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ABSTRACT
We report on newly discovered mud volcanoes located at ~4500 m water depth ~90 km west 

of the deformation front of the accretionary wedge of the Gulf of Cadiz, and thus outside of 
their typical geotectonic environment. Seismic data suggest that fluid flow is mediated by a 
>400-km-long strike-slip fault marking the transcurrent plate boundary between Africa and 
Eurasia. Geochemical data (Cl, B, Sr, 87Sr/86Sr, d18O, dD) reveal that fluids originate in oceanic 
crust older than 140 Ma. On their rise to the surface, these fluids receive strong geochemical 
signals from recrystallization of Upper Jurassic carbonates and clay-mineral dehydration in 
younger terrigeneous units. At present, reports of mud volcanoes in similar deep-sea settings 
are rare, but given that the large area of transform-type plate boundaries has been barely 
investigated, such pathways of fluid discharge may provide an important, yet unappreciated 
link between the deeply buried oceanic crust and the deep ocean.

INTRODUCTION
Fluid seepage and mud volcanism are common 

at active and passive continental margins (Kopf, 
2002); typical driving mechanisms are (1) rapid 
sedimentation in combination with compaction 
and tectonic stress, (2) intrusive processes like 
salt diapirism, (3) dewatering of hydrous min-
erals, and (4) formation of hydrocarbons. These 
factors are met in the Gulf of Cadiz, where sev-
eral kilometer-thick Mesozoic to Holocene sedi-
ments accumulated in an accretionary wedge, 
hosting numerous mud volcanoes (MVs) prefer-
entially at fault intersections (Fig. 1; Magalhães 
et al., 2012). Proximal to the coast, MV fluids 
are strongly influenced by clay-mineral dehy-
dration and leaching of Upper Triassic evapo-
rites (Haffert et al., 2013). With increasing dis-
tance from the coast, the fluid signature changes, 
and fluid interaction with the underlying oceanic 
crust was postulated based on results from the 
Porto MV (Scholz et al., 2009). The occurrence 
of MVs located at water depths >2500 m is 
closely tied to the presence of active strike-slip 
faults (Duarte et al., 2013; Fig. 1), which pro-
vide deeply rooted fluid pathways (Hensen et 
al., 2007). In 2012, R/V Meteor cruise M86/5 
was conducted to test hypothesized fluid seep-
age along deep-rooted strike-slip faults also in 
distal segments outside the accretionary wedge. 
Our findings call for a reappraisal of oceanic 
transform-type faults as fluid conduits and sup-
port current hypotheses about ongoing fluid cir-
culation in “aged” upper oceanic crust.

GENERAL OBSERVATIONS
Acoustic backscatter anomalies recorded 

during previous bathymetric surveys led to the 
discovery of three new MVs on cruise M86/5: 
Abzu, Tiamat, and Michael Ivanov (ATI MVs 
hereafter; Fig. 1A) at water depths of ~4500 m 
at the southern rim of the Horseshoe Valley, ~90 
km west of the deformation front of the accre-
tionary wedge (Fig. 1A; Duarte et al., 2013). 
These MVs are smaller than those found on 
the accretionary wedge and consist of isolated 
cones (Fig. 1B) aligned on the Lineament South 
(LS) trend (Bartolome et al., 2012; Terrinha et 
al., 2009). The position of the MVs along the 
LS fault coincides with a seismically active zone 
with earthquakes of magnitudes Mw ≤6 nucle-
ating in the upper mantle between 40 km and 
60 km depth (Fig. 1A; Geissler et al., 2010). 
This suggests a fault intersection scenario simi-
lar to the situation on the accretionary wedge. 
Five gravity cores of up to 4.75 m length were 
obtained from active fluid emanation sites at ATI 
and Porto MVs (see Appendix DR1 in the GSA 
Data Repository1). Pore water was extracted in 
intervals ≤25 cm and analyzed for major and 
minor element composition using standard ana-

