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Abstract: Rotavirus G1P[8] strains account for more than half of the group A rotavirus (RVA) infections
in children under five years of age, globally. A total of 103 stool samples previously characterized as
G1P[8] and collected seven years before and seven years after introducing the Rotarix® vaccine in
South Africa were processed for whole-genome sequencing. All the strains analyzed had a Wa-like
constellation (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). South African pre- and post-vaccine G1 strains
were clustered in G1 lineage-I and II while the majority (84.2%) of the P[8] strains were grouped
in P[8] lineage-III. Several amino acid sites across ten gene segments with the exception of VP7
were under positive selective pressure. Except for the N147D substitution in the antigenic site of
eight post-vaccine G1 strains when compared to both Rotarix® and pre-vaccine strains, most of the
amino acid substitutions in the antigenic regions of post-vaccine G1P[8] strains were already present
during the pre-vaccine period. Therefore, Rotarix® did not appear to have an impact on the amino
acid differences in the antigenic regions of South African post-vaccine G1P[8] strains. However,
continued whole-genome surveillance of RVA strains to decipher genetic changes in the post-vaccine
period remains imperative.
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1. Introduction

Group A rotavirus (RVA) is the major causative agent of acute gastroenteritis (AGE) in children
under five years [1]. RVA-induced diarrhea is responsible for approximately 125,000 childhood
mortality cases worldwide [2]. RVA is classified in the Reoviridae family and comprises 11 dsRNA
gene segments that encode six structural proteins (VP1-VP4, VP6, and VP7) and five/six non-structural
proteins (NSP1-NSP5/6) [1]. A binary classification scheme based on the properties of the outer capsid
proteins, VP7 and VP4, has been universally used to classify RVA strains [3]. However, to fully
describe rotavirus strains, the binary classification system was expanded by incorporating the other
nine genome segments [4].

In the whole-genome classification scheme, nucleotide percentage similarity cut-off values of
all the eleven viral gene segments, as recommended by the Rotavirus Classification Working Group
(RCWG), are used to determine a genotypic scheme Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx designating
VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6, respectively [5]. The majority of RVA
strains are assigned into three genogroups: Wa-like (I1-R1-C1-M1-A1-N1-T1-E1-H1), DS-1-like
(I2-R2-C2-M2-A2-N2-T2-E2-H2), and a relatively minor group, AU-1-like (I3-R3-C3-M3-A3-
N3-T3-E3-H3) [4]. G1P[8], G3P[8], G4P[8], G9P[8], and G12P[8] typically have the Wa-like genotype
constellation, while G2P[4], G8P[4] and G8P[6] usually have the DS-1-like genotype constellation [6].

G1P[8] is among the most predominant and medically important RVA strain, globally [7]. In Africa,
G1P[8] accounts for approximately 29% of all the circulating RVA strains [7]. The G1 and P[8] gene
segments sub-cluster into lineages whose emergence is attributed to various mechanisms of genetic
diversity common in RNA viruses such as genetic mutation, recombination, and reassortment [8].
Distinct lineages for both genotypes G1 and P[8] collected from different geographical regions have
been described in the literature [9–13].

In order to alleviate RVA disease burden, four vaccines: RotaTeq® (Merck & Co., West Point,
PA, USA); Rotarix® (GlaxoSmithKline, Rixenstart, Belgium); ROTAVAC® (Bharat Biotech, Hyderabad,
India); and Rotasiil® (Serum Institute of India, Pune, India) have been pre-qualified by the World
Health Organization (WHO) for global use [14]. Rotarix® contains an attenuated human G1P[8] RVA
strain [15], while RotaTeq® is composed of five human-bovine reassortant strains (G1P[5], G2P[5],
G3P[5], G4P[5], and G6P[8]) [16]. ROTAVAC® contains a G9P[11] strain [17], while Rotasiil® is a
pentavalent human-bovine reassortant vaccine comprising five reassortant strains containing human
VP7, representing the G1, G2, G3, G4 and G9 genotypes [18].

South Africa was the first African country to introduce the monovalent RVA vaccine, Rotarix®,
into its Expanded Program on Immunization (EPI) in September 2009 [19]. In the first year, after the
vaccine was introduced, RVA infections indicated by laboratory confirmed results and hospitalizations
were reduced significantly by approximately 58% [20]. After the introduction of Rotarix® in South
Africa, the prevalence of non-G1P[8] strains (such as G2P[4], G2P[6], G9P[8], G12P[8] and G8P[4])
that were not incorporated in the monovalent G1P[8] vaccine increased significantly [21]. Notably,
at Dr. George Mukhari Hospital, a key RVA surveillance site, no G1P[8] strains were reported in
2012 [21], whereas this was a predominant strain during the pre-vaccine period [22]. The enormous
genetic and antigenic diversity within RVA [8,23] and the recent emergence of novel strains [24–26]
emphasize the need to monitor the impact of RVA vaccines on the genetic and antigenic landscape of
RVA circulating in the population.

