ΝΟΤΙCΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

AUTOMATED WATER MONITOR SYSTEM FIELD DEMONSTRATION TEST REPORT

VOLUME II TECHNICAL SUMMARY

(NASA-CR-166229) AUTCMATED WATER MCHITCH SYSTEM FIELD DEMONSTRATION TEST REPORT. VOLUME 2: TECHNICAL SUMMARY (Boeing Co., Houston, Tex.) 313 p HC A14/MF A01 CSCL 13B

N82-11992

i

NASA CR-166229

AUTOMATED WATER MONITOR SYSTEM FIELD DEMONSTRATION TEST REPORT

VOLUME II

TECHNICAL SUMMARY

CONTRACT No. NAS2-9885

SEPTEMBER 30, 1981

Prepared by:

Richard ¹. Brooks Eldon L. Jeffers Jim Perreira Jerry D. Poel David Nibley Robert H. Nuss

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AMES RESEARCH CENTER MOFFETT FIELD, CA 94035

Approved by:

Nuss, Manager

Urban Systems (5-2700)

THE BOEING COMPANY HOUSTON, TEXAS

DISCLAIMER

"This report was prepared as an account of Government-sponsored work. Neither the United States, nor the Administration, nor any person acting on B-Half of the Administration:

- and the state of the state of

- a. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of that information contained in this report, or that the use of any information, apparatus, methods, or process disclosed in this report may not infringe privately owned rights;
- b. Assumes any liability with respect to the use of any information, apparatus, methods, or process disclosed in this report."

As used in the above, "Person acting on behalf of the Administration" includes any employee or contractor of the Administration, or employee of such contractor to the extent that such an employee or contractor of the Administration, or employee of such contractor prepared, disseminates, or provides access to any information pursuant to his employment or contract with the Administration or his employment with such contractor.

ABSTRACT

The Santa Clara Valley Water District (SCVWD) owns and operates a water reclamation facility located in the Palo Alto Baylands area in Northern California. The purpose of the facility is to evaluate the technical and cost feasibility of producing high quality reclaimed water in Santa Clara County. The SCVWD requested NASA to move their Water Monitor System to the reclamation facility to provide the district with data to help them evaluate the individual treatment processes and the entire treatment train. The field demonstration test period at the SCVWD Water Reclamation Facility began in July 1977 and ended in February 1981. This technical summary is divided into two major parts. The first part covers the results of the data gathered by the WMS and the SCVWD from January 1978 to September 1979. The second portion of the Technical Summary covers the results of the data gathered from July 1980 through February 1981.

TABLE OF CONTENTS

ŕ

1

And The Association of the Assoc

																											Page
DISCLAIMER	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	ii
ABSTRACT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	iii
FIGURES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•		•	•	•	•	•	•	•	vii
TABLES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xi
ACRONYMS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	•	•	xiii
1. Ir	nti	roc	luc	:ti	ior	1	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	1
		SC\ Wat WMS Tes	/WD ter 5 (5 t)W F Wa Pr	VRF Rec ate	:/P :la er gra	PA Ima Mo Im	(S ti ni	ian on to	ita For	C ac Sy	la il st	ra ity em	Va y a) l	al' at Ba(ley Pa ckg	/ W alo gro	iat A Dun	er 1t d	: 0) -	is B	tr ac	ic kg	t- ro:	un:	d.	1 1 1
2. Pa	ırt	t]	[Fi	iel	d	De	mo	ns	tr	at	io	n [·]	Te	st	Re	esu	ılt	S	•	•	•	•	•	•	•	3
	(Tes Cor WMS	st ncl 5 P Sa To	Ot us Per imp ota	oje sic rfc ole al	ect ons orm e C Or	iv ian ol	es le ni	E E C	icc iva io Ca	iom iu in irb	ip1 an oon	is io d /T(hmo n Dis ota	en st: al	ts rit Ox	out cyg	io jen	n C	Sy	vst nan	em d	• • •	• • •	• • •	• • • •	3 5 8 9
			An Hai Pho So Te Tu An Cho Cho Ga De	itro itro itro itro itro itro itro itro	iyz ine rat Ana ium pricori conicori duc sol mil chi choni	cer cer ce ce ce ce ce ce ce ce ce ce ce ce ce	An Zeistana Zeistana Zeistana An An An An An An An An An An	inal inal inal inal inal inal inal inal	iyz Jale Anlaz Jyze Jyze Score Score	vze er lal vzer lal vzer lan vzer vzer lan vzer vzer vzer vzer vzer vzer vzer vzer	r hlyzer ler hsv	· · · · · · · · · · · · · · · · · · ·	in r ly: em	• • • • • • •		aly	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • •	10 10 10 11 11 12 12 12 12 12 13 14 14 14 14 14 17 18 20
			Da Da	ata ata	a A a F	\cc ?er	ju i Dor	is i •ts	iti	or	a	nd.	R	ep	or	t (Ger	ner	at	ic	n •	Sy	st	em	•	•	20 33

1. Mar

TABLE OF CONTENTS (Continued)

3.

	Tuge
SCVWD Water Reclamation Facility Description	47
General	47
Control and Instrumentation	47
Chemical Clarification	49
Recarbonation	51
Mixed-Media Filtration	51
Ozonation	51
Granular Activated Carbon Sorption	52
Plant/Process Performance Evaluation	52
Nominal Input/Output Characteristics	52
Influent Variations	65
Detential WMS Applications for Process Control	79
Potential who Applications for Process control	75
Part II Field Demonstration Test Results	84
Test Objectives	84
Conclusions	85
Recommendations	87
WMS Performance Evaluation • • • • • • • • • • • • • •	8 9
Sample Collection and Distribution System	89
Chemiluminescence Biosensor	90
Gas Chromatograph	90
Total Organic Carbon Analyzer	92
Hardness Analyzer	92
Nitrate Analyzer	93
pH Analyzer	93
Total Residual Chlorine Analyzer	93
Sodium Analyzer	93
Temperature Analyzer	94
Turbidity Analyzer.	94
Coliform Detector	9 4
Ammonia Analyzer	96
Conductivity Analyzer	96
Dissolved Oxygen Analyzer	96
Deionized Water System	97
Data Acquisition and Report Generation System .	97
WMS Availability	97
WMS Reliability	100
WMS Operations and M intenance Cost Summary	100
Summary	103

TABLE OF CONTENTS (Continued)

	Data Processing	104
	Characteristics of the Linear Regression	. 108
	Reclamation Plant/Process Performance Evaluation	. 113
	Input/Output	115
	Plant/Process Availability	. 147
	Plant Reliability	. 149
	Plant O&M Costs	. 149
4.	Future Applications	155

Page

REFERENCES

l

APPENDICES

- A Process Input/Output Characteristics for Part I
- **B** Monthly Averages for Part I
- C Math Model of Solids and Non-Volatile Organics in Effluent From Activated Sludge Process
- D Statistical Analysis Coefficients for Part II
- E Stanford/WMS Data for Organic Removal by GAC
- F Plant Downtime and Maintenance Log
- G WMS Costs

FIGURES

ĺ

i

		Page
1	Total and Viable Bacteria Levels in Various Waste Water Effluents	15
2	Typical Gas Chromatogram	19
3	Calibration Curve for Tetrachloroethylene	23
4	Calibration Curve for Methylene Chloride ••••••••	24
5	Calibration Curve for 1,2 Dichloroethylene	25
6	Calibration Curve for Chloroform ••••••••••••••••••••••••••••••••••••	26
7	Calibration Curve for 1,1,1 Trichloroethane	27
8	Calibration Curve for Bromodichloromethane	28
9	Calibration Curve for Trichloroethylene	29
10	Calibration Curve for Dibromochloromethane	30
11	Calibration Curve for Bromoform	31
12	Typical Instantaneous Data Report	34
13	Typical Daily Data Report	35
14	Typical Historical Data Report	37
15	Typical Coliform Data Report	38
16	Typical Gas Chromatograph Data Report	40
.7	Typical Hourly Plot	41
18	Typical Monthly Plot	44
19	Typical Sample Source Trend Data Report	45
20	Typical Statistical Report	46
21	SCVWD Water Reclamation and Injection/Extraction Well Facility at Palo Alto, California	48

FIGURES (Continued)

Óltair -

1

		Page
22	Reclamation Plant Nominal Steady-State % Removal Characteristics	56
23	Reclamation Plant Nominal Steady-State Input/ Output Characteristics	57
24	Unit Process Steady-State Input/Output Characteristics at 1 mgd - TOC	58
25	Unit Process Steady-State Input/Output Characteristics at 1 mgd - Total Halocarbons	59
26	Unit Process Steady-State Input/Output Characteristics at 1 mgd - Turbidity	60
27	Unit Process Steady-State Input/Output Characteristics at 1 mgd - Total Biomass	61
28	Unit Process Steady-State Input/Output Characteristics at 1 mgd - Viable Biomass	62
29	Monthly Plot Indicating Hour of Peak Concentrations	66
30	Hourly Plot Indicating Diurnal Cycle	67
31	Math Model Simulation of Process Solids	70
32	Math Model Simulation of Non-Volatile Organics	71
33	Total Halocarbons in Reclamation Facility Influent	74
34	Weekly Cycle of Halocarbon Concentrations	75
35	Useful Life of Activated Carbon Column (1 of 4) for Chloroform Removal	76
36	Chloroform Adsorption Capacity of Grandular Activated Carbon (GAC)	78
37	Rate of Activated Carbon Saturation With Non-Volatile Hydrocarbons	80
38	Total and Viable Bacteria Levels in Various Wastewater Effluents	91

. ...

FIGURES (Continued)

					Page
39	Sampling Schedule	••	•	•	116
40	Data Distribution and Process Removal Characterist Total Biomass	ics	-	•	119
41	Data Distribution and Process Removal Characterist Viable Biomass	ics	-	•	120
42	Data Distribution and Process Removal Characterist Total Organic Carbon	ics	-	•	121
43	Data Distribution and Process Removal Characterist Turbidity	ics	-	•	122
44	Data Distribution and Process Removal Characterist Total Residual Chlorine	ics	-	•	123
45	Data Distribution and Process Removal Characterist Dissolved Oxygen	ics	-	•	124
46	Data Distribution and Process Removal Characterist Ammonia	ics	-	•	125
47	Data Distribution and Process Removal Characterist	ics	-	•	126
48	Data Distribution and Process Removal Characterist Conductivity	ics	-	•	127
49	Data Distribution and Process Removal Characterist Hardness	ics	-	•	128
50	Data Distribution and Process Removal Characterist Total Halocarbons	ics	-	•	129
51	Data Distribution and Process Removal Characterist Trihalomethanes	ics	-	•	130
52	Data Distribution and Process Removal Characterist Tetrachloroethylene	ics	-	•	131
53	Data Distribution and Process Removal Characterist Methylene Chloride	ics	-	•	132

ix

· . .

FIGURES (Continued)

Page

GY Mart S

「たいという」という

and the second sec

ι.

