6,050 research outputs found

    The prognostic value of stromal and epithelial periostin expression in human breast cancer: Correlation with clinical pathological features and mortality outcome

    Get PDF
    open6noBackground: PN is a secreted cell adhesion protein critical for carcinogenesis. In breast cancer, it is overexpressed compared to normal breast, and a few reports suggest that it has a potential role as a prognostic marker. Methods: Tumour samples obtained at the time of mastectomy from 200 women followed for a median time of 18.7 years (range 0.5-29.5 years) were investigated through IHC with a polyclonal anti-PN antibody using tissue microarrays. Epithelial and stromal PN expression were scored independently according to the percentage of coloured cells; the 60th percentile of PN epithelial expression, corresponding to 1 %, and the median value of PN stromal expression, corresponding to 90 %, were used as arbitrary cut-offs. The relationships between epithelial and stromal PN expression and clinicalpathological features, tumour phenotype and the risk of mortality following surgery were analysed. Appropriate statistics, including the Fine and Gray competing risk proportional hazard regression model, were used. Results: The expression of PN in tumour epithelial cells was significantly lower than that which was observed in stromal cells (p < 0.000). No specific association between epithelial or stromal PN expression and any of the clinicalpathological parameters analysed was found as it was observed in respect to mortality when these variables were analysed individually. However, when both variables were considered as a function of the other one, the expression of PN in the stromal cells maintained a statistically significant predictive value with respect to both all causes and cancerspecific mortality only in the presence of high epithelial expression levels. No significant differences in either all causes or BCa-specific mortality rates were shown according to epithelial expression for tumours displaying higher stromal PN expression rates. However, the trends were opposite for the higher stromal values and the patients with high epithelial expression levels denoted the group with the worst prognosis, while higher epithelial values in patients with lower stromal expression levels denoted the group with the best prognosis, suggesting that PN epithelial/stromal interactions play a crucial role in breast carcinogenesis, most likely due to functional cross-talk between the two compartments. On the basis of PN expression in both compartments, we defined 4 subgroups of patients with different mortality rates with the group of patients characterized by positive epithelial and low stromal PN expression cells showing the lowest mortality risk as opposed to the groups of patients identified by a high PN expression in both cell compartments or those identified by a low or absent PN expression in both cell compartments showing the worst mortality rates. The differences were highly statistically significant and were also retained after multiparametric analysis. Competing risk analysis demonstrated that PN expression patterns characterizing each of previous groups are specifically associated with cancer-specific mortality. Conclusions: Although they require further validation through larger studies, our findings suggest that the patterns of expression of PN in both compartments can allow for the development of IHC "signatures" that maintain a strong independent predictive value of both all causes and, namely, of cancer-specific mortality.openNuzzo, P.V.; Rubagotti, A.; Zinoli, L.; Salvi, S.; Boccardo, S.; Boccardo, F.Nuzzo, PIER VITALE; Rubagotti, Alessandra; Zinoli, Linda; Salvi, Sara; Boccardo, S.; Boccardo, F

    Molecular characteristics of humic substances from different origins and their effects on growth and metabolism of Pinus laricio callus

    Get PDF
    Abstract Humic susbtances (HS) are increasingly applied as biostimulants in agriculture, though their mechanism of action is not yet completely understood due to their complex and heterogeneous composition. Here, we isolated thirteen different humic and fulvic acids from different sources, such as soils, composts, peat, leonardite and lignite, and characterized the distribution of their carbon components by 13C-CPMAS–NMR spectroscopy. Callus of Pinus Laricio, as a model plant species, was treated with different humic extracts and its growth and content of carbohydrates, phenols, and enzyme related to the nitrogen metabolism (invertase, glutamine synthetase, glutamate synthase, phosphoenoly pyruvate carboxylase, malate dehydrogenase) and stress resistance (catalase) were monitored. While a multivariate statistical analysis of NMR results well-separated the HS characteristics based on their origin, humic materials generally increased callus growth, as expected, with largest effects being exerted by the mostly polar humic acids from composts. However, the rest of measured parameters were not linearly related to hydrophobicity and aromaticity of humic isolates as well as their origin, but their conformational dynamics had to be advocated to explain their effects on callus cellular components. This work confirms that HS of various origin can act as sustainable biostimulants of plant growth, though the comprehension of their effects on plants biochemical activities requires further research and additional understanding of their molecular composition and conformational behaviour. Graphical Abstrac

    The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

    Get PDF
    This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.) vines grafted onto SO4 were grown (in 20 L PVC pots) under Mediterranean conditions (Southern Italy). The vines were pruned to two spurs with two winter buds irrigated daily to 100 % field capacity, and fertilised weekly. At veraison and using a 2×2 factorial experimental design, the two main factors, thermoregulation and water, were imposed at two levels: spraying with a thermoregulation compound (CaPF) and no spraying (NS); irrigation (WW) and drought stress (D)). A group of 24 vines was subjected to a 15-day drought period by receiving, every day, 25 % (D) of the daily water consumption of WW vines. The other 24 vines continued to be fully irrigated on a daily basis (WW). Twelve vines per group were sprayed (WW+CaPF, D+CaPF) with calcite-silicon mediate (3 % V/V) at the beginning of drought imposition, the remaining 24 vines were not sprayed (WW-NS, D-NS). Soil water moisture and stem water potential values were monitored from 11.30 to 13:30 nearly every week, and other vegetative and reproductive parameters were also measured. During the experiment, air temperature peaked at ≈35 °C at midday, VPD at about 3.7 kPa and PAR reached ≈2000 µmol m-2 s–1. Results show that in CaPF sprayed vines, leaf-air temperature differences were lower than in unsprayed vines in both irrigated and drought stressed groups. WW+CaPF vines retained significantly more leaf area and showed the highest value of accumulated vine transpiration. Calcite-silicon mediated particle film could enhance the resilience of grapevine to adverse environmental conditions and may contribute to preserve terroir elements in highly reputed wine grape growing areas. The study showed that foliar application of calcite silicon-mediated processed particles films can be used in arid regions to mitigate leaf temperatures in grapevines