The impact of RVA vaccination in Sub-Saharan Africa has been substantial [27] and it is essential
to continuously assess the long-term impact of vaccination on circulating RVA strains. Thus, there is a
need for whole-genome longitudinal surveillance studies in South Africa to decipher potential RVA
vaccine-induced strain changes. In this study, we investigated the impact of RVA vaccine introduction
in South Africa on the most common human RVA strain, G1P[8]. This study is the first large-scale
genomic analysis of human RVA collected seven years before and seven years after the introduction of
the RVA vaccine in South Africa.
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2. Materials and Methods

2.1. Ethics Approval

The diarrheal stool samples were collected as a routine diagnostic clinical specimen when the
parents brought their child to a health facility for clinical management, requiring no written informed
consent. As part of the WHO-coordinated RVA surveillance network, the archived RVA-positive
specimens were anonymized and utilized for strain characterization under a Technical Service
Agreement and a Materials Transfer Agreement (MTA) to the WHO/AFRO Regional Reference
Laboratory (WHO-RRL) based at Sefako Makgatho Health Sciences University (SMU), Pretoria,
South Africa. The WHO Research Ethics Review Committee granted an exemption activity, noting that
the study procedures were part of routine hospital-based RVA surveillance. The samples were
transferred for whole-genome sequencing at the University of the Free State-Next Generation
Sequencing (UFS-NGS) Unit through a MTA (SMU-UFS.1). The Health Sciences Research Ethics
Committee (HSREC) of the UFS, Bloemfontein, South Africa, approved the study under ethics number
UFS-HSD2018/0510/3107.

2.2. Strain Description

Rotavirus positive stool samples (n = 103) previously characterized as G1P[8] were sourced
from the archival storage of the Diarrheal Pathogens Research Unit (DPRU), WHO-RRL in Pretoria,
South Africa. The samples were distributed as follows: 2002 (n = 14), 2003 (n = 7), 2004 (n = 14),
2005 (n = 6), 2006 (n = 22), 2007 (n = 7), 2008 (n = 9), 2009 (n = 13), 2010 (n = 1), 2013 (n = 1), 2014 (n = 5),
2015 (n = 3), and 2017 (n = 1). In addition to the 103 samples, an additional 68 whole-genome sequences
for G1P[8] strains collected from South Africa were extracted from the GenBank database [28].

2.3. Extraction and Purification of Double-Stranded RNA

A fecal suspension was prepared by adding approximately 100 mg stool sample into 200 µL
Phosphate Buffered Saline (PBS) solution, 0.01 M, pH 7.2 (Sigma-Aldrich®, St Louis, MO, USA) with
subsequent extraction of viral RNA as previously described [29] albeit with some modifications.
Briefly, the modifications included the volume (900 µL TRIzol™-LS: 300 µL stool sample suspension),
the incubation period of dsRNA enrichment (24 h), centrifugation speeds (20,000× g), and the staining
reagent (PronaSafe, Condalab, Camberley, UK), as captured in the UFS-NGS unit extraction Standard
Operating Procedure (SOP). The extracted RNA was purified using the MinElute PCR Purification Kit
by following the manufacturers’ instructions (Qiagen, Hilden, Germany).

2.4. Complementary DNA (Cdna) Synthesis

cDNA was synthesized from the extracted viral RNA using the Maxima H Minus Double-Stranded
Synthesis Kit and protocol (Thermo Fischer Scientific, Waltham, MA, USA) with some modifications
(UFS-NGS Unit SOP). Briefly, for first-strand cDNA synthesis, a denaturing step of the purified
extracted RNA at 95 ◦C for 5 min in Multigene Optimax thermocycler (Labnet, Edison, NJ, USA)
was followed by the addition of 1 µL of Random Hexamer primer, 100 µM. The reaction mixture
was incubated in a thermocycler at 65 ◦C for 5 min. Afterward, 5 µL volume of the 4× First-Strand
Reaction Mix and 1 µL of First Strand Enzyme Mix was added and the reaction mixture was incubated
in a thermocycler pre-programmed as follows: 10 min at 25 ◦C, 120 min at 50 ◦C, and 5 min at 85 ◦C.
For the second-strand cDNA synthesis step, a 55 µL volume of Nuclease-Free water, 20 µL of 5× Second
Strand Reaction Mix, and 5 µL of Second Strand Enzyme Mix was added and incubated in the thermal
cycler at 16 ◦C for 60 min. A 6 µL volume of EDTA, pH 8.9 was added followed by 10 µL of RNase I.
The synthesized cDNA was purified using MSB® Spin PCRapace Kit by following the manufacturer’s
protocol (Stratec Molecular, Berlin, Germany).
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2.5. DNA Library Preparation and Whole-Genome Sequencing