ļ

54	Data Distribution and Process Removal Characteristics - Chloroform	133
55	Data Distribution and Process Removal Characteristics - Trichloroethane	134
56	Data Distribution and Process Removal Characteristics - Bromodichloromethane • • • • • • • • • • • • • • • • • • •	135
57	Data Distribution and Process Removal Characteristics - Trichloroethylene	136
58	Data Distribution and Process Removal Characteristics - Dibromochloromethane	137
59	Data Distribution and Process Removal Characteristics - Bromoform	138
60	Time History of Granular Activated Carbon Performance	146
61	Determination of Reliability	150
62	Relationship Between Cost and Reliability for Complying with COD Discharge Limit by Granular Activated Carbon Regeneration	154

TABLES

n

i

ŀ

- ----

		raye
1	Comparison of GC Analytical Columns	21
2	Reproducibility of GC Calibration Mixtures Made with Various Solvents	22
3	WMS-Stanford University Volatile Organic Analyses Comparison Samples 11/20/78 - 3/12/79	32
4	Unit Process Characteristics	49
5	Plant Instrumentation	51
6	Process Configurations for Test Periods	53
7	Water Reclamation Plant Design Criteria	54
8	Reclamation Plant Discharge Water Quality Permit Requirements	55
9	Estimated Flocculation pH Based on Lime Consumption and Influent Alkalinity	64
10	Diurnal Variation in Biological Quality	73
11	Plant Systems Amenable to Automatic Computer Control	81
12	Configurations/Costs of Controlling Effluent COD $\leq 10 \text{ mg/l}$ at 1 mgd	82
13	Comparison of Coliform False Positives	96
14	WMS Availability/Reliability	98
15	Operations and Maintenance Cost of Water Monitor System	101
۱6	Sample Statistical Data	111
17	Sample Regression Analysis	112
18	Process Configurations for Test Periods	114
19	Plant Performance for Two Test Periods	117

xi

TABLES (Continued)

		Page
20	Process Performance for Two Test Periods • • • • • • • • •	118
21	Chi Squares of Process Effluents for Two Test Periods	140
22	Significant Changes in Normal Distribution Across Processes	142
23	Availability of Palo Alto Reclamation Facility	148
24	Reliability of Palo Alto Reclamation Facility	151
25	Operations and Maintenance Costs of Palo Alto Reclamation Facility	152
26	Estimated Costs and Savings for Automated Instrumentation	156

á

ACRONYMS

A/D	Analog to Digital Converter
ADAM	Air Data Acquisition and Monitoring
AER	Aeration
ATP	Adenosine Triphosphate
b	Constant
BOD	Biochemical Oxygen Demand
BV	Biosensor Valve
C	Concentration
CaCO3	Calcium Carbonate
C2CL4	Tetrachloroethylene
CHLOR	Chlorination
CLAR	Clarification
CH2C12	Methylene Chloride
C2H2C12	1,2 - Dichloroethylene
CHC13	Chloroform
сн _з сс1 ₃	1,1,1, - Trichloroethane
CHBrC12	Bromodichloromethane
C2HC13	Trichloroethylene
CHBr ₂ C1	Dibromochlcromethane
CHBr ₃	Bromoform
CLSS	Closed-Loop Stripping System
CO	Carbon Monoxide

COD	Chemical Oxygen Demand
°C	Degrees Celsius
CRT	Cathode Ray Tube
CV	Coliform Valve
DAS	Data Acquisition System
DI	Deionized Water
00	Dissolved Oxygen
DOY	Day of Year
DSLTB	Double Strength Lauryl Tryptose Broth
ECD	Electron Capture Detector
EDTA	Ethylene Diamine Tetra Acetic Acid
EVE	Environmental Verification and Evaluation
°F	Degrees Fahrenheit
FID	Flame Ionization Detector
FILT	Filtration
floc	Flocculant
F/M	Food to Biomass Ratio
FTU	Formazin Turbidity Units
GAC	Granular Activated Carbon
GC	Gas Chromatograph
GLI	Great Lakes Instruments
gm, gms	Grams
aph	Gallons Per Hour

4

ale in a constants

gpm	Gallons Per Minute
нст	Hydrochloric Acid
HNO3	Nitric Acid
н ₂ 0, нон	Water
H2 ⁰ 2	Hydrogen Peroxide
H ₂	Hydrogen Gas
нţ	Hydrogen Ion
I	Input, Influent
IR	Infrared
JTU	Jackson Turbidity Unit
K	Constant
KH2P04	Potassium Phosphate
LB/DAY	Pounds Per Day
LED	Light Emitting Diode
LIT, L, 1	Liter
LTB	Lauryl Tryptose Broth
м	Molar Concentration
m	Constant, Meter
MCL	Maximum Concentration Limit
m ³ /s	Cubic Meters Per Second (22.8 mgd)
mc/ml	Millions of Cells per Milliliter
mgal	Millions of Gallons
mgd	Millions of Gallons Per Day

٠

でも見ていたとう

A STATEMENT

P

.

í

Ľ

mg/1	Milligrams Per Liter
m 1	Milliliters
ml/min	Milliliters Per Minute
MPN	Most Probable Number
mv	Millivolt
N	Normal Concentration
n	Number of Samples
N2	Nitrogen
NaOH	Sodium Hydroxide
NASA	National Aeronautics and Space Administration
NEDA	N-1 Napthyl-Ethylenediamine Hydrochloride
NH ₃	Ammonia
NTU	Nephelometric Turbidity Units
0	Output
0/1	Effluent (Output)/Influent (Input)
O&M	Operations and Maintenance
OZON	Ozonation
PMT	Photomultiplier Tube
POX	Purgeable Organic Halogens
ppb	Parts Per Billion
p pm	Parts Per Million
psi	Pounds Per Square Inch
psig	Pounds per Square Inch Gage

ĺ

PVC	Polyvinyl Chloride
Q	Plant Flow, mgd
Q _W	Wasted Sludge, mgd
Q _R	Returned Sludge, mgd
r	Correlation Coefficient
RDOS	Real-Time Disk Operating System
RO	Reverse Osmosis
RPM	Revolutions Per Minute
RTD	Resistance Thermal Detector
Sa	Aerator Substrate, mg/1 TOC
SCVWD-WRF/PA	Santa Clara Valley Water District-Water Reclamation Facility at Palo Alto
sec	Seconds
s _i	Primary Effluent Substrate, mg/1 TOC
sio ₂	Silicon Dioxide
sorption	Adsorption or Absorption
TC	Total Carbon
TEC	Techtronics
THC	Total Halocarbons
TOC	Total Organic Carbon
тох	Total Organic Halogens
T _s	Total Biomass in Aerator/Clarifier, mg
UV	Ultraviolet
V _a	Aerator Volume, mgal

- -

VAC	Volts Alternating Current
٧ _c	Clarifier Volume, mgal
VDC	Volts Direct Current
٧ _e	Chlorine Contact Volume, mgal
WMS	Water Monitor System
x	Independent Variable
Xa	Biomass In Aerator, mc/ml
× _c	Biomass in Clarifier Effluent, mc/ml
×e	Biomass in Effluent From Chlorine Contact Tank, mc/ml
Y	Mass Yield of Biomass per Unit Substrate Consumed, mg/mg
у	Dependent Variable
μ	Microns, Micro
#	Number
r	Percent
σ	Standard Deviation
σE	Standard Error of Estimate
Z	The Number of Standard Deviations from the Mean

SECTION 1.0

INTRODUCTION

SCVWD-WRF/PA BACKGROUND

これになったいである とうちょう しんしょう かんしょう かんしょう アイ・シート

The Santa Clara Valley Water District, in cooperation with the Cities of Palo Alto, Los Altos, and Mountain View, embarked upon a developmental program of water reclamation and injection of the reclaimed water into underground aquifers in the South San Francisco bayfront area. The purposes of this program were to demonstrate the technical and economic feasibility of certain reclamation processes, and to attempt to provide a freshwater barrier to the intrusion of saltwater into a shallow aquifer. The wastewater supply to this system is the effluent from the Palo Alto Regional Water Quality Control Plant.

The Water Reclamation Plant provides tertiary treatment to the secondary effluent from the Palo Alto city plant, and in addition to its basic function of providing a supply for groundwater recharge, the reclamation plant can produce water of lesser quality for use in golf course irrigation or as a supplemental supply for the Palo Alto city plant's Reclaimed Water System for in-plant use.

The project took advantage of unused existing facilities at the Palo Alto plant in the construction of certain process units. An old clarifier was converted to a combined flocculator/clarifier, an unused sludge digestion tank has been used for reclaimed water storage, and an old vacuator structure has been adapted to house filters.

WMS BACKGROUND

As an outgrowth of its involvement in water reclamation and water quality monitoring for both spacecraft and domestic applications, NASA has conducted a project to develop and test an automated WMS (Water Monitor System). The objective of this project was to develop a system whereby water quality monitoring could be performed as it would be done in a spacecraft, on-line and in real-time. The design goal was to establish the capability to determine conformance to future high effluent quality standards, and thereby increase the potential for reclamation and reuse of wastewater. The resulting system includes both commercially available and NASA-developed sensors, an automated sample collection and distribution system, and a computerized data acquisition and reporting system. The project completed assembly and checkout of the WMS under separate contract (Reference 15). The project then entered into the field demonstration test phase which ended on February 28, 1981.

TEST PROGRAM

This report is a summary of test data recorded during the test period, January 1978 through February 1981. Datawere recorded on the operation of the

1

reclamation facility and its individual processes and on the operation of the WMS. These data included reliability and availability statistics, downtime and maintenance, and operations costs. The test program was divided into two major parts. The first part of the test program and of this report covers the results of the data gathered by the WMS and the SCVWD from January 1978 to September 1979. The second portion of the test period and of this report covers the results of the data gathered from July 1980 through February 1981.

SECTION 2

PART I FIELD DEMONSTRATION TEST RESULTS

This section will cover the results from the data collected by the WMS and the Santa Clara Valley Water District.

TEST OBJECTIVES/ACCOMPLISHMENTS

The primary goal of this phase of the field demonstration program was to determine the benefits and costs of continuous monitoring as a basis for maintaining high effluent quality in a wastewater treatment application. In support of this goal, key test objectives were identified. The accomplishments, thus far, in satisfying these objectives are highlighted below.

1. <u>Characterize treatment process performance and define the key</u> parameters for maintaining an optimum effluent quality.

Accomplishments: The performance of each of the unit processes in the reclamation facility has been measured in terms of the WMS parameters over a wide range of operating conditions. These data, along with an interpretation of their meaning, are presented later in this section.

2. Define how the WMS concept of continuous automated monitoring might be applied in the reclamation facility.

<u>Accomplishments</u>: Several opportunities for process control have been identified. These are discussed at the end of this section. The potential economic impact of certain unusual control concepts is also presented. Additional work will be required before these concepts are proven feasible. The task of developing process control algorithms for normal process functions is currently in progress.

3. Demonstrate the performance of the NASA-developed sensors.

Accomplishments:

A. Chemiluminescence Biosensor

The capability for measuring viable as well as total bacteria was incorporated into the sensor. The sensor proved to be the most reliable method of measuring the performance of various processes for biological solids removal. (Dependence on the

biosensor for solids removal data has steadily increased with experience. The other major source of this information, turbidity, has proven to be of questionable value due to unexplained increases across the filtering process, possibly due to sensor susceptibility to entrained gases or to particle size.) However, efforts to correlate the biosensor to coliform, the current standard for effluent biological quality, were unsuccessful. This result might be expected considering that coliform represents less than 1 percent of the total bacterial population. A more comprehensive survey to relate the biosensor to other biological measures, including virus, might be fruitful but is beyond the scope of our current efforts. It was intended to test another potential biosensor application, biological control of the activated sludge process; however, resource constraints prevented the necessary planning. The operation of the bioluminescence (ATP) sensor was terminated when it was found that chemiluminescence, with the addition of the viable bacteria capability, provided similar information. Low operating cost and simplicity strongly favor chemiluminescence.

B. Hydrogen Sensing Coliform Detector

An extensive test program was performed to compare sensor performance against the standard method, MPN test. A random interference was found when testing water at very low concentrations, after disinfection. The interferring bacterium was isolated and was shown to imitate, by chemical means, the hydrogen gas production of the coliform. A change in the sensor configuration eliminated the interference problem.

C. Trace Organics Sensor

東京になっていた

and an an and the state of the

The gas chromatograph was calibrated for nine compounds which include the trihalomethanes - chloroform, bromodichloromethane, dibromochloromethane, and bromoform. The calibration results, as well as split samples with the Ames Research Center and Stanford University, have shown good accuracy down to at least a level of 5 ppb. Procedures have been developed to resolve recent problems with excessive column bleed. As discussed later in this section, the instrument has been useful in several instances but particularly in characterizing the solvent dumping practices of local industry.