1 GSA Data Repository item 2015124, supporting 
information on locations, fluid geochemical data, 
analytical methods, Sr-isotope data of mud clasts, 
and heat flow measurements, is available online at 
www.geosociety.org/pubs/ft2015.htm, or on request 
from editing@geosociety.org or Documents Secre-
tary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

lytical procedures (Appendix DR2; e.g., Scholz 
et al., 2009). MV sediments typically consist of 
olive-gray mud breccias with claystone clasts 
of millimeter to centimeter size, and are highly 
enriched in H2S and methane. Gas hydrates are 
found below the zone of anaerobic oxidation 
of methane (AOM). Dissolved methane escap-
ing from the MV sediment forms plumes above 
the seafloor and feeds chemosymbiotic assem-
blages including several species of bivalves and 
tubeworms (Cunha et al., 2013).

FLUID SOURCES AND IMPLICATIONS
At ATI MVs, a shallow AOM zone prevails 

(40–200 cm sediment depth) due to advection 
of methane-rich fluids. Below the AOM zone, 
mixing with ambient bottom water is minor so 
that the chemical composition of rising deep flu-
ids can be studied on samples from this depth, 
defined as “local endmembers” of a core (e.g., 
Scholz et al., 2009). Local endmembers from 
four cores sampled on cruise M86/5 at ATI MVs 
and one core from Porto MV were selected and 
compared to previously published (Hensen et 
al., 2007; Scholz et al., 2009) local endmembers 
from MVs on the accretionary wedge (Fig.  2; 
Appendix DR1; distal MVs: Carlos Ribeiro 
[CRMV], Bonjardim, Porto; proximal MVs: 
Mercator, Captain Arutyunov [CAMV]).

Fluid data reveal positive and negative corre-
lations of d18O and Cl versus B (Fig. 2A) and 
d18O versus dD (Fig. 2B), respectively. Such 
trends are typical for clay-mineral dehydra-
tion, a major fluid source in the Gulf of Cadiz 
(Hensen et al., 2007). Clay dehydration causes 
freshening of fluids (depletion of conservative 
elements such as Cl), a characteristic signal 
of d18O above and dD below standard seawa-
ter composition (Vienna standard mean ocean 
water, VSMOW), as well as enrichments of 
boron and other fluid-mobile elements (Dähl-
mann and de Lange, 2003).

Similarly, MV endmembers of Sr (Fig. 2C) 
and 87Sr/86Sr ratios (Fig. 2D) were plotted versus 
Cl. Data from non-ATI MVs in Figure 2C show 
a similar relationship as in Figures 2A and 2B, 
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and can be defined by mixing between a certain 
range of Sr-enriched clay endmembers and sea 
water (shaded area Fig. 2C). This suggests that 
Sr is also derived from clay dehydration. By 
contrast, ATI MV fluids are clearly offset from 
this trend. Explaining this offset by mixing of 
clay-mineral–derived water and seawater would 
require an unrealistically strong Sr source in 
clays. Moreover, Sr released from clays has a 
high (radiogenic) 87Sr/86Sr ratio (Scholz et al., 
2009; Appendix DR3) so that a strong Sr input 
from clays at ATI MVs should cause a positive 
offset in the isotopic signature, which is not the 

case (Fig. 2D). Instead, the 87Sr/86Sr signal of 
fluids at all distal MVs indicate the decreasing 
influence of clay-mineral dewatering (Scholz 
et al., 2009) suggesting a low (less radiogenic) 
87Sr/86Sr ratio of the source at ATI MVs. Two 
possible sources of Sr can induce such a low 
87Sr/86Sr signal in this geological setting: deeply 
buried oceanic crust, and recrystallization of 
Mesozoic carbonates. Sr concentrations in 
hydrothermal vent fluids vary between 80 µM 
and 300 µM (Butterfield et al., 1994; Camp-
bell et al., 1988; Mottl et al., 2000; Von Damm, 
1990), which is below the level measured in 