The DNA libraries were prepared by utilizing the Nextera® XT DNA Library Preparation Kit
(Illumina, San Diego, CA, USA). Quantitative and qualitative assessment of DNA was performed
using Qubit 3.0 fluorometer (Invitrogen, Carlsbad, CA, USA) and Agilent 2100 BioAnalyzer®

(Agilent Technologies, Waldbronn, Germany), respectively, by following the manufacturer’s
instructions. The DNA library and the PhiX Control v3 library (Illumina, San Diego, CA, USA) were
normalized to 8 pM and 20 pM concentrations, respectively. A volume of 600 µL pooled denatured
DNA library spiked with 20% PhiX Control v3 library was loaded into a MiSeq® Reagent Kit V3 for
paired-end nucleotide sequencing (301 × 2) on a MiSeq® sequencer (Illumina, San Diego, CA, USA)
at the University of the Free State-Next Generation Sequencing (UFS-NGS) Unit, Bloemfontein,
South Africa.

2.6. Genome Assembly

The trimming of Illumina read ends and subsequent genome assembly was performed using a
suite of tools embedded in Geneious Prime® software, version 2020.1.1 [30]. Complementary RVA
assembly was also performed using an in-house developed genome assembly pipeline and CLC
Genomics Workbench 12 (https://www.qiagenbioinformatics.com/).

2.7. Generation of Whole-Genome Constellations

The genotype of each gene segment was determined using the RVA determination tool in the
Virus Pathogen Database and Analysis Resource (ViPR) [31] to generate the full genome constellations
for each RVA strain.

2.8. Phylogenetic Analyses

Alignments and comparative analysis of the full-length sequences for each gene segment was
performed as described previously [24]. Multiple sequence alignments were performed using
the MAFFT package in Geneious Prime 2020 [30]. Duplicated sequences in the alignments were
identified utilizing ElimDupes (https://www.hiv.lanl.gov/content/sequence/elimdupesv2/elimdupes.
html). The best evolutionary models for each gene segment were estimated using the DNA Model Test
program in MEGA 6 to guide in the construction of maximum-likelihood trees with 1000 bootstrap
replicates [32].

2.9. Selection Pressure and Recombination Analysis

Analysis of natural selection in RVA genome segments was done using the suite from the
DataMonkey Webserver [33]: Fixed-effects Likelihood (FEL) [34], Fast Unconstrained Bayesian
Approximation for Inferring Selection (FUBAR) [35] and mixed-effects model of episodic selection
(MEME) [36]. Amino acid sites undergoing positive selection were identified and tabulated.
Analysis of genetic recombination was performed using Genetic Algorithm for Recombination
Detection (GARD) [34].

2.10. Protein Modeling

The RVA protein structures were modeled using SWISS-MODEL with an initial template search [37].
The templates were selected from the SWISS-MODEL Template Library (SMTL) and their respective
resolution values for the analyzed genes were as follows: VP7 (3 fmg.1, 3.40 Å) and VP4 (2 dwr.1, 2.50 Å).
The evaluation of stereochemical quality parameters of the generated structures was performed using the
Structure Assessment feature in the SWISS-MODEL server [37] and VERIFY3D [38]. Image visualization
and analysis was performed in PyMol software [39].

https://www.qiagenbioinformatics.com/
https://www.hiv.lanl.gov/content/sequence/elimdupesv2/elimdupes.html
https://www.hiv.lanl.gov/content/sequence/elimdupesv2/elimdupes.html
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2.11. In Silico Analysis of Effect of Mutation(s) on Protein Stability

The FoldX plugin [40] integrated in the YASARA platform [41] was used to predict the stability
effect of mutation(s) in a 3D structure. FoldX estimates the stability effect of a mutation empirically
whereby the stability (∆G) of a protein is defined by the free energy, which is expressed in kcal/mol.
In this study, G is the difference of free energy between the Rotarix® (vaccine) strain or pre-vaccine
strain and mutant strain. The energy with positive value is regarded to destabilize the structure,
while a mutation with a negative value is regarded to stabilize the structure. Free energy change of
±0.5 kcal/moL is regarded as statistically significant for the stabilizing/destabilizing effect [40].

3. Results

3.1. Whole-Genome Constellation Determination

The genotype constellation for the 103 South African G1P[8] strains (92 pre- and 11 post-vaccine)
sequenced in this study and corresponding 68 strains (56 pre- and 12 post-vaccine) acquired
from the GenBank database as reference strains was typical G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1
(Supplementary Materials 1 (S1)). The sizes of the full-length genome segments one to eleven and their
respective open reading frames (ORFs) were determined (S1). All the gene sequences in this study
were submitted in the NCBI GenBank database under accession numbers MT854335-MT855467.