4. <u>Characterize the performance of each element within the WMS in terms</u> of availability.

Accomplishments: This section presents an evaluation of each of the WMS elements and reflects the reliability problems encountered with many of the commercial sensors.

CONCLUSIONS

Continuous monitoring of various biological and physical/chemical treatment processes has identified certain key parameters which influence effluent quality. Work was conducted in order to expand and apply this knowledge by developing control algorithms where the monitoring system would be utilized for direct process control and housekeeping functions. The information collected shows that an automated monitoring system could support the following plant control functions, thereby maintaining effluent quality while preventing wasteful expenditures for consumables and energy.

- 1. Efficient solids removal in the flocculation process by optimum control of the feed rate of lime and flocculant aids, sludge return rate, and sludge wasting rate based on influent conditions.
- 2. Minimum aeration conditions (0, 1, or 2 aerators) for effective trace volatile organics removal to support desirable biological growth in the granular activated carbon (GAC) and to comply with effluent discharge restrictions for dissolved oxygen.
- 3. Filter backwash frequency based on head loss and effluent discharge restrictions on dissolved oxygen.
- 4. Activated carbon maintenance scheduling to provide acceptable performance at lowest maintenance cost.
- 5. Effluent neutralization by recarbonation dosage control to comply with the effluent restriction on pH.
- 6. Disinfection (chlorination and ozonation) based on flow and dosage requirement.
- 7. Selection of plant flow and process stream configuration based on desired effluent quality and existing influent conditions.

Of the 24 parameters measured by the WMS, a few provided the bulk of the useful information in that they reflected change in water quality produced in the reclamation processes. These were:

Total Organic Carbon Total Halocarbons Dissolved Oxygen Biomass Turbidity Total Residual Chlorine pH Ammonia Nitrate/Nitrite

Thus, these are the available parameters which, potentially, can support process control. The other inorganic parameters were essentially unchanged

in the treatment process since ion exchange of reverse osmosis is not among the reclamation processes at this site. On the other hand, the capability for measuring phosphorus and heavy metals, which are removed in lime clarification, was not available in the WMS. Thus, the contingent of sensors onhand was not tailored to all specific needs of this particular facility but the data provided are judged to be adequate for the purpose, even though not comprehensive.

Sample Collection and Distribution

The system provided itself to be extremely successful in doing what it was designed for: to continuously deliver both a filtered and unfiltered sample to the sensors. The system demonstrated its ability to filter samples ranging from tap water to primary effluent with a minimum amount of maintenance. The 50 micron stainless steel filters showed that they removed the large particles from the stream without affecting the parameters measured with filtered sample. It was found that the biggest hazard for the filters was grease from the sample. This was not only a problem during operation, but also during cleanup. After extensive testing, an effective method of cleaning the grease from the filters was developed. The system demonstrated that the concept of multipoint sampling is very feasible.

Sensors

Provident Ser

Commercial Sensors

The performance of the commercial sensors varied greatly. On one extreme, the Sigrist Photometer performed throughout the test period with hardly a single malfunction and a minimum of required maintenance. On the other hand, the chloride analyzer was out of service 65% of the test period, either for repair at the manufacturer's or for troubleshooting at the WMS. The remainder of the commercial sensors fell somewhere between these two extremes. The major problem cited with these sensors as a group was reliability. Mechanical and electronic failures were a continuing problem.' However, in defense of these sensors it must be noted that several of the sensors were not designed for the type of continuous 24-hours a day, seven days a week usage. Additionally, all these sensors are at least 42 months old, and several are over 50 months old. It is reasonable to expect that during that period of time the various manufacturers have made significant changes and improvements to their sensors. The feasibility of computer controlled auto standardization was successfully demonstrated. In any type of sensor operation, this would result in a significant decrease in the amount of manpower required to maintain and operate the system.

Chemiluminescence Biosensor

The state of the art for an automated chemiluminescence biosensor has come a long way during the test period. The mechanical and electronic reliability of the sensor has been extremely good, especially for a prototype.

Coliform Detector

The coliform detector demonstrated itself to be quite reliable, both mechanically and electronically. The only significant electronic failures were the three electrodes, three thermistors, and two temperature control boards that failed. However, all these components were at least 3 years old at the time they failed. Both the reproducibility and validity of the detector adequately demonstrated using seeded samples.

Gas Chromatograph

The yas chromatograph has proven to be a realiable instrument for monitoring volatile halogenated organics. The instrument has operated without any major problems since its installation over 1-1/2 years ago. The method was shown to be accurate down to 5 parts per billion. It appears that this level is the sensitivity limit with this method; however, this sensitivity should be sufficient for monitoring potable water.

The chromatography for the nine monitored compounds is adequate. The chromatography for methylene chloride and 1,2-dichloroethylene could be improved and would probably yield somewhat more accurate results. In addition, several as yet unidentified compound peaks can be found in the chromatograms. Identification of these peaks will provide additional information in the characterization of the water quality.

Deionized Water System

The system functioned quite reliably throughout the test period. The only significant mechanical failures were those involving the pump impeller. These were typically due to operator error. Bacteria contamination of the storage reservoirs was periodically a problem. The system's capability to provide a continuous supply of reagent grade deionized water made the sensor system possible.

Other Sensors

Attempts to develop a total nitrogen sensor were unsuccessful. The following describes the test system and problems encountered. The IBC/Berkeley Nitrogen Analyzer receives the noncondensable combustion gases from the TOD analyzer and determines the concentration of nitric oxide by measurement of the potential between two electrodes. During the combustion at 850°C, nitrogen compounds in the sample are converted to nitric oxide; thus, a total nitrogen reading is provided by the instrument in the range of 10 to 10000 ppm nitrogen. Testing results showed inconsistent performance for this measurement. It was discovered

that measurement sensitivity was considerably greater for nitrogen in the form of nitrates than that in the form of ammonia (about 5 to 1). It was concluded that a large portion of the ammonia nitrogen was being reduced to nitrogen gas (N_2) rather than to nitric oxide (NO). A sensor utilizing chemiluminescence for detection was tried with similar results. Thus, a mixture of nitrogen compounds in a sample must be converted to a single form in order for this technique to be accurate.

WMS PERFORMANCE EVALUATION

シートのようであるという

and an and the

Sample Collection and Distribution System

Figure 21 shows the location of the six sampling points used during the test period, which included water of a quality ranging from primary to tertiary treated wastewater. The system worked very well throughout the test period. Fifty micron woven stainless steel filters were used for filtration purposes for 80% of the test period. The remaining 20% of the time, thirty micron woven stainless steel filters were used. Due to the high flow rate of sample across the filter surface and the backflushing action, the system had no difficulty removing particles and debris from the sample stream. This was true even for the primary effluent sample from the Palo Alto waste treatment plant. However, what did present a problem was the grease contained in the primary and secondary effluent sample stream. Within about 4 days, the buildup of grease would be enough to reduce the filtered sample flow below the required 2000 ml/min. flow rate to the trailer. Additionally, when the filters were removed for cleaning, the grease was extremely difficult to remove. In order to prevent a loss of sample flow, a schedule was established where the filters were changed three times a week; on Monday, Wednesday, and Friday. This schedule proved to be extremely effective in preventing any significant drop in filtered sample flow rate. Various solvents, acids, and detergents were tested for their ability to clean the filter screens so they could be reused. Finally, a procedure was developed which thoroughly cleaned the filters. As soon as the filter screens were removed from the filter housing they were rinsed with tap water. Next, the filter screens were soaked in a solution of enzyme detergent and water overnight. The filter screens were then placed in a solution of Isoterge detergent and soaked overnight. The filter screens have been reused numerous times using this cleaning procedure.

Overall, the sample collection system performed well with only a minimal number of failures. During the test period four pump boots failed. Two of these were due to loss of sample flow over a long period of time (2 days). One boot failed due to a bad universal joint in the Monyo pump. The last boot failed due to overpressurization when two sample lines in the trailer became clogged. Also during the test period each pump had to have its bearings replaced. The Red Valves which are used on the sample collection system worked quite well. Five of the valve liners had to be replaced during the test period. Each of these five developed a small leak after almost a year of operation. Six of the Red Valves had tygon tubing used as a pneumatic line. This proved to be a mistake as the tygon softened with age. This resulted in three of the lines rupturing. All the lines were replaced with 1/4" polyethylene tubing. During the test period one of the Bimba air actuators used for the backflush system failed. Additionally, the gears on one of the backflush timers had to be replaced due to excessive wear. The only parts of the system which had repeated failures were the pressure gauges. The original gauges had a life expectancy of 4 months due to pressure surges from the backflush system. Snubbers were installed on all the gauges. However, this did not solve the problem. Finally, the gauges were replaced with liquid filled gauges manufactered by U.S. Gauge.

Total Organic Carbon (TOC)/Total Oxygen Demand (TOD)

The Astro Ecology TOC/TOD Analyzer was modified to allow for computer controlled automatic calibration. This system consisted of two teflor air actuated slider valves, two pilot valves and two micro switches. The slider valves were used to switch from sample to either zero or span standards. The micro switches were used to send the valves status back to the computer.

The TOC analyzer worked quite reliably. However, several problems did show up during the test period. First, due to the high temperature $(850^{\circ}C)$ of the reactor, corrosion from the acid reagent caused the reactor to eventually fail. It appears that the life expectancy of the reactor is between 18 to 24 months. Another problem area was that the sample pumps were poorly located. If a pump tube failed it could result in water filling the furnace compartment. Since the construction of the WMS TOC Analyzer, the manufacturer has corrected both these problems. Due to the fact that the infrared analyzer was located in an adjoining rack, the line from the reactor to analyzer was longer than normal. As a result, condensation took place in the line. To prevent this, a 40 micron prefilter was installed in the line. Additionally, a trap was installed at the low point of the line. This prevented small amounts of moisture from accumulating and reducing the sample gas flow to the infrared analyzer. Also, a manual three-way valve was installed in the line to the 50 cc sample pump. This allowed grab samples to be easily tested. To verify the accuracy of the analyzer, numerous split samples were run in the SCVWD lab. The results of the comparisons showed good correlation of data. Comparisons were made with both TOC and TOD standards with less than 5% error. One of the difficulties with sampling of both primary effluent and Reclamation Plant effluent is that the analyzers must be scaled to read the high primary values. As a result the analyzer is not as exact as it would be on the lower scale. This was especially a problem for the TOC analyzer. The TOC values for primary effluent were often over 100 ppm, while they were as low as 1.0 ppm for the Reclamation Plant effluent.

The TOD analyzer used the same reactor as the TOC analyzer. The sample gas was routed from the reactor to the TOC infrared analyzer, then to the TOD analyzer, and lastly to the vent. A problem with the electronics overheating was discovered with the TOD analyzer. This was due to the location of the fiberglass box, which contained the electronics, within the same rack as the reactor. An attempt was made to relocate the electronics in another rack; however, it was found that the increased resistance from the longer wires was too high. The electronics were remounted in the old location. The door to the electronics was left open to allow cool air to enter. This stabilized the temperature and the data output. The most serious problem with the TOD analyzer was that the analyzer was designed for a range of 0-1000 ppm and the water sampled was generally in the range of 10 ppm. As a result, the accuracy of the measurements varied. This was not so much a design problem with the analyzer as it was a problem of trying to apply an instrument intended for industrial effluent to reclaimed wastewater.

Hardness Analyzer

The analyzer provided good, reliable data with few exceptions. The only problems encountered were when samples of primary effluent or secondary effluent were being analyzed. There is an apparent interference in the primary effluent which causes the analyzer to consistently read erroneously low values (less than 50 mg/L). The problem with the secondary effluent was apparent only 5% of the time. The analyzer would, on these occasions, show an erroneously high value. The interference would cause a jump in the reading of 200 to 500 ppm. The exact nature of the interference has yet to be determined. One possibility that is being studied is that the high residual chlorine level of the secondary effluent may be affecting the data. However, as stated earlier, the sensor operated very reliably 95% of the time. The other minor problems encountered during the test period included periodic rupturing of the analyzer's pump tubing. This problem was practically eliminated by replacing all the pump tubing every 2 months. Another problem was leaking "0" rings in the electrode holder. In the beginning of the test the "0" rings had to be replaced with a thin rubber gasket. This replacement gasket solved the problem.

