.Deutsche Forschungsgemeinschaft (DFG); European Foundation Initiative for African Research into Neglected Tropical Diseases (EFINTD); South African Medical Research Council (SAMRC); Australian National Health and Medical Research Council.http://www.mdpi.com/journal/pathogenspm2022Medical Virolog

    Whole Genome In-Silico Analysis of South African G1P[8] Rotavirus Strains before and after Vaccine Introduction over a Period of 14 Years

    Get PDF
    Rotavirus G1P[8] strains account for more than half of the group A rotavirus (RVA) infections in children under five years of age, globally. A total of 103 stool samples previously characterized as G1P[8] and collected seven years before and seven years after introducing the Rotarix® vaccine in South Africa were processed for whole-genome sequencing. All the strains analyzed had a Wa-like constellation (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). South African pre- and post-vaccine G1 strains were clustered in G1 lineage-I and II while the majority (84.2%) of the P[8] strains were grouped in P[8] lineage-III. Several amino acid sites across ten gene segments with the exception of VP7 were under positive selective pressure. Except for the N147D substitution in the antigenic site of eight post-vaccine G1 strains when compared to both Rotarix® and pre-vaccine strains, most of the amino acid substitutions in the antigenic regions of post-vaccine G1P[8] strains were already present during the pre-vaccine period. Therefore, Rotarix® did not appear to have an impact on the amino acid differences in the antigenic regions of South African post-vaccine G1P[8] strains. However, continued whole-genome surveillance of RVA strains to decipher genetic changes in the post-vaccine period remains imperative

    Evolutionary changes between pre- and post- vaccine South African group A G2P[4] rotavirus strains, 2003-2017

    Get PDF
    The transient upsurge of G2P[4] group A rotavirus (RVA) after Rotarix vaccine introduction in several countries has been a matter of concern. To gain insight into the diversity and evolution of G2P[4] strains in South Africa pre- and post-RVA vaccination introduction, whole-genome sequencing was performed for RVA positive faecal specimens collected between 2003 and 2017 and samples previously sequenced were obtained from GenBank (n=103; 56 pre- and 47 post-vaccine). Pre-vaccine G2 sequences predominantly clustered within sub-lineage IVa-1. In contrast, post-vaccine G2 sequences clustered mainly within sub-lineage IVa-3, whereby a radical amino acid (AA) substitution, S15F, was observed between the two sub-lineages. Pre-vaccine P[4] sequences predominantly segregated within sub-lineage IVa while post-vaccine sequences clustered mostly within sub-lineage IVb, with a radical AA substitution R162G. Both S15F and R162G occurred outside recognised antigenic sites. The AA residue at position 15 is found within the signal sequence domain of Viral Protein 7 (VP7) involved in translocation of VP7 into endoplasmic reticulum during infection process. The 162 AA residue lies within the hemagglutination domain of Viral Protein 4 (VP4) engaged in interaction with sialic acid-containing structure during attachment to the target cell. Free energy change analysis on VP7 indicated accumulation of stable point mutations in both antigenic and non-antigenic regions. The segregation of South African G2P[4] strains into pre- and post-vaccination sub-lineages is likely due to erstwhile hypothesized stepwise lineage/sub-lineage evolution of G2P[4] strains rather than RVA vaccine introduction. Our findings reinforce the need for continuous whole-genome RVA surveillance and investigation of contribution of AA substitutions in understanding the dynamic G2P[4] epidemiology

    Rotavirus Genotypes in Hospitalized Children With Acute Gastroenteritis Before and After Rotavirus Vaccine Introduction in Blantyre, Malawi, 1997-2019

    Get PDF
    BACKGROUND: Rotavirus vaccine (Rotarix [RV1]) has reduced diarrhea-associated hospitalizations and deaths in Malawi. We examined the trends in circulating rotavirus genotypes in Malawi over a 22-year period to assess the impact of RV1 introduction on strain distribution. METHODS: Data on rotavirus-positive stool specimens among children aged <5 years hospitalized with diarrhea in Blantyre, Malawi before (July 1997-October 2012, n = 1765) and after (November 2012-October 2019, n = 934) RV1 introduction were analyzed. Rotavirus G and P genotypes were assigned using reverse-transcription polymerase chain reaction. RESULTS: A rich rotavirus strain diversity circulated throughout the 22-year period; Shannon (H') and Simpson diversity (D') indices did not differ between the pre- and postvaccine periods (H' P < .149; D' P < .287). Overall, G1 (n = 268/924 [28.7%]), G2 (n = 308/924 [33.0%]), G3 (n = 72/924 [7.7%]), and G12 (n = 109/924 [11.8%]) were the most prevalent genotypes identified following RV1 introduction. The prevalence of G1P[8] and G2P[4] genotypes declined each successive year following RV1 introduction, and were not detected after 2018. Genotype G3 reemerged and became the predominant genotype from 2017 onward. No evidence of genotype selection was observed 7 years post-RV1 introduction. CONCLUSIONS: Rotavirus strain diversity and genotype variation in Malawi are likely driven by natural mechanisms rather than vaccine pressure