3.2. Phylogenetic Analyses

3.2.1. Phylogenetic Analyses of VP7 and VP4

Phylogenetic trees for each of the 11 gene segments were constructed. For VP7 and VP4,
well-known lineage designations were utilized [9,11]. The VP7 phylogenetic tree comprised the
VP7 gene sequences of the South African strains together with VP7 gene sequences of the reference
strains from the seven established VP7 G1 genotype lineages [9]. The 171 G1 South African sequences
utilized in this study were segregated into two main lineages: G1-lineage I and lineage II (Figure 1).
G1-lineage I comprised 76 pre-vaccine G1 strains and 12 post-vaccine G1 strains, while G1-lineage
II comprised 72 pre-vaccine G1 strains and 11 post-vaccine G1strains (Figure 1). Strain RVA/

Human-wt/ZAF/UFS-NGS-MRC-DPRU2250/2013/G1P[8] had≥99.9% nucleotide identity with Rotarix®

in all its structural and nonstructural genes (S2) and clustered alongside cognate Rotarix® genes in all
the 11 phylogenetic trees. South African pre- and post-vaccine G1 strains were highly identical to each
other and similarly distant from the Rotarix® strain (Table 1).

The VP4 phylogenetic tree comprised nucleotide sequences of the South African RVA strains
and those of the reference strains from the four established VP4 P[8] genotype lineages (I to IV) [11]
(Figure 2). The P[8] strains for South African rotaviruses segregated into three evolutionary lineages,
P[8]-lineage I, III, and IV (Figure 2). Lineage III comprised a mixture of 144 pre-vaccine and 21
post-vaccine P[8] strains, while lineage IV comprised five pre-vaccine strains (Figure 2). The P[8]
strains identified pre- and post-vaccination were highly identical to each other and similarly distant
from the Rotarix® strain (Table 1).
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Figure 1. Maximum likelihood phylogenetic tree based on the full-length nucleotide sequences of
genome segment 9 encoding the VP7 protein. The T92 + G evolutionary model was used for phylogenetic
inference. South African pre-vaccine G1 strains are highlighted in bold-face while post-vaccine strains
are highlighted in bold-red. Adjacent to some sequences is indicated a plus (+) sign followed by the
number of identical sequences (S3). The number in brackets denotes the number of compressed strains.
Lineages are indicated in roman numerals. Only bootstrap values ≥70% are shown adjacent to each
branch node. Scale bar indicates the number of nucleotide substitutions per site.

Table 1. Nucleotide identity analysis between South African pre- and post-vaccine G1P[8] strains,
pre-vaccine G1P[8] strains with Rotarix®, and post-vaccine G1P[8] strains with Rotarix® strain.

Gene Segments/
Nucleotide Identity

Values in Percentage
VP7 VP4 VP6 VP1 VP2 VP3 NSP1 NSP2 NSP3 NSP4 NSP5

Comparison between
pre- and post-vaccine

G1P[8] strains
92.1–100 87.8–99.5 89.0–99.4 93.7–99.0 92.9–99.6 89.4–99.1 83.5–99.5 89.1–99.7 94.2–100 91.0–100 92.2–99.8

Comparison between
pre-vaccine G1P[8]

strains and Rotarix®

strain

92.7–100 89.6–91.1 88.2–98.7 94.5–99.1 93.1–99.0 91.2–98.6 83.6–100 88.3–90.9 95.3–100 91.4–98.9 92.2–98.8

Comparison between
post-vaccine strains and

Rotarix® strain
93.3–100 89.9–99.9 88.9–100 94.5–100 93.0–100 90.9–99.9 84.0–99.9 89.7–100 97.1–100 91.0–100 92.9–100

South African pre- and post-vaccine G1P[8] strains were compared with each other and also compared with
the Rotarix® strain. The nucleotide identity values were calculated using the p-distance algorithm in MEGA 6
software (S2).
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 RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU3410/2004/G1P[8]
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 2002-2004 P[8] strains (20)

 RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU4024/2002/G1P[8] + 1

P[8]-Lineage-III

 P[8]-Lineage-II

 RVA/Vaccine/USA/Rotarix-A41CB052A/1988/G1P[8]

 RVA/Human-w t/ZAF/UFS-NGS-MRC-DPRU2250/2013/G1P[8]

 RVA/Human-tc/JPN/ITO/1981/G3P[8] 

 RVA/Human-tc/USA/Wa/1974/G1P[8] 

 RVA/Human-w t/CAN/RT178-07/2008/G1P[8]

 RVA/Human-w t/CAN/RT186-07/2008/G1P[8]
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 RVA/Human-w t/ZAF/UFS-NGS-MRC-DPRU682/2005/G1P[8]

 RVA/Human-w t/MWI/OP530/1999/G4P[8]

 RVA/Human-w t/MWI/MW670/1999/G4P[8]

 RVA/Human-wt/ZAF/MRC-DPRU2114/2005/G1P[8]

 RVA/Human-w t/ZAF/MRC-DPRU1840/2007/G1P[8]