Nitrate Analyzer

The analyzer was only run during the first month of the Phase I test period. During that month it was found that the levels were consistently less than 1 ppm. It was decided by NASA and SCVWD that at that level the nitrate was not a concern and that it would not be necessary to continue to run the analyzer. During that brief period of operation the following observations were made. The analyzer is fairly labor intensive due to the wet chemistry method of analysis used. Two gallons of reagent must be mixed each week. Additionally, due to the large number of pumps and drains used in the system, the analyzer needed to be frequently monitored for leaks. While on-line the analyzer did provide accurate and reliable data.

pH Analyzer

The Great Lakes Instrument Model 70 pH Analyzer generally provided good, reliable data. The sensor required calibration on an average of once a week during the test period. There was no serious fouling of the probe as a result of sampling primary or secondary effluent. The probe was removed once a month and checked for accumulations on the electrode. The electrode tip was cleaned in a 0.1 N acid solution if a significant accumulation was found. When calibrated, a pH standard of 7 was first used, then a pH standard of 10 was used to check the slope. One problem, which hampered operation of the sensor, was that air bubbles would come out of the sample and become trapped in the flow cell. When enough air bubbles would accumulate in the flow cell, the electrode would lose the necessary contact with the sample. This would result in the analyzer reading approximately .5 pH unit lower than the sample actual value. To resolve this problem a hole was drilled into the top of the flow cell to vent off the trapped air. This modification worked quite well. Throughout the test period the analyzer was supplied with 50 micron filtered sample. Shortly after the end of the test period the analyzer began to generate slightly erratic data. The epoxy used to build the probe began to pull away from the electrode body. At this point the probe was replaced with a new probe. With the new probe installed, the results were as stable as ever. Based on this information, the life of the pH probe is estimated to be 3 years.

Total Residual Chlorine Analyzer

The analyzer was generally very reliable and provided good, accurate data throughout the test period. The analyzer was modified with the WMS auto standardization system. The analyzer required a minimum amount of routine maintenance during the test period. The analyzer encountered some problems with clogging due to particles clumping together in the small diameter tubing (1/32") leading in an out of the flow head. It was found that this was not a significant problem as long as the analyzer was operated continuously. However, if the analyzer was shut down for any period of time over 3 hours, the chances of clogging were greatly increased. Therefore, it is recommended that if possible, avoid prolonged shutdowns of the analyzer. If the analyzer should run out of reagent, it is recommended that the data switch be turned off and the analyzer run with deionized water in place of the reagent. On several occasions the pump tubes for the analyzer would fail within the pump. To prevent this problem it is recommended that the pump tubes be replaced every 2 weeks. Throughout the first half of the test period the analyzer's results were compared once a week with the SCVWD lab results on a split sample. The results were consistently within .1 ppm of each other. Periodically, every 2 months, the electrodes were removed from the analyzer and polished with Orion Research polishing strips. This prevented an accumulation of debris. It is recommer .d that the two electrodes be replaced every 6 months. The schedule , auto calibration once a day appears to be fine. Both the zero and span drift in a 24-hour period are approximately .1% full scale.

Sodium Analyzer

The Beckman Sodium Analyzer provided good data reliably throughout the majority of the test period. The only time that it did not perform was a two month period when it was out of service while awaiting arrival of a replacement sodium electrode. The major drawback to the analyzer is the high number of manhours required for routine maintenance. The analyzer is equipped with the WMS auto standardization system, and is calibrated once each day. One reason for the high number of manhours is that both gallon containers of standard (zero and span) must be refilled each day. Another reason is that the flow system must be disassembled and cleaned once each week. This is due to the fact that the anhydrous ammonia causes the particles in the sample to clump and settle in the flow system. The anhydrous ammonia is necessary to adjust the pH level of the sample prior to introducing it to the electrode. When cleaning the electrode and flow system, it is suggested that a dilute solution of HCL be used. Split sample comparisons with SCVWD lab were routinely made during the first part of the test period. The results showed an excellent correlation within 20 ppm. Tests were run to see if the analyzer could be operated without the anhydrous ammonia in order to reduce the amount of required maintenance. The results of the tests indicate that without the ammonia pretreatment the values are approximately 50% lower tha the actual value. One problem which was encountered was the unavailability of a replacement sodium electrode from Beckman. The original electrode was broken during a routine cleaning operation. When Beckman was contacted to order a new electrode there were none available off the shelf. A shorting problem had been found in the cable from the electrode to the analyzer. It took 2 months before the problem was fully resolved and the electrode delivered.

Temperature Analyzer

and outside

The two Action Pac Resistance Thermal Detectors worked without any problem during the test period. One of the electronic boards had to be replaced when it shorted out due to a major water spill. The two units were then relocated to prevent a recurrence of the problem. The probes were periodically checked with a thermometer to verify their readings. They showed essentially no drift during the entire test period.

Turbidity Analyzer

The Sigrist Photometer Turbidimeter Model UP52-TJ worked extremely well throughout the test period. The analyzer provided excellent data with a bare minimum of routine or unscheduled maintenance. The only component which failed during the entire test period was the replaceable light source. The only routine maintenance required by the instrument was a once a week cleaning of the mirror in the flow cell and a calibration. The TJ25 flow cell was used throughout the test period. The O-100 mg/l SiO₂ standard was compatible with primary effluent and reclamation facility effluent. Some problems were encountered with the sample line running from the trailer wall to the analyzer. On several occasions the line would become clogged with debris. To resolve this problem the line was modified to remove all elbows and increase the diameter of the tubing. Since this modification was made there have been no more stoppages. A problem was also encountered with the drain line becoming clogged, resulting in an overflow of sample. This problem was resolved by removing the elbow in the drain line and doubling the diameter of the line.

Ammonia Analyzer

A serious problem with precipitates greatly hampered operation of the sensor during the first part of the test period. The precipitate was brownish in color and would appear in the color analysis tube for the sample. The precipitate would build up to such a point that the data generated by the analyzerwere invalid only a few hours after calibration. Extensive testing was done to find a method of preventing the precipitate from forming. Finally, it was found that by deleting the sodium nitroferricyanide reagent, the problem could be resolved. The manufacturer stated that for levels above 1.0 ppm of ammonia, the sodium nitroferricyanide was not required. The stability of the analyzer improved greatly after making this change. The analyzer was calibrated for a range of 0-40 ppm. This range was satisfactory for the primary effluent as well as the reclamation plant effluent. Another problem area was the pump seals used in the analyzer's sample pump, reagent pump, and drain pump. These seals would last an average of two months before they would have to be removed and replaced. Once they were removed they could be reused after cleaning and soaking in tap water for 48 hours. The metricone had to be removed once during the test period. This was necessary to polish out several small grooves in the teflon metricone. The gear drive train for the metricone had to be replaced once during the test period. All the plastic fittings had to be resealed during the beginning of the test period. This was due to the fact that the adhesive used by the manufacturer was dissolved by the analyzer's reagents.

The analyzer was equipped with the WMS auto standardization system and was automatically calibrated once each day. The span standard solution needed to be replenished once a week, as did each of the two reagents. Because of this, the analyzer was quite labor intensive. Samples were repeatedly split with the SCVWD lab. The analyzer's results were consistently within .5 ppm of the standard method results. It was found that the overhead lights in the WMS trailer had a noticeable effect on the readings. Because of this it was decided that the interior trailer lights would be left on at all times to provide a consistent background light level.

Chloride Analyzer

1.0

Operation of the analyzer proved to be difficult throughout the test period. It appeared at the beginning of the test that the sensor was working reliably; however, the sensor soon began to show signs of severe drift problems. Extensive calibration tests failed to resolve the problem. The probe and associated electronics were shipped back to the manufacturer for repair. It was determined by the manufacturer that the probe needed to be replaced; a replacement probe was received. Initial calibration tests indicated that the new probe was stable and accurate. The instrument was remounted in the trailer; however, problems quickly appeared. The WMS values were consistently lower than the SCVWD lab results for a split sample. While efforts were underway to resolve that problem, the analyzer began to exhibit a new problem. The analyzer would calibrate quite well, but when a real sample was introduced the sensor would start to drift upward. The start of the drifting would occur after approxi-mately 4 hours in the sample stream. The readings would continue to drift upward until going off scale high. This would normally take about 3 days of the probe being in contact with the sample. If the probe was then placed in a standard solution, the readings would accurately indicate the value of the standard after a 2 hour period. A five times normal solution of sodium nitrate was tested as an ionic strength adjuster. It had no appreciable effect on the readings. At this point the probe and electronics were returned to the manufacturer for repair. It was determined that the probe was being poisoned by some unknown interference in the sample.

Conductivity Analyzer

The Beckman analyzer performed throughout the test period without any significant problems. The values were frequently checked with SCVWD lab results for a split sample. The results showed excellent correlation (r = .99). Periodically the flow cell was removed from the flow system and checked for buildup on the cell walls.

Dissolved Oxygen Analyzer

The Delta Scientific D.O. analyzer performed quite well during the first half of the test period. However, the analyzer then began generating erratic data. The cause of the problem was not locatable. The probe and associated electronics were returned to the manufacturer for repair. The manufacturer found the probe had failed and had to be replaced. During its operational phase the analyzer was calibrated once a week. This was done using a zero standard and a span standard of known concentration. One problem encountered with the analyzer was that the sample line from the trailer wall to the probe would become blocked with debris. In order to resolve this problem, the line was replumbed to remove all the elbows and increase the diameter of the tubing. This left only one problem area, the flow control valve. It was found that this valve had to be watched closely to verify the flow rate to the probe. If the samples monitored included primary effluent or secondary effluent, it was necessary to check the flow cell weekly for a buildup of particulate matter.

The Honeywell Model 551011-00-01 dissolved oxygen sensor worked reliably throughout the majority of the test period. Some electronic problems developed with the sensor toward the end of the test period. As with the Delta Scientific D.O. sensor, it was necessary to replumb the sample line from the trailer wall to the sensor. This was done to prevent the sample line from clogging with debris. The analyzer was checked with a Hach wet chemistry D.O. kit on a weekly basis. Once each month the zero value was checked using a zero standard. The sensor experienced some contamination on the bottor of the flow cell and the probe. This especially became a problem when analyzing primary or secondary effluent. As a result, it was necessary to check the flow cell once a week for debris.

Chemiluminescence Biosensor

The chemiluminescence biosensor currently processes and measures total and viable bacteria once each 1-hour period. Typical values measured in the various wastewater effluents monitored by the WMS are illustrated in Figure 1. The sensor is routinely calibrated using a Coulter electronic particle counter and the firefly luciferase - ATP assay for total and viable bacteria, respectively.

To measure viable bacteria with an automated luminol chemiluminescence system, the laboratory single sample injection method developed at Goddard Space Flight Center had to be converted to a flowing system where reagents

and a second second

1

đ

.

Figure 1 Total and Viable Bacteria Levels in Various Waste Water Effluents

and samples could be processed with peristaltic pumps. The major problem concerned handling the carbon monoxide-treated sample. It was known that light reverses the binding of the carbon monoxide with the iron porphyrins of viable bacteria. The carbon monoxide pretreatment had to be performed in the dark and the sample had to be protected from light until after the subsequent analysis. This was achieved by locating the carbon monoxide bubble chamber in a dark box and by using black tubing for transferring the sample from the chamber to the reaction coil.

ないないであるというできましたとうというないであるとなったのであると

In addition to the carbon monoxide required for the determination of viable bacteria, air had to be bubbled through the sample for accurate determination of total bacteria. Without the air treatment, total bacteria counts were artifically high, a fact still unexplained.

