1,039 research outputs found

    Optical Hall Effect in the Integer Quantum Hall Regime

    Full text link
    Optical Hall conductivity σxy(ω)\sigma_{xy}(\omega) is measured from the Faraday rotation for a GaAs/AlGaAs heterojunction quantum Hall system in the terahertz frequency regime. The Faraday rotation angle (\sim fine structure constant \sim mrad) is found to significantly deviate from the Drude-like behavior to exhibit a plateau-like structure around the Landau-level filling ν=2\nu=2. The result, which fits with the behavior expected from the carrier localization effect in the ac regime, indicates that the plateau structure, although not quantized, still exists in the terahertz regime.Comment: 4 pages, 4 figure

    Automated water monitor system field demonstration test report. Volume 1: Executive summary

    Get PDF
    A system that performs water quality monitoring on-line and in real time much as it would be done in a spacecraft, was developed and demonstrated. The system has the capability to determine conformance to high effluent quality standards and to increase the potential for reclamation and reuse of water

    Automated water monitor system field demonstration test report. Volume 2: Technical summary

    Get PDF
    The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported

    Trion dynamics in coupled double quantum wells. Electron density effects

    Full text link
    We have studied the coherent dynamics of injected electrons when they are either free or bounded both in excitons and in trions (charged excitons). We have considered a remotely doped asymmetric double quantum well where an excess of free electrons and the direct created excitons generate trions. We have used the matrix density formalism to analyze the electron dynamics for different concentration of the three species. Calculations show a significant modification of the free electron inter-sublevel oscillations cWe have studied the coherent dynamics of injected electrons when they are aused by electrons bound in excitons and trions. Based on the present calculations we propose a method to detect trions through the emitted electromagnetic radiation or the current density.Comment: 14 pages, 13 figure

    Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses.

    Get PDF

    Detection and correction of the misplacement error in THz Spectroscopy by application of singly subtractive Kramers-Kronig relations

    Full text link
    In THz reflection spectroscopy the complex permittivity of an opaque medium is determined on the basis of the amplitude and of the phase of the reflected wave. There is usually a problem of phase error due to misplacement of the reference sample. Such experimental error brings inconsistency between phase and amplitude invoked by the causality principle. We propose a rigorous method to solve this relevant experimental problem by using an optimization method based upon singly subtractive Kramers-Kronig relations. The applicability of the method is demonstrated for measured data on an n-type undoped (100) InAs wafer in the spectral range from 0.5 up to 2.5 THz.Comment: 16 pages, 5 figure

    Hyperhoneycomb Iridate β-li2iro3 As A Platform For Kitaev Magnetism.

    Get PDF
    A complex iridium oxide β-Li(2)IrO(3) crystallizes in a hyperhoneycomb structure, a three-dimensional analogue of honeycomb lattice, and is found to be a spin-orbital Mott insulator with J(eff)=1/2 moment. Ir ions are connected to the three neighboring Ir ions via Ir-O(2)-Ir bonding planes, which very likely gives rise to bond-dependent ferromagnetic interactions between the J(eff)=1/2 moments, an essential ingredient of Kitaev model with a spin liquid ground state. Dominant ferromagnetic interaction between J(eff)=1/2 moments is indeed confirmed by the temperature dependence of magnetic susceptibility χ(T) which shows a positive Curie-Weiss temperature θ(CW)∼+40  K. A magnetic ordering with a very small entropy change, likely associated with a noncollinear arrangement of J(eff)=1/2 moments, is observed at T(c)=38  K. With the application of magnetic field to the ordered state, a large moment of more than 0.35  μ(B)/Ir is induced above 3 T, a substantially polarized J(eff)=1/2 state. We argue that the close proximity to ferromagnetism and the presence of large fluctuations evidence that the ground state of hyperhoneycomb β-Li(2)IrO(3) is located in close proximity of a Kitaev spin liquid.11407720

    Hyperhoneycomb Iridate β-li_{2}iro_{3} As A Platform For Kitaev Magnetism.

    Get PDF
    A complex iridium oxide β-Li_{2}IrO_{3} crystallizes in a hyperhoneycomb structure, a three-dimensional analogue of honeycomb lattice, and is found to be a spin-orbital Mott insulator with J_{eff}=1/2 moment. Ir ions are connected to the three neighboring Ir ions via Ir-O_{2}-Ir bonding planes, which very likely gives rise to bond-dependent ferromagnetic interactions between the J_{eff}=1/2 moments, an essential ingredient of Kitaev model with a spin liquid ground state. Dominant ferromagnetic interaction between J_{eff}=1/2 moments is indeed confirmed by the temperature dependence of magnetic susceptibility χ(T) which shows a positive Curie-Weiss temperature θ_{CW}∼+40  K. A magnetic ordering with a very small entropy change, likely associated with a noncollinear arrangement of J_{eff}=1/2 moments, is observed at T_{c}=38  K. With the application of magnetic field to the ordered state, a large moment of more than 0.35  μ_{B}/Ir is induced above 3 T, a substantially polarized J_{eff}=1/2 state. We argue that the close proximity to ferromagnetism and the presence of large fluctuations evidence that the ground state of hyperhoneycomb β-Li_{2}IrO_{3} is located in close proximity of a Kitaev spin liquid.1147720
    corecore