 RVA/Human-w t/ISR/R5751/2009/G9P[8]

 RVA/Human-w t/BEL/BE1280/2009/G1P[8]

 RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU3433/2006/G1P[8]

 RVA/Human-wt/ZAF/MRC-DPRU2132/2005/G1P[8]
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Figure 2. Maximum likelihood phylogenetic tree based on the full-length nucleotide sequences of
genome segment 4 encoding VP4 protein. The GTR+G+I evolutionary model was used for phylogenetic
inference. African pre-vaccine P[8] strains are highlighted in bold-face while post-vaccine strains are
highlighted in bold-red. Adjacent to some sequences is indicated a plus (+) sign followed by the
number of identical sequences (S3). The number in brackets denotes the number of compressed strains.
Lineages are indicated in roman numerals. Only bootstrap values ≥ 70% are shown adjacent to each
branch node. Scale bar indicates the number of nucleotide substitutions per site.
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3.2.2. Phylogenetic Analysis of VP1–VP3, VP6, and NSP1–NSP5

South African VP1–VP3, VP6, and NSP1–NSP5 were clustered into two main lineages, one of the
lineages comprising of the Rotarix® genome segments (Figures S1–S9 in S4). South African strains
identified pre- and post-vaccination were highly identical to each other as well as similarly distant
from the vaccine strain (Table 1).

3.3. Protein Modeling and Amino Acid Analysis

3.3.1. Comparative Analysis of Neutralizing Antigenic VP7 Epitopes of South African G1 Strains and
Rotarix® Strains

The VP7 protein contains two defined neutralization antigenic epitopes spanning across 29 amino
acid residues: 7–1 (7–1a and 7–1b) and 7–2 regions [42]. A comparison of the amino acid residues
in the antigenic epitopes of wild type South African G1 strains with cognate sites in the Rotarix®

strain was performed (Figure S1 in S5). Five amino acid differences appeared in both pre- and
post-vaccine strains, four amino acids occurred before vaccine introduction while two amino
acid differences, N147D (in eight strains) and T242A (in one strain), appeared only during the
post-vaccine period (Figure S1 in S5; Table S1 in S6). We performed protein modeling analysis
on the post-vaccine strains, which showed amino acid differences relative to both the pre-vaccine
strains and Rotarix® strain. Therefore, for VP7, we selected strain RVA/Human-wt/ZAF/UFS-NGS-
MRC-DPRU4357/2015/G1P[8] as a representative strain of the eight G1 post-vaccine strains that had
N147D amino acid substitution (Figure S1 in S5). Additionally, we selected strain RVA/Human-
wt/ZAF/MRC-DPRU1544/2010/G1P[8], the only post-vaccine strain exhibiting a T242A amino acid
difference (Figure S1 in S5). The VP7 protein structures of the selected G1 strains were superposed
with the Rotarix® VP7 structure to assess differences in the structural conformation. The VP7 structure
of strain RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU4357/2015/G1P[8] when superposed with the
Rotarix® VP7 had a root mean square deviation (RMSD) value of 0.020 Å (Table 2; Figure 3A).
The RMSD value closer to zero suggests high structural homology [43]. Replacement of asparagine
with aspartate (N147D) significantly destabilized the protein structure as the free energy change
was +0.527 kcal/mol [40] (Table 2; Figure 3A). Apart from the VP7 protein structure of Rotarix®,
we performed protein modeling analysis using the protein structures of five randomly selected
pre-vaccine study strains (Figure S1 in S7). Similar significant free energy change trends for the
destabilizing effect were observed and ranged from +0.506 to +0.579 kcal/mol (Figure S1 in S7). The VP7
structure of strain RVA/Human-wt/ZAF/MRC-DPRU1544/2010/G1P[8] had an RMSD value of 0.012 Å
when superposed with Rotarix® VP7 (Table 2; Figure 3B). Threonine, which is a neutral hydrophilic
amino acid, was replaced with alanine, an aliphatic hydrophobic amino acid, showing a change in
polarity. However, the replacing amino acid (alanine) does not significantly alter the stability of the
protein at this epitope (−0.076 kcal/mol) [40]. Protein modeling analysis with VP7 protein structures
from five randomly selected pre-vaccine study strains showed similar free energy change trends
ranging from −0.070 to −0.078 kcal/mol (Figure S2 in S7).
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Table 2. Possible effects of amino acid mutations in South African post-vaccine G1 neutralization epitopes.

Strain Used for
the Protein
Modeling

Mutation
No. of Post-Vaccine

Strain(s) with the
Mutation

Region Amino Acid Property Change
Superposition

Value
(RMSD)

Free Energy
Change

(kcal/mol)
Possible Effect

RVA/Human-
wt/ZAF/UFS-NGS-
MRC-DPRU4357/

2015/G1P[8]

N147D 8 7–2 epitope Hydrophilic to hydrophilic;
Neutral to negative charge 0.020 Å +0.527

The change in charge may alter the
biochemical properties of the epitope.