The biosensor schedule originally required 2 hours for a measurement of both total and viable bacteria. The schedule was later shortened to 1 hour after tests confirmed that sample flush, air/carbon monoxide treatments, and analysis times were sufficient for accurate quantitation.

A standard calibration method had to be developed to insure the accuracy and repeatability of the sensor. Calibrations were established using the Coulter electronic particle counter and the firefly luciferase - ATP assay for total and viable bacteria, respectively. The biosensor calibrations for total bacteria illustrated in Figure 4, Volume I, were reproducible for samples of cultured coliform bacteria or effluent samples. The calibration curve established by these points was y = 2.15 (X - (-9.714)) where y equals 10^6 cells/ml and X equals biosensor response in volts.¹ The correlation coefficient was equal to 0.96. The viable bacteria correlation curve illustrated in Figure 5, Volume I, shows much more scatter when cultured bacteria and effluent samples are compared. This may be due not so much to variations in biosensor response but due to variations in the ATP levels within the organisms grown in different environments and subject to various degrees of stress.

The standard curve generated from the measurement of total bacteria is used for the calibration of the sensor. The stability and repeatability of these measurements make it the method of choice. Extensive research in the laboratory supports the extension of the method to calculate viable bacteria with relative confidence.

The sensor has a lower sensitivity limit of 10^5 cells/ml_x which is adequate for most municipal wastewater applications. The range of the biosensor is adjustable from a minimum of 2 logs (10^5-10^7 range) upwards to infinity. Thus, the sensor can be readily adapted to measure concentrated solutions such as activated sludge (10^9 cells/ml).

¹ The previously established calibration curve of y = 1.66 (X - (-10.32)) has been left in the computer for the sake of subsequent comparison.
Correlation of the viable bacteria results of the biosensor presents special problems. Various values for viable bacteria can be obtained depending on the type of method employed. Each method measures a particular parameter associated with viability. The ATP method and luminol - CO method are measures of metabolism while the standard plate count method is a measure of the ability of a cell to reproduce and form colonies in an artificial environment. For this reason the luminol method cannot be expected to produce the same results as the plate counts. The ATP results have shown correlation with the luminol data; however, it is known that ATP levels within bacteria can fluctuate, depending on environmental conditions and growth phase. Due to this reason, the ATP method can be used for "ball park" comparison and some deviations should be expected. Other methods for monitoring viable bacteria should be examined to further support and verify the biosensor results.

Coliform Detector

The major accomplishments concerning the coliform sensor are as follows:

- An improved cleanup procedure was developed to better protect against cross contamination. The major improvement involved substituting 0.1 N nitric acid for sodium hypochlorite reagent. In conjunction with this change, larger volumes and longer residence times of the bactericide were used.
- 2. A new sensor configuration was devised to allow auto inoculation of a grab sample. The benefits gained from this action include better reproducibility, ease of inoculation, and progressing toward the point of on-line operation. Figure 9, Volume I shows the improved valve configuration along with a series of valve steps to facilitate computer controlled inoculation.
- 3. A series of calibration curves were developed. The information gathered was used to compare the sensor to a NASA Ames coliform sensor, establish sensitivity and reproducibility limits, and to demonstrate the degree of agreement between the sensor values and MPN values.

In order to calibrate the sensor, seeded samples were run and the reaction times were plotted against the MPN values obtained on the sample. The samples consisted of serial dilutions of unchlorinated secondary effluent using chlorinated secondary effluent (which had been dechlorinated) as diluent. The dechlorinated water was used as diluent in order to approximate the chemical composition of real world samples. Figures 10 and 11, Volume I show the fecal and total calibration curves which were obtained in the manner mentioned above. Linear regression analyses were run and gave the slope, y intercept, and r values for each calibration. For the fecal coliform calibration, the values were -1.26, 10.45 hrs., and 0.95, respectively. For the total calibration curve the values were -0.9, 9.04 hrs., and 0.95, respectively. By using the equation y = mx+b, the unknown (the original number of coliform bacteria in the sample) may be calculated. Whereas, y equals the original coliform concentration, m equals the slope, and b equals the y intercept. The reaction time is designated as the amount of time required to register a 200 m.v. drop from the electrode output.

The comparison between the WMS sensor and the impedance sensor showed that the instruments performed similarly. The r values for the WMS and impedance sensor were 0.95 and 0.98, respectively, for the fecal coliform calibration curve. For the total calibration curve, the r values were 0.95 and 0.96, respectively.

- 4. In the course of operating the coliform sensor, several cultures of bacteria (coliforms and non-coliforms) were obtained. It was discovered that one strain of non-coliform bacteria mimicked the m.v. response of coliform bacteria. This was a revelation in that previous experience had shown that non-coliform bacteria were incapable of driving the electrodes to the maximum negative point (-500 m.v.). This particular culture, however, gave negative responses equal to those of coliforms.
- 5. After it became apparent that the m.v. readings were influenced by end products of metabolism other than hydrogen, a new cell configuration was devised which allowed only evolved gas to reach the electrode. This process involves venting gas from the growth cell to another cell containing saline and the measuring electrode. The line from the growth cell is submerged in the saline of the measuring cell so the electrode will sense the dissolved gas. Preliminary work with the above configuration indicates that coliforms may be distinguished from non-coliforms in this manner. More experimentation was needed, however, to verify this system. (This additional work was conducted in Phase II of the test period and is reported in the Phase II section).
- 6. It has been determined that the lower limit of detection for the coliform sensor should be 2.2 coliforms per 100 ml. In order to achieve this level of sensitivity, itwas deemed necessary to increase the sample size in order to increase the amount of coliforms inoculated.

Gas Chromatograph

「「「「「「「「「」」」」」

 \boldsymbol{F}_{i}^{t}

いた

ł

The automated gas chromatograph separates and quantifies a total of nine volatile halogenerated hydrocarbons from wastewater samples within 50 minutes. Figure 2 is a typical electron capture detector (ECD) chromatograph from a secondary effluent sample using the current analytical column and temperature program. The calibration factors are based on calibrations using standards prepared in glacial acetic acid and diluted in distilled water prior to use. The data have been compared with NASA Ames Research Center and Stanford University Department of Civil Engineering for verification and found to be accurate to the 5 ppb level.

Preliminary testing involved the use of a flame ionization detector (FID) and ECD. Various methods were tested to determine the optimum means for monitoring the volatile organics. The FID proved to be inadequate for measuring the low concentrations of organics due to the sensitivity limit of the detector.

CH3CCI3 C₂Cl₄ CH_2Cl_2 48.97 C2HCI3 ⊃ 21.62 - 25.59 37.87 23.59 12.22 34.87 CHCI³ 28.19 **DETECTOR RESPONSE** CHB CI2 39.57 22.67 21.38 CHB_{r 2}CI 25.98 43.18 CHB_{r3} C2H2CI2 26.84 VL 6.38 .18 29.87 21 د 60 27.66 31.88 ST VL **T**2

ĺ

Ĩ

TIME, min

Figure 2 Typical Gas Chromatogram

Table 1 contains a list of the analytical columns and detectors tested and the reasons for their unacceptability. The principal criteria for column and detector selection were good separation of all the compounds of interest with sensitivity below 10 ppb and an analysis time less than 1 hour. The SP-1000 column used with the ECD met these criteria. While the SP-1000 column will not separate carbon tetrachloride from 1,1,1-trichloroethane, Stanford University has indicated that carbon tetrachloride levels are usually very low, <1 ppb. The 50-minute analysis time is sufficient to permit both analysis and data processing within the 1-hour period at sensitivity limit of 5 ppb.

The calibration method currently used was selected from several tested and is shown in Table 2. The calibration methods were similar, with the primary difference being the solvents used for the standards. Table 2 shows the repeatability of the methods as reflected by the standard deviation. Glacial acetic acid proved to be the best solvent with a repeatability of \pm 5% and a shelf life of at least 14 days. Figures 3 through 11 illustrate the calibration curves generated with the nine standards.

Data have been continually compared with Stanford University and Ames Research Center for verification of accuracy of the results. The most recent comparison with Stanford University is shown in Table 3. Split samples were taken and simultaneously analyzed. The results indicate good correlation for those compounds observed at concentrations greater than 5 ppb, the sensitivity limit of the method. Previous comparisons have shown similar results.

Deionized Water System

シートにないというないという

The deionized water system performed very reliably throughout the test period. The system continuously provided the required quality of water. Due to poor quality of tap water fed to the system, the various filter cartridges did not last as long as originally anticipated. However, this was not the fault of the system. As expected, the average life of the Reverse Osmosis cartridge was found to be 1 year. The only significant mechanical failures were those associated with the pump impellers. On four different occasions the impeller had to be replaced. These failures were generally due to operator errors. The best pressure setting for the system was found to be 14 psig. Bacteria growth in the storage tanks was a recurring problem. Plate counts were routinely taken to verify the bacteria level in the tanks. When the level rose above 10 cells/100 ml, the tanks were sanitized with sodium hypochlorite and then flushed. A problem was encountered with carbon fibers escaping the carbon filter and clogging the ion exchange filters. This proved to be a generic problem which was corrected by the manufacturer. The conductivity of the tap water and the RO filtered water was routinely checked to verify that the RO cartridge was removing 90% of the conductivity. Also, routinely the deionized water was checked on the gas chromatograph to verify that the carbon filter was removing the halogenated hydrocarbons. This proved to be a very useful test for this purpose.

Data Acquisition and Report Generation System

Several types of peripheral and computer equipment have been integrated to provide the real-time data acquisition and control capabilities of the WMS.

TABLE 1 COMPARISON OF GC ANALYTICAL COLUMNS

and an excited in the

ļ

ĺ

COLUMN	DETECTOR	COMMENT
10' x 1/8" 10% SP-2250 (OV-17)	FID	Did not separate chloroform and 1,1,1-trichloroethane. Excessive column bleed.
10' x 1/8" 15% Carbowax 1540 80-100 WAW	FID	Excessive column bleed.
100' x 0.020" K-20M on Carbopak-C	FID	Excessive column bleed.
10' x 1/8" 10% SP-2250 (OV-17)	ECD	Did not separate chloroform and 1,1,1-trichloroethane.
10' x 1/8" 20% OV-101, 1% Carbowax 1500 100-120 WAW and 20' x 1/8" 20% FFAP on 60/80 chrom WAW	ECD	Separates all compounds; however, analysis requires 75 minutes to complete
11½' x 1/8" 0.2% SP-1000 on 80/100 Carbopak C	ECD	Does not separate carbon tetrachloride from 1,1,1- trichloroethane.

TABLE 2 REPRODUCIBILITY OF GC CALIBRATION MIXTURES MADE WITH VARIOUS SOLVENTS*

SOLVENT	AVERAGE STD. DEV. (%)	STORAGE TIME	
WATER	9.8	8 HRS.	
METHANOL	24.4	8 HRS.	
	21.5	4 DAYS	
GLACIAL ACETIC ACID	7.3	8 HRS.	
	7.5	7 DAYS	
	7.3	14 DAYS	

* Reproducibility based on tetrachloroethylene, chloroform, trichloroethylene, and bromoform in silanized glassware.

22

.

÷.

Figure 6 Calibration Curve for Chloroform - #5 C=e^{1.209} Ln A-13.96

26

....

e esta a conserva en

ĺ

ł

ALL DESIGNATION OF THE OWNER

Figure 7 Calibration Curve for 1, 1, 1 - Trichloroethane - #6 C=e^{1.352} LnA-17.22

ł

 \odot_{*}

ł

k

Figure 9 Calibration Curve for Trichloroethylene - #8 C=e^{1.136} LnA-13.21

Figure 10 Calibration Curve for Dibromochloromethane - #9 C=e^{0.8558} LnA-9.668

....