    Nano-structured myelin: new nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain

    Get PDF
    Neurodegenerative diseases affect millions of people worldwide and the presence of various physiological barriers limits the accessibility to the brain and reduces the efficacy of various therapies. Moreover, new carriers having targeting properties to specific brain regions and cells are needed in order to improve therapies for the brain disorder treatment. In this study, for the first time, Myelin nanoVesicles (hereafter defined MyVes) from brainextracted myelin were produced. The MyVes have an average diameter of 100-150 nm, negative zeta potential, spheroidal morphology, and contain lipids and the key proteins of the myelin sheath. Furthermore, they exhibit good cytocompatibility. The MyVes were able to target the white matter and interact mainly with the microglia cells. The preliminary results here presented allow us to suppose the employment of MyVes as potential carrier to target the white matter and microglia in order to counteract white matter microglia-related diseases

    Early Detection of Microvascular Changes in Patients with Diabetes Mellitus without and with Diabetic Retinopathy: Comparison between Different Swept-Source OCT-A Instruments

    Get PDF
    Optical coherence tomography angiography (OCT-A) has recently improved the ability to detect subclinical and early clinically visible microvascular changes occurring in patients with diabetes mellitus (DM). The aim of the present study is to evaluate and compare early quantitative changes of macular perfusion parameters in patients with DM without DR and with mild nonproliferative DR (NPDR) evaluated by two different swept-source (SS) OCT-A instruments using two scan protocols (3 73 mm and 6 76 mm). One hundred eleven subjects/eyes were prospectively evaluated: 18 healthy controls (control group), 73 eyes with DM but no DR (no-DR group), and 20 eyes with mild NPDR (DR group). All quantitative analyses were performed using ImageJ and included vessel and perfusion density, area and circularity index of the FAZ, and vascular complexity parameters. The agreement between methods was assessed according to the method of Bland-Altman. A significant decrease in the majority of the considered parameters was found in the DR group versus the controls with both instruments. The results of Bland-Altman analysis showed the presence of a systemic bias between the two instruments with PLEX Elite providing higher values for the majority of the tested parameters when considering 6 76 mm angiocubes and a less definite difference in 3 73 mm angiocubes. In conclusion, this study documents early microvascular changes occurring in the macular region of patients at initial stages of DR, confirmed with both SS OCT-A instruments. The fact that early microvascular alterations could not be detected with one instrument does not necessarily mean that these alterations are not actually present, but this could be an intrinsic limitation of the device itself. Further, larger longitudinal studies are needed to better understand microvascular damage at very early stages of diabetic retinal disease and to define the strengths and weaknesses of different OCT-A devices

    Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients

    Get PDF
    Schizophrenia (SCZ) is a polygenic severe mental illness. Genome-wide association studies (GWAS) have detected genomic variants associated with this psychiatric disorder and pathway analyses have indicated immune system and dopamine signaling as core components of risk in dorsolateral-prefrontal cortex (DLPFC) and hippocampus, but the mechanistic links remain unknown. The RasGRP1 gene, encoding for a guanine nucleotide exchange factor, is implicated in dopamine signaling and immune response. RasGRP1 has been identified as a candidate risk gene for SCZ and autoimmune disease, therefore representing a possible point of convergence between mechanisms involving the nervous and the immune system. Here, we investigated RasGRP1 mRNA and protein expression in post-mortem DLPFC and hippocampus of SCZ patients and healthy controls, along with RasGRP1 protein content in the serum of an independent cohort of SCZ patients and control subjects. Differences in RasGRP1 expression between SCZ patients and controls were detected both in DLPFC and peripheral blood of samples analyzed. Our results indicate RasGRP1 may mediate risk for SCZ by involving DLPFC and peripheral blood, thus encouraging further studies to explore its possible role as a biomarker of the disease and/or a target for new medication

    Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients

    Get PDF
    Schizophrenia (SCZ) is a polygenic severe mental illness. Genome-wide association studies (GWAS) have detected genomic variants associated with this psychiatric disorder and pathway analyses have indicated immune system and dopamine signaling as core components of risk in dorsolateral-prefrontal cortex (DLPFC) and hippocampus, but the mechanistic links remain unknown. The RasGRP1 gene, encoding for a guanine nucleotide exchange factor, is implicated in dopamine signaling and immune response. RasGRP1 has been identified as a candidate risk gene for SCZ and autoimmune disease, therefore representing a possible point of convergence between mechanisms involving the nervous and the immune system. Here, we investigated RasGRP1 mRNA and protein expression in post-mortem DLPFC and hippocampus of SCZ patients and healthy controls, along with RasGRP1 protein content in the serum of an independent cohort of SCZ patients and control subjects. Differences in RasGRP1 expression between SCZ patients and controls were detected both in DLPFC and peripheral blood of samples analyzed. Our results indicate RasGRP1 may mediate risk for SCZ by involving DLPFC and peripheral blood, thus encouraging further studies to explore its possible role as a biomarker of the disease and/or a target for new medication

    Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea

    Get PDF
    We report on newly discovered mud volcanoes located at ∼4500 m water depth ∼90 km west of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a >400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, δ18O, δD) reveal that fluids originate in oceanic crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings are rare, but given that the large area of transform-type plate boundaries has been barely investigated, such pathways of fluid discharge may provide an important, yet unappreciated link between the deeply buried oceanic crust and the deep ocean
    • …
    corecore