The mutation significantly destabilizes
the structure of the protein.

RVA/Human-
wt/ZAF/MRC-

DPRU1544/
2010/G1P[8]

T242A 1 7–1b
epitope

Hydrophilic to hydrophobic;
Neutral to Neutral charge 0.012 Å −0.076 The change in polarity may alter the

physicochemical property of the epitope

Relative mean square deviation (RMSD) is the superposition value where value of zero indicates absolute similarity. The stability of the protein after mutation was measured in kcal/mol,
whereby free energy change of ±0.5 kcal/moL was regarded as significant for either stabilizing/destabilizing effect. Minus (−) value is indicative of stabilizing effect while positive (+) value
is indicative of destabilizing effect.
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Figure 3. Structure models showing the mutation sites N147D (A) and T242A (B), respectively, that were only present in post-vaccine G1P[8] strains when superposed
with VP7 of Rotarix®. The structure of the study strain is in green, while the Rotarix® structure is in deep-teal. The amino acid residues are represented in dark
gray and red to examine whether the replacing amino acid alters the conformation of the protein structure. The amino acid residue highlighted in dark gray
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3.3.2. Comparative Analysis of VP7 Cytotoxic T Lymphocyte Epitopes of South Africa With Rotarix®
Vaccine Strain

The two established VP7 cytotoxic T-cell lymphocyte epitopes at positions 16–28 and 40–52 [44]
of the VP7 of South African G1P[8] strains were compared with cognate regions of Rotarix® VP7.
Five amino acid differences appeared before Rotarix® introduction, while two amino acid substitutions
(A43V in two strains and A46T in four strains) were found after vaccine introduction (Table S1 in S6).
Comparative analysis of the South African post-vaccine G1 genotypes outside the known epitope
regions with cognate regions in G1 of Rotarix® identified three amino acid differences (S37I, A68D,
and E222K) (S8). The replacing amino acid at positions S37I, A68D, and E222K resulted in a change in
the polarity of the amino acid residue (Table S2 in S6).

3.3.3. Comparative Analysis of Neutralizing Antigenic Epitopes in VP4 Genes of South African P[8]
Strains and Rotarix® Vaccine Strain

The VP4 protein comprises the VP5* and VP8* regions. The VP8* region contains four (8–1 to
8–4) neutralizing antigenic epitopes, while VP5* has five (5–1 to 5–5) [45]. The differences between
the P[8] study strains and Rotarix® P[8] component were mostly contained in the VP8* epitopes
8–1, 8–3, and 8–4 (Figure S2 in S5). Seven amino acid differences were identified in both pre- and
post-vaccine strains, seven amino acid substitutions during pre-vaccination introduction and two
amino acid substitutions, T88I (in one strain) and N89S (in one strain) were identified after vaccine
introduction (Figure S2 in S5; Table S3 in S6). We performed protein modeling analysis on the
post-vaccine strains that showed amino acid differences relative to both the pre-vaccine strains
and Rotarix® strain and these were RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU74/2014/G1P[8] and
RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU83/2011/G1P[8] (Figure S2 in S5). The VP4 structure of
strain RVA/Human-wt/ZAF/UFS-NGS-MRC-DPRU74/2014/G1P[8] aligned with the RMSD value of
RMSD 0.048 when superposed with the Rotarix® VP4 (Table 3; Figure 4A). Replacement with the
isoleucine at position T88I altered the polarity of the residue from polar to nonpolar without affecting the
charge [46]. This change in polarity may alter the physical properties of the protein. The mutation did not
significantly impact the stability of the protein (−0.297 kcal/mol) (Table 3; Figure 4A). Further free energy
change analysis with VP4 structures from five randomly selected pre-vaccine strains demonstrated
similar free energy change trends that ranged from −0.504 to −0.322 kcal/mol (Figure S3 in S7).The VP4
structure of strain RVA/Human-wt/ZAF/MRC-DPRU83/2011/G1P[8] had an RMSD value of 0.049
when superposed with Rotarix® VP4, indicating significant alignment. Asparagine is a polar,
neutrally charged amino acid, and the replacing amino acid, serine, is also polar with a neutral
charge [46]. The replacing amino acid, serine, significantly destabilized the protein structure with
+1.166 kcal/mol energy change (Table 3: Figure 4B).When protein modeling analysis was performed with
VP4 structures of five randomly selected pre-vaccine P[8] strains, significant free energy change values
ranging from +1.128 to +1.352 kcal/mol were also observed, indicating the amino acid substitution had
a destabilizing effect on the protein structure (Figure S4 in S7).
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Table 3. Possible effects of amino acid mutations in South African post-vaccine VP4 epitopes.