Figure 11 Calibration Curve for Bromoform - #10 C=e 0.9885 LnA-9.64

> ORIGINAL PAGE IS OF POOR QUALITY

TABLE 3WMS-STANFORD UNIVERSITY VOLATILE ORGANIC
ANALYSES COMPARISON SAMPLES 11/20/78-3/12/79

<u>No.</u>	Compound	Conc. Range* (ppb)	<u>n</u>	Correlation	Slope 	Intercept b
1	Tetrachloroethylene	1.8 - 150.0	9	0.9696	0.9274	-1.3950
5	Chloroform	6.0 - 19.1	12	0.8388	0.3147	4.4189
6	1,1,1-Trichloro- ethane	3.0 - 105.0	15	0.9817	0.9767	-1.1797
7	Bromodichloro- methane	0.5 - 4.0	15	0.8401	0.2294	0.5071
8	Trichloroethylene	0.2 - 36.0	12	0.9357	0.8485	0.4911
9	Dibromochloro- methane	0.1 - 2.0	11	0.8706	0.1770	0.1254
10	Bromoform	0.2 - 2.0	8	0.2952	0.2655	0.3005

* Based on Stanford University results

(X, Y); (WMS, Stanford)

A STATE AND A STAT

Monitor Labs, Inc. peripheral equipment and device controllers have been interfaced to the Data General Corporation NOVA minicomputers via data bus extensions to the ML 4100 device control chassis. The ADAM system was designed and installed by Monitor Labs and has performed without significant incident.

The EVA system was designed to utilize the RDOS capabilities for real-time operations and the ML devices for valve control. The original EVE system was configured with a Data General NOVA 1200 (32K) and a Diablo disk drive (2.5 megabytes). Intermittent core memory problems caused by overheating; software problems with multitasking caused by the insufficient memory; and disk space occurred with this configuration. The EVE system was upgraded to a Data General NOVA 3D (64K), Phoenix disk drive (10 megabytes), and communication system in May 1978. The EVE combination of the ML 4100 device control chassis with the Data General communication chassis and disk system resulted in an extension of the data bus that initially produced some signal noise. The problem was resolved after about 6 months of operation at Santa Clara by modifying the cabling to terminate the NOVA 3D data bus at the communication chassis instead of the ML 4100.

Data Reports

in the state of the state

Report formats were developed to support a variety of data applications. These formats are described below.

Instantaneous Data Reports

Instantaneous data, updated each minute, are displayed to the operator on the CRT. The display provides the previous 1-minute value and the previous 15-minute, 30-minute, and hourly averages, and the running average for each available channel. A typical instantaneous report is shown in Figure 12. The first data set are the values for the secondary effluent, sample source 2, and the second data set are the values for the reclamation facility effluent, sample source 6. The sampling points are indicated on the flow schematic for the Santa Clara Valley Water District (SCVWD) facility, Figure 21. The instantaneous report presents a data scan that occurred at 06:00 hours. The results show consistent data for all but channels 1, 2, 8, 38, and 39 as indicated by the averages and status columns. Channel 8 for TOT OXY DEM is varying more than the specified limit and the Chemiluminescence sensor (Channels 1, 2, 38, and 39) show data were not being recorded (only the instantaneous voltage is displayed).

Daily Data Reports

The instantaneous and hourly peak values are monitored for each channel and for each sample source and reported as daily data. A typical daily data report for 24 hours is shown in Figure 13. The report includes the number of data points, the daily average, the instantaneous and hourly peak values, and the time of day each occurred for each source of water sampled throughout the day. The effluent sensors are the first data set printed, followed by each multipoint source. The total number of data points is always somewhat less than 1440 because of calibration and sensor stabilization required after the multipoint source is changed.

TIME - 227:06:00:00	Sampl I	NG POINT: S	ECONDARY E	FFLUENT	
CHA SENSOR UNITS NO.	STATUS I VA	NST * * * Lue 15 min	AVERA 38 min	GES 1 HR R	* * * 'UNN ING
1. TOTAL BIOMASS MIL C/M 2. VIABLE BIOMASSMIL C/M 5. RES CHLORINE MG/L 6. TURBIDITY-SI02MG/L 8. TOT OXY DEM MG/L 9. TOT ORG CARB MG/L 10. ANTHONIA MG/L 12. PH PH 13. CHLORIDE MG/L 14. CONDUCTIVITY MTHO/CT 16. HARDNESS MG/L 17. SODIUM MG/L	NDTA -8 NDTA -8 VARI	.261 0.000 .261 0.000 8.2 0.3 10.9 11.0 257. 230. 12.9 12.8 19.1 18.9 7.04 7.05 350. 356. 80.0 1574.7 306. 323. 192. 187. 3.3 3.3	17.609 8.2 11.0 228. 12.8 18.9 7.06 355. 1575.0 334. 174. 3.3	17.609 8.000 8.2 11.1 227. 12.9 18.9 7.08 350. 1583.4 334. 170. 3.3	17.624 13.369 7.0 14.1 255. 12.4 18.0 7.08 375. 1597.6 241. 171. 3.3
TIME - 227:06:00:00	Sampl I	NG POINT: R	ECLAMATION	FAC. A	EFFLUENT
CHA SENSOR UNITS NO.	status II Va	NST * * * LUE 15 MIN	AVERA 38 min	GES 1 HR R	* * * UNN ING
3. AIR COMP PSIA 15. TEMPERATURE 1 DEG F 18. TURBIDITY-HW FTU 20. TEMPERATURE 2 DEG F 23. EFFLUENT PSIA 38. TOTAL BIOMASS MIL C/M 39. VIABLE BIOMASSMIL C/M	NDTA -8 NDTA -8	14.7 14.7 78.4 78.4 2.80 2.80 58.4 68.4 23.7 22.7 .261 0.000	14.7 79:4 2.81 68.4 22.1 5.000 8.000	14.7 78.4 2.83 68.4 22.7 9.000 0.000	14.7 78.7 2.38 70.4 23.3 3.999 0.009

k

ないたまい

at the second second

Figure 12 Typical Instantaneous Data Report

٠.