most of the MV fluids. Therefore, oceanic crust 
is unlikely to be the dominant source of Sr at the 
ATI MVs. Pore waters of (pelagic) limestones 
can be enriched in Sr by >1 mM. The Sr enrich-
ment is related to recrystallization (Gieskes and 
Lawrence, 1981) of Sr-rich, meta-stable arago-
nite to Sr-poor, stable calcite. The 87Sr/86Sr ratio 
of fluids affected by this process may be as low 
as 0.7068 (87Sr/86Sr of Upper Jurassic seawater 
and carbonates; Banner, 2004). Seismostratig-
raphy calibrated with results of nearby Deep 
Sea Drilling Project (DSDP) Site 135 (Fig. 1) 
shows an exceptionally thick (2.5 km) sequence 
of Upper Jurassic sediments on top of the oce-
anic basement below the ATI MVs (Fig. 1C; 
Martínez-Loriente et al., 2013). Evidence from 
DSDP Site 105 (Hollister et al., 1972), the west-
ern Atlantic counterpart to Site 135, suggests 
that Upper Jurassic sediments in the study area 
are indeed pelagic limestones.

To further explore how potential sources 
may affect the MV fluid compositions, we 
examine a plot of Sr/B versus 87Sr/86Sr (Fig. 3). 
This combination of parameters allows for a 
clear discrimination between (1) clay (strongly 
radiogenic 87Sr/86Sr), (2) carbonates (87Sr/86Sr 
between present-day and the Late Jurassic 
Ocean; high Sr/B), and (3) oceanic crust (well-
defined, strongly non-radiogenic 87Sr/86Sr) as 
potential sources. The fluid composition of the 
proximal MVs is close to the suggested end-
member of clay-mineral dewatering, while that 
of ATI MVs shows a strong imprint of recrystal-
lization of Upper Jurassic carbonates (Fig. 3). 
The distal, non-ATI MVs plot within the binary 
mixing field of “clay” and “crust”, suggesting 
a negligible influence of carbonate recrystalli-
zation there. This interpretation is in line with 
stratigraphic evidence for the subsurface exten-
sion of Upper Jurassic sediments (Fig. 4). Con-
sequently, only ATI MVs receive the strong sig-
nal from carbonate recrystallization.

Unlike clay minerals, sedimentary carbonates 
do not store water in their lattice, and the pro-
cess of recrystallization only enriches ambient 
pore waters in Sr. Therefore, an additional trans-
port mechanism is required to carry the signal 
of carbonate recrystallization to the seafloor. 
Freshwater release from clay is presumably 
low in carbonate-rich sediments. In addition, 
clay-mineral dehydration occurs at tempera-
tures between 60 °C and 150 °C (Hensen et 
al., 2007), which translates into sub-seafloor 
depths of ~1–3 km (geothermal gradient 45–50 
K km–1; Appendix DR4; Grevemeyer et al., 
2009). Thus, there is only a limited overlap 
with the Upper Jurassic sediments (2–4.5 km 
sub-seafloor depth). As the Upper Jurassic unit 
corresponds to the deepest sedimentary depos-
its located right above the oceanic crust, only 
a scenario where crustal-derived fluids carry 
the geochemical signals upward (mixing of all 
three sources in Fig. 3) can explain observed 
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high-resolution sidescan sonar image of Michael Ivanov mud volcano. The entire structure 
consists of numerous single cones, being typically <100 m in diameter. C: Interpreted pre-
stack depth-migrated seismic profile SW07 across the LS (at Tiamat MV), from the Coral 
Patch Ridge region to the Horseshoe Abyssal Plain. HF—Horseshoe fault; SS1—Strike-slip 
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North; U.—Upper; L.—Lower; vertical exaggeration: 5×.
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fluid compositions. Such a scenario is in com-
pliance with the evidence for crustal alteration 
in MV fluids in the Gulf of Cadiz (Scholz et 
al., 2009). Our observations are summarized 
in a synthetic cross section (Fig. 4). Overall, 
fluids at Porto MV carry the strongest signal 
from oceanic crust alteration (Fig. 3), which is 
in agreement with the thinnest sediment cover 
at this site (Fig. 4). Compared to all other sites, 
there is also an obvious negative offset in d18O 
values at this location. Negative shifts in d18O, 
i.e., opposite to the effect observed during clay 