Strain Used for
Protein Modeling Mutation No. of Strain(s) with

the Mutation Region Amino ACID Property Change Superimposition
Value (RMSD)

Free Energy
Change

(kcal/mol)
Possible Effect

RVA/Human-
wt/ZAF/UFS-NGS-

MRC-DPRU74/
2014/G1P[8]

T88I 1 8–4 epitope Hydrophilic to hydrophobic;
Neutral charge to neutral charge 0.048 Å −0.297

The change in polarity may alter the
physicochemical properties of the

protein. No significant impact on the
stability of the protein structure

RVA/Human-
wt/ZAF/UFS-NGS-

MRC-DPRU83/
2011/G1P[8]

N89S 1 8–4 epitope Hydrophilic to hydrophilic;
Neutral charge to Neutral charge 0.049 Å +1.166

The loss of the glycosylation site may
alter the chemical properties of the

protein. The mutation destabilized the
protein structure.

Relative mean square deviation (RMSD) is the superimposition value where the value of zero indicates absolute similarity. The stability of the protein after mutation was measured in
kcal/moL, whereby the folding energy change of ±0.5 kcal/mol is considered statistically significant for either stabilizing (−)/destabilizing (+) effect.
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with VP4 of Rotarix®. The structure of the study strain is in green while the Rotarix® structure is in deep-teal. The amino acid residues are represented in dark gray
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3.3.4. Analysis of the VP4 and VP6 Non-Neutralizing Regions

Comparative analysis of the South African post-vaccine P[8] strain outside the known epitope
regions with cognate regions in pre-vaccine strains identified five amino acid differences that were
conservative in nature (Table S4 in S6). Analysis of the amino acid differences between the VP6 gene
sequences of South African pre- and post-vaccine strains identified an amino acid difference Y353H in
a 2017 post-vaccine strain, RVA/Human-wt/ZAF/MRC-DPRU15948/2017/G1P[8] (S8). The amino acid
mutation Y353H occurred in a conserved region of the VP6 that has been associated with trimerization
and single-shelled particle formation [47] (Table S5 in S6).

3.3.5. Analysis of Amino Acid Differences in VP1–VP3 and NSP1–NSP5 Amino Acid Sequences

The number of amino acid differences that were identified after Rotarix® vaccine introduction in
South African G1P[8] VP1–VP3 and NSP1–NSP5 amino acid sequences were 12, 6, 7, 11, 3, 4, 5, and 2,
respectively (Tables S6–S13 in S6). Most of the amino acid substitutions were conservative (46).

3.3.6. Analyses of Selection Pressure and Recombination

Selection pressure analysis by Mixed-Effects Model of Evolution (MEME), Fast, Unconstrained
Bayesian AppRoximation for inferring selection (FUBAR), and Fixed-Effects Likelihood (FEL) showed
that most of the codon sites in the 11 gene segments were undergoing purifying selection. With the
exception of the VP7 gene segment, several amino acid sites in the rest of the gene segments were
identified to be under positive selective pressure (Table 4) Amino acid sites 7 and 245 were identified
to be under positive selective pressure by all three analysis tools used (Table 4). GARD found no
significant evidence of recombination in all gene segments.

Table 4. Positively selected sites as identified by FEL, FUBAR, and MEME analysis.

Method
Amino Acid Sites in the Gene Segments under Positive Selection

VP1 VP2 VP3 VP4 VP6 VP7 NSP1 NSP2 NSP3 NSP4 NSP5

MEME

2, 3, 5,
89,

243,
357,
733,
909,
1082

583

7, 118,
137,
245,
310,
728

23, 28,
44, 90,
169,
201,
576,
578,
668,
773,
774,
775

85,
238 -

14, 32,
90,

132,
154,
175,
181,
225,
253,
261,
267,
293,
392,
396,
398,
404,
405,
416,
425

55,
258,
315

204 25,
168 3

FUBAR 67,
357 12, 36 7, 245 - - - - 75 308 - -

FEL 3 - 7, 245 - - - - - - - -

Amino acid sites that were identified to be under positive selection by FEL, MEME, and FUBAR. Amino acid sites
in bold and underlined were identified by all the three methods. For MEME and FEL, statistical significance was
assessed at p ≤ 0.1 while for FUBAR, it was assessed at posterior probability ≥0.9. The dash (–) sign indicates no site
was identified. Additional analyses reports are provided in S9.
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4. Discussion

The present study reports whole-genome analysis of G1P[8] RVA strains collected seven years
before and seven years after the introduction of the Rotarix® vaccine in South Africa. Whole-genome
analysis of South African G1P[8] strains showed that they possessed a Wa-like genotype constellation.
These findings are comparable to what has been observed in several countries [11,48–51]. The prevalent
association of G1P[8] genotypes with the Wa-like genetic background has been hypothesized to be due
to epidemiological fitness [52].