1.0 1

CMA SENSOR UNITS DATA DAILY INSTANTAMEOUS PEAK HOURLY PEAK NO. FOINTS AVERAGE VALUE TIME VALUE TIME VALUE TIME 18. TEMPERATURE®1 DEG F 1440 88.5 86.4 14:23 85.9 14:0 18. TEMPERATURE®2 DEG F 1440 88.5 86.4 14:23 85.9 14:0 28. TEMPERATURE®2 DEG F 1440 67.4 69.2 11:8 66.7 14:8 23. TOTAL BIOMASS MIL C/M OUT DUT 33.7 11:8 66.7 14:8 38. TOTAL BIOMASS MIL C/M OUT OUT SENSOR UNITS DATA DATA DATA 15:3 1:44 16:33 1:6:3 1:4:8 15:3 1:4:4 16:33 1:6:3 1:4:4 16:33 1:6:3 1:8:8 16:53 1:4:4 16:33 1:6:3 1:6:7 1:8:8 1:6:7 1:8:8 1:6:7 1:8:8 1:6:8 1:8:33	DAILY REPORT FOR:	6-RECLAR	TION F	AC. A EFF	FLUENT	9/ 3	3/78 24:00:00
3. AIR COMP FBIA 1440 14.7 14.7 14.7 14.23 14.7 14.123 13. TEMPERATURE40 DEG F 1440 67.4 69.2 11:0 66.7 14:0 28. TEMPERATURE42 DEG F 1440 67.4 69.2 11:0 66.7 14:0 28. TEMPERATURE42 DEG F 1440 67.4 69.2 11:0 66.7 14:0 28. TEMPERATURE42 DEG F 1440 67.4 69.2 11:0 66.7 14:0 28. TEMPERATURE42 DEG F 1440 67.4 69.2 11:0 66.7 14:0 28. TOTAL BIOMASS HIL C/H 0UT 0UT 0UT 9/3/78 24:00:20 PAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 2. VIABLE BIOMASSHIL C/H 6 10.39 2:59 10.39 3:8 3. TOT DRIDITY-SIGNE/L 728 8.4 11.6 17:7 10:3 13.3 2:6 4. TOT DNY DEM ME/L 187 62. 104.4 5:23 78.6 6 6 5. TOT DNY D	CHA SENSOR	UNITS	DATA POINTS	DA IL Y AVERAGE	INSTANTANE VALUE	EOUS PEAK TIME	HOURLY PEAK VALUE TIME
15. TERPERATURE(*) DEG F 1448 88.5 86.4 14:23 95.9 14:0 18. TURPERATURE(*2) DEG F 1448 67.4 69.2 11:0 66.7 14:0 23. TERPERATURE(*2) DEG F 1448 23.1 29.1 10:59 23.7 11:0 23. TOTAL BIOMASSHIL C/H OUT 0UT 97.3/78 24:00:80 DAILY REPORT FOR: 3-SECONDARY EFFLUENT 97.3/78 24:00:80 CHA SENSOR UNITS DATA DAILY INSTANTANEDUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/H 6 6.52 10.39 16.93 <	3. AIR COMP	PSIA	1448	14.7	14.7	14:29	14.7 14: 8
10. TURBIDITY-FULTER OUT OUT <th>15. TEMPERATURE+1</th> <th>DEGF</th> <th>1448</th> <th>80.5</th> <th>86.4</th> <th>14:29</th> <th>85.9 14: 8</th>	15. TEMPERATURE+1	DEGF	1448	80.5	86.4	14:29	85.9 14: 8
28. TERMERATURE®2 DEG F 1448 67.4 69.2 11:0 66.7 14:0 23. EFFLUENT PSIA 1448 23.1 29.1 18:59 23.7 11:0 38. TOTAL BIOMASSHIL C/H OUT OUT 9/3/78 24:00:80 DAILY REPORT FOR: 3-SECONDARY EFFLUENT 9/3/78 24:00:80 DAILY REPORT FOR: 3-SECONDARY EFFLUENT 9/3/78 24:00:80 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. NOTAL BIOMASS MIL C/H 6 6.52 10.39 16.93 2:0 TOTAL BIOMASS MIL C/H 6 6.52 10.39 16.93 2:0 10.39 3:0 SRESC CHLORING MG/L 728 18.5 17.7 10:15 16.7 11:0 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NOT ONE CARE MG/L 563 16.7 17.7 10:15 16.7 10.3 2:0 10.3 2:0 OTTAK BIOMASSHIL C/H 6 5.52 10.7 2:3 10.3 2:0 10.5	18. TURRIDITY-HU	FTU	OUT		••••		
23. EFFLUENT PSIA 1440 23.1 29.1 16:59 23.7 11:8 38. TOTAL BIOMASS HIL C/H OUT 39. VIABLE BIOMASSHIL C/H OUT 39. RES CHLORINE MC/L SENSOR 40. POINTS AVERAGE VALUE TIME 41. TOTAL BIOMASSHIL C/H 6 5. RES CHLORINE MC/L 563 5. RES CHLORINE MC/L 563 6. TURBIDITY-SIB2HG/L 720 8. A 11.6 17.7 8. TOT DRG CARB MG/L 563 8. TOT ORG CARB MG/L 563 9. TOT ORG CARB MG/L 563 10. APHONIA MG/L 11. CHUDE MG/L 12. PH PH 14. CONDUCTIVITY PHONONIA MG/L 12. CHURUETURINE 720 13. CHURUETURINE 167.1 14. CONDUCTIVITY PHONONIA MG/L 720 14. CHURUETURINE 720 14. CHURUETURINE	20. TEMPERATUREA2	DEC E	1448	67 A	69.2	11.0	66 7 1A. B
23. TOTAL BIOMASS HIL C/H OUT 23.1 23.7 10133 23.7 1116 33. VIABLE BIOMASSHIL C/H OUT OUT 001 001 001 DAILY REPORT FOR: 3-SECONDARY EFFLUENT 9/ 3/78 24:00:80 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS HIL C/H 6 10.39 16.93 1144 16.93 218 1. TOTAL BIOMASS HIL C/H 6 6.52 10.39 219 18.39 3: 0 5. RES CHLORINE ME/L 720 6.53 10.5 17.7 18:15 16.7 11:0 6. TUR DIDTY-SIDEME/L 720 63 10.5 17.7 10:15 16.7 11:0 32:0 7.07 DXD DEM ME/L 187 62. 104.5 51:3 12.0 7.77 2:0 10. CHLORIDE ME/L 505 12.2 7.96 5:1 7.77 2:0 13. CHLORIDE ME/L 503 180.6 663.10:45 629.11:0 01 1459.21:0 167.0 10:0	27 EEELIENT	PC TO	1449	27 1	29.1	10.80	
33. VIABLE BIOMASSHIL C/H OUT 33. VIABLE BIOMASSHIL C/H OUT DAILY REPORT FOR: 3-SECONDARY EFFLUENT 9/ 3/78 24:00:80 CMA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. . . TIME BIOMASS MIL C/H 6 18.39 16.93 1:44 16.33 2: 0 2. VIABLE BIOMASSHIL C/H 6 6.52 10.39 2:59 18.39 3: 0 3: 0 3: 0 3: 0 3: 0 3: 0 0 0: 0 1: 0 0: 0 1: 0 0: 0 1: 0 0: 0 1: 0 0: 0 1: 0 0: 0<	TOTAL DIAMORE			23.1	23.1	10:33	23.7 II: U
33. VINBLE BIORRSSHIL C/H UUT DAILY REPORT FOR: 3-SECONDARY EFFLUENT 9/ 3/78 24:00:00 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. OTTAL BIOMASS MIL C/H 6 10.39 1:44 16.93 2:6 INTS AVERAGE VALUE TIME VALUE TIME VIABLE BIOMASSHIL C/H 6 6.52 10.39 2:59 10.39 3: 0 S. RES CHLORINE MG/L 720 6.53 10.5 17.7 10:15 16.7 11:0 TOT OXY DEM MG/L 720 10.5 12.4 12.3 13.3 13.0 6:0 S. OT ORG CARB MG/L 563 10.4 22.39 20.5 3:0 S. OT ORG CARB MG/L 563 10.4 22.1 0 S. OT ORG CARB MG/L 563 10.8 13.0 16:0 0 17:12 1459.2 18:0 S. OT ORG CARB MG/L S. OT MG/L <th>30. 10 ML 010 M35</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	30. 10 ML 010 M35						
DAILY REPORT FOR: 3-SECONDARY EFFLUENT 9/378 24:00:00 CMA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK 1. TOTAL BIOMASS MIL C/M 6 10.39 16.93 1:44 16.93 2:9 1. TOTAL BIOMASS MIL C/M 6 10.39 16.93 1:44 16.93 2:9 2. VABLE TIME MAL 563 10.5 17.7 10:15 16.7 11:0 3. MES CHLORINE MCL 187 62. 104.5 576.6 0 0 070 0XY DEM MCL 187 62. 104.5 576.5 1 7.77 2:0 0 0 1.0 0XY DEM MCL 187 62. 194.4 5.3 1:33 13.8 6:0 0 0 1.77 2:0 1.4 1.25.2 2:0 1.4 0.25.2 2:0 0 1.4 0.1 1.455.2 1.6 0.22.2 2:0 0 1.4 0.1 1.4 1.5 1.5 1.2 1.6 1.7 2:0 <td< td=""><td>37. VINELE BIURHSS</td><td></td><td>UUT</td><td></td><td></td><td></td><td></td></td<>	37. VINELE BIURHSS		UUT				
CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. TOTAL BIOMASS MIL C/M 6 10.39 16.33 1:44 16.33 2: 0 2. VIABLE BIOMASSMIL C/M 6 6.52 10.33 2:59 10.33 2: 0 3. RES CHLORINE MG/L 563 10.5 17.7 10:15 16.7 11:0 6. TURBIDITY-SI02MG/L 720 8.4 11.6 17:3 10.3 2: 0 8. TOT OKY DEM MG/L 187 62. 104.5 5:28 70.6 6: 0 9. TOT OKS CARD MG/L 515 12.4 22.5 2:39 20.5 3: 0 12. PH PH 594 7.62 7.96 5: 1 7.77 2: 0 13. CHLORIDE MG/L 523 180. 663.1 10:45 623.1:0 1459.2 18: 0 14. COMDUCTIVITY MPH-0/CM 720 1401.9 1490.8 1:12 176.10:0 0 17.5 0 1.4 16.92.2 10:0 12.9 10:0 12.9 12	DAILY REPORT FOR:	3-seconda	WRY EFFL	JENT		97 :	3/78 24:00:08
NO. POINTS HVERNAL VALUE TITE VALUE TITE 1. TOTAL BIOMASS MIL C/M 6 18.33 16.93 1:44 16.93 2:0 2. VIABLE BIOMASSMIL C/M 6 6.52 10.39 2:59 10.39 3:8 3. RES CHLORINE ME/L 563 10.5 17.7 10:15 16.7 11:0 6. TURDIDITY-S102/E/L 720 8.4 11.6 17:3 10.3 2:0 8. TOT ONG CARB ME/L 563 11.8 15.3 13.3 13.8 6:0 10. ANTHONIA ME/L 515 12.4 22.5 2:33 20.5 3:0 12. PH PH 594 7.62 7.96 5:1 7.77 2:0 13. CHLORIDE ME/L 604 278. 294.19:0 292.2 2:0 14. CONDUCTIVITY MTMO/CM 720 1401.9 1400.0 17:18 1459.2 18:0 15. DIS DXYGEN-HU ME/L 728 141.9 14.10 14.10 16.10 19. DIS DXYGEN-HU ME/L 728 140.19 <td>CHA SENSOR</td> <td>UNITS</td> <td>DATA</td> <td>DAILY</td> <td>INSTANTANE</td> <td>DUS PEAK</td> <td>HOURLY PEAK</td>	CHA SENSOR	UNITS	DATA	DAILY	INSTANTANE	DUS PEAK	HOURLY PEAK
1. TOTAL BIUTHES FILE L/TI 6 18.39 16.93 1:44 16.93 2: 0 2. VIABLE BIOMASSMIL L/M 6 6.52 10.39 2:59 10.39 3: 0 5. RES CHLORINE MG/L 720 8.4 11.6 17: 7 10:15 16.7 11: 0 6. TURBIDITY-SIGZMG/L 720 8.4 11.6 17: 3 10.3 2: 0 9. TOT ONG CARB MG/L 187 62. 104.5:28 78.6: 0 0 0 13.3 13.0 6: 0 10. ANTONIA MG/L 563 11.8 15.3 1:33 13.0 6: 0 13. CHLORIDE MG/L 604 278.2 294.19: 0 292.2 2: 0 14. CONDUCTIVITY MIMO/CM 720 1401.9 1490.0 17:18 1459.2 18: 0 17. SDIUM MG/L 7220 167.2 228.1 1:12 176.10: 0 19. DIS OXYGEN-HU MG/L 720 2.4 2.5 7: 0 2.4 7: 0 29. TOT HALOCARDON PPB OUT 0UT 1450.2 16: 0 16.127 4.3 12:			LOTUI2	HVERHGE	VHLUE	IIME	VALUE TIME
2. VIABLE BIOMASSMIL C/M 6 6.52 10.39 2:59 10.39 3: 0 5. RES CHLORINE MG/L 563 10.5 17.7 10:15 16.7 11: 0 6. TURBIDITY-SI02HG/L 720 0.4 11.6 17: 3 10.3 2: 0 9. TUT ONY DEM MG/L 513 12.4 22.5 2:33 20.5 3: 0 10. ANMONIA MG/L 504 7.62 7.96 5: 1 7.77 2: 0 11. CHLORIDE MG/L 604 278. 294. 19: 0 222. 2: 0 12. PH PH PH 553 180. 663. 10: 459.2 18: 0 14. CONDUCTIVITY MMMC/CM 720 1401.9 1490.0 17: 18 1459.2 18: 0 14. CONDUCTIVITY MMMC/CM 720 167. 228. 1:12 176. 18: 0 15. SDIUM MG/L 720 2.4 2.5 7: 0 2.4 7: 0 29. TUT HALOCAREON PP8 OUT DATA DATA DATA N.1Y INTRATANEOUS PEAK HOURLY PEAK	I. TUTAL BIOMASS		6	10.39	16.93	1:44	16.93 2:0