dehydration, are typical for mineral hydration 
processes such as the alteration of volcanic ash 
or oceanic crust (Gieskes and Lawrence, 1981). 
This trend is hardly visible at ATI MVs, likely 
due to the strong imprint of carbonate recrystal-
lization favoring the formation of 18O-enriched 
fluids at elevated temperatures (Lawrence et al., 
1975) and counteracting any negative crustal-
derived d18O signal.

In spite of the clear geochemical evidence, the 
precise mechanism driving fluid flow remains 
elusive. The major strike-slip fault (LS) pro-
vides a deep-reaching, permeable conduit that 
serves as pathway for ascending fluids. Strike-
slip faulting has been previously suggested as a 
mechanism for the release of overpressure, even-
tually leading to pulses of fluid flow (Mazzini et 
al., 2009; Sibson, 1987; Viola et al., 2005). Deep 
seismic activity in the vicinity of ATI MVs (Fig. 
1) indeed supports this hypothesis. In addition, 
pore water convection, related to the existence of 
local basement highs (e.g., Coral Patch Ridge; 
Figs. 1 and 4), could provide an alternative sce-
nario of crustal-derived flow. To date, examples 
for fluid convection are mainly reported from 
the eastern Pacific, where pore fluids circulate 
through interconnected seamounts in young 
oceanic crust (Fisher et al., 2003).

CONCLUSIONS
Our findings confirm that seismogenic strike-

slip faults provide pathways for deep-seated flu-
ids, sustaining mud volcanism even in abyssal 
regions, outside areas of rapid sediment accu-
mulation. Moreover, strike-slip faults tap fluid 
sources in oceanic crust older than 140 Ma, 
contradicting previous assumptions that fluid 
circulation terminates at a crustal age of ca. 65 
± 10 Ma (Stein et al., 1995). Although the exact 
mechanism remains poorly constrained, our data 
provide evidence for fluid flow within old oce-
anic crust in an area of strong topographic con-
trasts and deep basement faults as suggested by 
Von Herzen (2004). Interestingly, MVs expel-
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Figure 4. Regional synthetic (west to east) cross section from the continental shelf to the 
deep Horseshoe Basin north of Coral Patch Ridge (roughly following the Lineament South 
[LS]) illustrating major sources and processes affecting the fluid composition of distal mud 
volcanoes (MVs) in the Gulf of Cadiz. The largest potential for clay-mineral dehydration ex-
ists within the suitable temperature/depth range in the Middle to Upper Miocene terrigene-
ous units. MVs are projected along the profile. Note that Coral Patch Ridge is a prominent 
basement elevation appearing as buried spur and corresponds to a significant elevation of 
the seafloor, south of LS (Fig. 1). U.—Upper; L.—Lower. Vertical exaggeration: ~5×.
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ling geochemically distinct fluids off the Barba-
dos Accretionary Prism (Godon et al., 2004) are 
found in a tectonic setting comparable to that 
in the Gulf of Cadiz. Those are aligned along 
a major fracture zone and it was suggested that 
mud volcanism was initiated by changes in plate 
motion along this fracture (Sumner and West-
brook, 2001). Globally, transform-type plate 
boundaries are of similar length as divergent 
and convergent plate boundaries (Bird, 2003) 
and the latter are known for intense vent and 
seep activity. We suggest that transform-type 
plate boundaries and fracture zones may also 
provide important pathways for fluid exchange 
between the lithosphere and the deep ocean, and 
hence deserve more intense future exploration 
to evaluate their role in terms of heat and ele-
ment exchange.
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