    Comparative whole genome analysis reveals re-emergence of human Wa-like and DS-1-like G3 rotaviruses after Rotarix vaccine introduction in Malawi

    Get PDF
    G3 rotaviruses rank among the most common rotavirus strains worldwide in humans and animals. However, despite a robust long-term rotavirus surveillance system from 1997 at Queen Elizabeth Central Hospital in Blantyre, Malawi, these strains were only detected from 1997 to 1999 and then disappeared and re-emerged in 2017, five years after the introduction of the Rotarix rotavirus vaccine. Here we analysed representative 27 whole genome sequences (G3P[4], n=20; G3P[6], n=1; and G3P[8], n=6) randomly selected each month between November 2017 and August 2019 to understand how G3 strains re-emerged in Malawi. We found four genotype constellations that were associated with the emergent G3 strains and co-circulated in Malawi post-Rotarix vaccine introduction: G3P[4] and G3P[6] strains with the DS-1-like genetic backbone genes (G3-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2) and G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2), G3P[8] strains with the Wa-like genetic backbone genes (G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), and reassortant G3P[4] strains consisting of the DS-1-like genetic backbone genes and a Wa-like NSP2 (N1) gene (G3-P[4]-I2-R2-C2-M2-A2-N1-T2-E2-H2). Time-resolved phylogenetic trees demonstrated that the most recent common ancestor for each RNA segment of the emergent G3 strains was between 1996 and 2012, possibly through introductions from outside the country due to the limited genetic similarity with G3 strains which circulated before their disappearance in the late 1990s. Further genomic analysis revealed that the reassortant DS-1-like G3P[4] strains acquired a Wa-like NSP2 genome segment (N1 genotype) through intergenogroup reassortment; an artiodactyl-like VP3 through intergenogroup interspecies reassortment; and VP6, NSP1 and NSP4 segments through intragenogroup reassortment likely before importation into Malawi. Additionally, the emergent G3 strains contain amino acid substitutions within the antigenic regions of the VP4 proteins which could potentially impact the binding of rotavirus vaccine-induced antibodies. Altogether, our findings show that multiple strains with either Wa-like or DS-1-like genotype constellations have driven the re-emergence of G3 strains. The findings also highlight the role of human mobility and genome reassortment events in the cross-border dissemination and evolution of rotavirus strains in Malawi necessitating the need for long-term genomic surveillance of rotavirus in high disease burden settings to inform disease prevention and control

    Genomic characterization of the rotavirus G3P[8] strain in vaccinated children, reveals possible reassortment events between human and animal strains in Manhiça District, Mozambique

    Get PDF
    Mozambique introduced the rotavirus vaccine (Rotarix®; GlaxoSmithKline Biologicals, Rixensart, Belgium) in 2015, and since then, the Centro de Investigação em Saúde de Manhiça has been monitoring its impact on rotavirus-associated diarrhea and the trend of circulating strains, where G3P[8] was reported as the predominant strain after the vaccine introduction. Genotype G3 is among the most commonly detected Rotavirus strains in humans and animals, and herein, we report on the whole genome constellation of G3P[8] detected in two children (aged 18 months old) hospitalized with moderate-to-severe diarrhea at the Manhiça District Hospital. The two strains had a typical Wa-like genome constellation (I1-R1-C1-M1-A1-N1-T1-E1-H1) and shared 100% nucleotide (nt) and amino acid (aa) identities in 10 gene segments, except for VP6. Phylogenetic analysis demonstrated that genome segments encoding VP7, VP6, VP1, NSP3, and NSP4 of the two strains clustered most closely with porcine, bovine, and equine strains with identities ranging from 86.9–99.9% nt and 97.2–100% aa. Moreover, they consistently formed distinct clusters with some G1P[8], G3P[8], G9P[8], G12P[6], and G12P[8] strains circulating from 2012 to 2019 in Africa (Mozambique, Kenya, Rwanda, and Malawi) and Asia (Japan, China, and India) in genome segments encoding six proteins (VP2, VP3, NSP1-NSP2, NSP5/6). The identification of segments exhibiting the closest relationships with animal strains shows significant diversity of rotavirus and suggests the possible occurrence of reassortment events between human and animal strains. This demonstrates the importance of applying next-generation sequencing to monitor and understand the evolutionary changes of strains and evaluate the impact of vaccines on strain diversity

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa

    Get PDF
    [Figure: see text]

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants
    corecore