Of the seven previously described G1 lineages [9], South African pre- and post-vaccine G1
strains in this study were segregated into G1-lineage I and G1-lineage II. Similar observations have
been reported in several other studies [11,51,53], highlighting the likelihood of the epidemiological
fitness of G1 strains in these two lineages, which has led to their prevalent circulation over time.
Of the four P[8] lineages that have been established previously [11], the majority (84.2%) of the South
African P[8] strains in this study clustered in P[8] lineage III, an observation comparable to other
studies [51,53–55]. Additionally, the South African P[8] strains were observed in P[8] lineage I and
P[8] lineage IV (also designated as the OP354-like lineage) [56], an observation reported in a study of
Indian P[8] strains [57]. Both pre-and post-vaccine strains were found present in this P[8] lineage III,
underscoring its global predominance in circulation [9,56–60].

Amino acid differences in the neutralization epitopes of VP7 compared to the cognate region in
Rotarix® identified at positions N94S, S123N, K291R, and M217T appeared in both pre- and post-vaccine
strains and have been previously reported in Belgium and Brazil [51,61]. Since these amino acid
substitutions were present even before the introduction of the vaccine, they can be attributed to the
natural RVA evolutionary processes. Amino acid differences in N147D occurred in eight post-vaccine
G1 strains resulted in a change from neutral to negatively charged amino acid residue, while T24A
occurred in one post-vaccine G1 strain, which resulted in a change from hydrophilic to hydrophobic [46].
The change in charge may affect the protein’s chemical properties, while the shift in polarity suggests
possible inaccessibility of the epitope as it becomes more hydrophobic [46]. Differences in VP4 amino
acids between the study strains and Rotarix® were observed in epitopes 8–1 and 8–3, similar to those
already reported in Belgium, Brazil, and Tunisia [51,61,62]. The polarity changes (hydrophilic to
hydrophobic) observed at position T88I only in a post-vaccine strain may affect antibody binding at this
region of the 8–4 epitope as the resulting epitope becomes relatively inaccessible due to the hydrophobic
effect [46]. The loss of glycosylation site at position N89S only observed in the post-vaccine period in
one strain may alter the function of the protein at the 8–4 epitope [63].

To gain further insight into the impact of amino acid substitution occurring in the neutralization
epitopes of VP7 and VP4 on the stability of the protein structures, we performed folding free energy
change analysis. A protein’s folding free energy change is an essential aspect of the protein’s stability
with a direct association with the protein’s function [64]. The N147D substitution in VP7 and N89S
substitution in VP8* resulted in a predicted destabilizing effect on the protein structure. Due to
this destabilization effect on the protein structure, as indicated by free energy change analysis,
we hypothesize that these amino acid substitutions observed during the post-vaccine era may not be
favored in the long-term to enhance viral fitness. We did not observe consistently occurring amino
acid substitutions in the 11 gene segments in both the antigenic and non-antigenic regions throughout
the post-vaccine period when contrasted to the pre-vaccine period. However, there were yearly
observations such as L167M (in VP1), R44K (in VP2), I234V (in VP3), V112I (in VP4), T120I (in NSP1)
and V73I (in NSP4), which occurred in all eight 2010 strains. Amino acid substitutions: K164R (in VP2),
A411V (in VP3), A46T (in VP7), I341V (in NSP1), V254P (in NSP2), and D157E (in NSP5) of the four out
of five 2011 strains and K96R (in VP1), V459I (in VP3), V600L (in VP4), and A259T (in NSP1) out of all
the eight 2014 and 2015 G1P[8] strains.

Selection pressure analysis demonstrated that most of the codon sites in the 11 genome segments
of South African G1P[8] strains were undergoing purifying selection, probably to purge deleterious
polymorphisms that arise due to the inherent error-prone nature of the RNA polymerase enzyme [1].
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Amino acid sites 7 and 245 in VP3 were identified to be under positive selection by all three selection
pressure analysis methods and site 245 fell within the guanine-N7-methyltransferase (N7-MTpase)
domain suggested to catalyze methylation during capping of nascent rotavirus transcripts [64].
Methylation capping by VP3 of RVA serves as a critical strategy to evade host antiviral innate immune
response [65].

5. Conclusions

The study shows that there were no consistently conserved amino acid substitutions occurring
throughout during post-RVA vaccine period in the antigenic and non-antigenic regions of South
African G1P[8] strains as most of the amino acid substitutions found in the post-vaccine period were
already present during the pre-vaccine period. Therefore, Rotarix® did not appear to have an impact
on the genetic changes of South African G1P[8] post-vaccine strains. However, continued long-term
whole-genome surveillance to monitor any consistently occurring genetic changes during the
post-vaccine period, which may hint at vaccine selective pressure, remains essential. This study
was limited mainly by the significant differences in the sample size between the pre- and post-vaccine
period, although the significant decline in G1P[8] strains in South Africa during post-vaccination
period has been previously reported [21].
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