5. RES CHLORINE MG/L 563 10.5 17.7 10:15 16.7 11:0 6. TURBIDITY-S102MG/L 720 8.4 11.6 17:3 10.3 2:0 9. TOT ONG CARB MG/L 187 62. 104. 5:28 78. 6:0 9. TOT ONG CARB MG/L 515 12.4 22.5 2:39 20.5 3:0 12. PH PH PH 594 7.62 7.96 5:1 7.77 2:0 13. CHLORIDE MG/L 604 278. 294. 19:0 292. 2:0 14. CONDUCTIVITY MTHO/CH 720 1401.9 1490.0 17:10 1459.2 18:0 16. HARDNESS MG/L 553 100. 663. 10:45 629. 11:0 17. SODIUM MG/L 720 1401.9 1490.0 17:10 1459.2 18:0 16. HARDNESS MG/L 720 167. 228. 1:12 176. 18:0 19. DIS OXYGEN-HU MG/L 720 2.4 2.5 7:0 2.4 7:0 29. TOT HALOCARSON PPB OUT DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/ 3/78 24:00:00 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL 810MASS MIL C/M 5 1.76 3.37 15:44 3.37 16:0 2. VIABLE 810MASS MIL C/M 5 1.76 3.37 15:44 3.37 16:0 2. VIABLE 810MASS MIL C/M 6 0.56 1.73 4:59 1.73 5:0 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:0 6. TURBIDITY-S102MG/L 660 2.1 4.1 19:4 3.1 16:0 9. TOT OXY DEM MG/L 141 28. 54. 0:40 42. 1:0 9. TOT OXY DEM MG/L 470 6.2 0.1 19:27 7.2 0 10. AND MG/L 410 129. 54. 0:48 42. 1:0 11. TOTAR BIOMASS MIL C/M 6 0.56 1.73 7.59 12.1 4:0 12. PH PH PH 534 7.93 7.99 0:57 7.97 9:0 13. RES CHLORINE MG/L 470 6.2 0.1 19:27 7.2 12 0 14. CONDUCTIVITY MTHO/CH 660 1302.4 1430.0 19:1 1395.5 13:0 14. CONDUCTIVITY MTHO/CH 660 1302.4 1430.0 19:1 1395.5 13:0 15. HARDNIA MG/L 660 12.4 77 1.554 272. 1:0 14. CONDUCTIVITY MTHO/CH 660 154. 220 7:1 156. 17:0 15. HARDNIA MG/L 660 12.5 12:39 12.1 4:0 16. HARDNIA MG/L 660 154. 220 7:1 156. 17:0 17. SODIUM MG/L 660 154. 220 7:1 156. 17:0 13. DIS DXYGEN-HU MG/L 660 154. 220 7:1 156. 17:0 14. CONDUCTIVITY MTHO/CH 660 1302.4 1430.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. NOL OXY DEM MG/L 660 154. 220 7:1 156. 17:0 13. DIS DXYGEN-HU MG/L 660 154. 220 7:1 156. 17:0 13. DIS DXYGEN-HU MG/L 660 154. 220 7:1 156. 17:0 13. DIS DXYGEN-HU MG/L 660 154. 220 7:1 156. 17:0 13. DIS DXYGEN-HU MG/L 660 154. 220 7:3 2.4 0:0	Z. VIABLE BIOMASS		5	5.52	10.39	2:59	10.39 3: 0
6. TURBIDITY-SI02HGAL 720 8.4 11.6 17: 3 10.3 2: 0 8. TOT DXY DEM MGAL 187 62. 104. 5:29 70. 6: 0 9. TOT ORG CARB MGAL 553 11.8 15.3 1:33 13.8 6: 0 18. AMMONIA MGAL 515 12.4 22.5 2:39 20.5 3: 0 12. PH PH PH 594 7.62 7.96 5: 1 7.77 2: 0 13. CHLORIDE MGAL 664 278. 294. 19: 0 292. 2: 0 14. CONDUCTIVITY MMTHOACM 720 1401.9 1490.0 17:10 1459.2 10: 0 15. HARDNESS MGAL 553 100. 663. 10:45 629. 11: 0 17. SODIUM MGAL 720 1401.9 1490.0 17:10 1459.2 10: 0 17. SODIUM MGAL 720 167. 228. 1:12 176. 10: 0 19. DIS OXYGEN-HU MGAL 720 167. 228. 1:12 176. 10: 0 19. DIS OXYGEN-HU MGAL 720 0UT DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/ 3/78 24:00:00 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL CAM 5 1.76 3.37 15:44 3.37 16: 0 2. VIABLE BIOMASS MIL CAM 5 1.76 3.37 15:44 3.17 16: 0 5. RES CHLORINE MGAL 478 3.3 5.6 12:27 4.3 12: 0 6. TURBIDITY-SI02MGAL 660 2.1 4.1 19: 4 3.1 16: 0 9. TOT OXY DEM MGAL 141 28. 54. 0:49 42. 1: 0 9. TOT OXG CARB MGAL 478 6.2 8.1 19:27 7.2 8: 0 10. AMMONIA MGAL 478 6.2 8.1 19:27 7.2 8: 0 10. AMMONIA MGAL 478 6.2 8.1 19:27 7.2 8: 0 10. AMMONIA MGAL 478 6.2 8.1 19:27 7.2 8: 0 11. CHORIDE MGAL 445 10.0 12.5 12:39 12.1 4: 0 12. PH PH PH 534 7.93 7.98 8:57 7.97 9: 0 13. CHLORIDE MGAL 467 169. 226. 275. 0:54 272. 1: 0 14. CONDUCTIVITY MTHOACH 660 1382.4 1438.0 19: 1 1395.5 13: 0 14. CONDUCTIVITY MTHOACH 660 1382.4 1438.0 19: 1 1395.5 13: 0 14. CONDUCTIVITY MTHOACH 660 1382.4 1438.0 19: 1 1395.5 13: 0 14. CONDUCTIVITY MTHOACH 660 154. 220. 7: 1 156. 17: 0 15. MARDHESS MGAL 660 154. 220. 7: 1 156. 17: 0 15. DIUM MGAL 660 154. 220. 7: 1 156. 17: 0 15. DIUM MGAL 660 154. 220. 7: 1 156. 17: 0 15. DIUM MGAL 660 154. 220. 7: 1 156. 17: 0 15. DIUM MGAL 660 154. 220. 7: 1 156. 17: 0 15. DIUM MGAL 660 154. 220. 7: 1 156. 17: 0 15. DIUM MGAL 660 154. 220. 7: 1 156. 17: 0 15. DIUM MGAL 660 154. 220. 7: 1 156. 17: 0 15. DIUM MGAL 660 154. 220. 7: 1 156. 17: 0 15. DIUM MGAL 660 154. 220. 7: 1 156. 17: 0 1	5. RES CHLORINE	MG/L	563	10.5	17.7	10:15	16.7 11: 8
8. TOT OXY DEM MG/L 187 62. 104. 5:28 78. 6: 8 9. TOT ORG CARB MG/L 563 11.8 15.3 1:33 13.8 6: 8 18. AMMONIA MG/L 515 12.4 22.5 2:39 28.5 3: 8 12. PH PH PH 594 7.62 7.96 5: 1 7.77 2: 8 13. CHLORIDE MG/L 604 278. 294. 19: 8 292. 2: 8 14. CONDUCTIVITY MMHO/CM 728 1481.9 1490.8 17:18 1459.2 18: 8 16. HARDNESS MG/L 728 167. 228. 1:12 176. 18: 9 19. DIS OXYGEN-HU MG/L 728 167. 228. 1:12 176. 18: 9 19. DIS OXYGEN-HU MG/L 728 2.4 2.5 7: 8 2.4 7: 8 29. TOT HALOCARBON PP8 OUT DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/ 3/78 24:88:88 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 6 8.56 1.73 4:59 1.73 5: 8 5. RES CHLORINE MG/L 668 2.1 4.1 19: 4 3.17 16: 8 5. RES CHLORINE MG/L 668 2.1 4.1 19: 4 3.1 16: 8 6. TURBIDITY-SI22MG/L 668 2.1 4.1 19: 7.7 2.2 8: 8 6. TURBIDITY-SI22MG/L 668 2.1 4.1 19: 7.7 2.2 8: 8 9. TOT OXY DEM MG/L 478 5.2 8.1 19: 7.7 2.2 8: 8 10. AMMONIA MG/L 478 6.2 8.1 19: 7.7 2.2 8: 8 10. AMMONIA MG/L 478 6.2 8.1 19: 7.7 2.2 8: 8 10. AMMONIA MG/L 478 6.2 8.1 19: 7.7 2.2 8: 8 11. COT CAY DEM MG/L 445 18.8 10: 9 12.7 7.2 8: 8 12. PM PH 9H 534 7.93 7.98 8:57 7.97 9: 8 13. CHLORIDE MG/L 445 18.0 12.5 12:39 12.1 4: 8 14. CONDUCTIVITY MMHO/CM 668 1382.4 1438.8 19: 1 1395.5 13: 8 15. CHLORIDE MG/L 467 169. 2128 12: 8 57. 12: 8 17. SODIUM PH 534 7.93 7.98 8:57 7.97 9: 8 13. CHLORIDE MG/L 467 169. 2128 12: 8 57. 12: 8 14. CONDUCTIVITY MMHO/CM 668 1382.4 1438.8 19: 1 1395.5 13: 8 14. CONDUCTIVITY MMHO/CM 668 1382.4 1438.8 19: 1 1395.5 13: 8 15. MARDMESS MG/L 467 169. 2128 12: 8 57. 12: 8 16. MARDMESS MG/L 467 169. 2128 12: 8 57. 12: 8 17. SODIUM MG/L 668 1382.4 1438.8 19: 1 1395.5 13: 8 16. MARDMESS MG/L 467 169. 2128 12: 8 57. 12: 8 17. SODIUM MG/L 668 1382.4 1438.8 19: 1 1395.5 13: 8 16. MARDMESS MG/L 467 169. 2128 12: 8 57. 12: 8 17. SODIUM MG/L 668 1382.4 1438.8 19: 1 1395.5 13: 8 18. MARDMESS MG/L 467 169. 2128 12: 8 57. 12: 8 19. DIT HADOCARBON PPB 0UT	6. TURBIDITY-SI02	MG/L	728	8.4	11.6	17:3	10.3 2:0
9. TOT ORG CARB MG/L 563 11.8 15.3 1:33 13.8 6:0 10. AMMONIA MG/L 515 12.4 22.5 2:39 20.5 3:0 12. PH PH PH 594 7.6 224 22.5 2:39 20.5 3:0 13. CHLORIDE MG/L 604 278 294 19:0 292 2:0 14. CONDUCTIVITY MMHO/CM 720 1401.9 1490.0 17:18 1459.2 18:0 14. CONDUCTIVITY MMHO/CM 720 1401.9 1490.0 17:18 1459.2 18:0 14. CONDUCTIVITY MMHO/CM 720 1401.9 1490.0 17:18 1459.2 18:0 16. HARDNESS MG/L 553 180 663. 10:45 629. 11:0 17. SODIUM MG/L 720 2.4 2.5 7:0 2.4 7:0 19. DIS OXYGEN-HU MG/L 720 2.4 2.5 7:0 2.4 7:0 29. TOT HALOCAREON PPB OUT DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/ 3/78 24:00:00 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:0 2. VIAELE BIOMASSMIL C/M 6 0.56 1.73 4:59 1.73 5:0 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:0 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:0 9. TOT OXY DEM MG/L 470 6.2 9.1 19:27 7.2 8:0 10. AMMONIA MG/L 478 6.2 9.1 19:27 7.2 8:0 10. AMMONIA MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH S34 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 467 169. 215.1 2139 12.1 4:0 14. CONDUCTIVITY MMHO/CM 660 1302.4 1430.0 19:1 1395.5 13:0 14. CONDUCTIVITY MMHO/CM 660 1302.4 1430.0 19:1 1395.5 13:0 15. MARDNESS MG/L 467 169. 2120.7 7:1 156.17:0 15. DILM MG/L 660 2.4 2.5 7:3 2.4 0:0 16. MARDNESS MG/L 467 169. 2120.7 7:1 156.17:0 17. SODUH MG/L 660 1302.4 1430.0 19:1 1395.5 13:0 16. MARDNESS MG/L 467 169. 2120.7 7:1 156.17:0 17. NDIUM MG/L 660 1302.4 1430.0 19:1 1395.5 13:0 16. MARDNESS MG/L 467 169. 2120.7 7:1 156.17:0 17. SODUH MG/L 660 154.220.7 7:1 156.17:0 13. DIS OXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 0:0	8. TOT OXY DEM	MG/L	187	62.	184.	5:28	79. 6: 0
18. ANTION IA MGAL 515 12.4 22.5 2:39 20.5 3:0 12. PH PH 594 7.62 7.96 5:1 7.77 2:0 13. CHLORIDE MGAL 604 278. 294. 19:0 292. 2:0 14. CONDUCTIVITY MTHHA/CH 720 1401.9 1490.0 17:18 145.9.2 18:0 16. HARDNESS MGAL 563 180. 663. 10:45 629.11:0 0 17. SODIUM MGAL 720 167. 228. 1:12 176. 18:0 19. DIS OXYGEN-HU MGAL 720 2.4 2.5 7:0 2.4 7:0 29. TOT HALOCARBON PPB OUT DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1.73 5:0 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:0 2. VIAELE BIOMASSMIL C/M 6 0.56 1.73 4:59 1.73 5:0 3. TOT OXY DEM MGAL	9. TOT ORG CARB	MG/L	563	11.8	15.3	1:33	13.8 6: 0
12. PH PH 594 7.62 7.96 5:1 7.77 2:8 13. CHLORIDE MGAL 604 278. 294. 19:8 292. 2:8 14. CONDUCTIVITY MTHO/CM 720 1401.9 1490.0 17:18 1459.2 18:8 16. HARDNESS MGAL 563 180. 663. 10:45 629. 11:0 17. SODIUM MGAL 720 1401.9 1490.0 17:18 1459.2 18:0 19. DIS OXYGEN-HU MGAL 720 167. 228. 1:12 176. 18:0 29. TUT HALOCARBON PPB OUT DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 15:8 2. VIAELE BIOMASSMIL C/M 6 0.56 1.73 4:39 1.73 5:8 5. RES CHLORINE MGAL 470 3.3 5.6 12:27 4.3 12:8 6. TURBIDITY-SI02M	18. APPONIA	MG/L	515	12.4	22.5	2:39	20 5 3:0
13. CHLORIDE MG/L 604 278. 294. 19: 0 292. 2: 0 14. CONDUCTIVITY MMMHO/CH 720 1401.9 1490.0 17:18 1459.2 18: 0 16. HARDNESS MG/L 553 180. 663. 10:45 629. 11: 0 17. SODIUM MG/L 720 167. 228. 1:12 176. 18: 0 19. DIS OXYGEN-HU MG/L 720 2.4 2.5 7: 0 2.4 7: 0 29. TOT HALOCAREON PPB OUT OUT 0UT 9/ 3/78 24:00:00 DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/ 3/78 24:00:00 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16: 0 2. VIAELE BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16: 0 3. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12: 0	12. PH	PH	594	7 62	7 96	5, 1	7 77 2.9
14. CONJUCTIVITY INDIC 270. 234. 13:0 232. 21:0 14. CONJUCTIVITY INTHO/CH 720 1401.9 1490.0 17:18 1459.2 18:0 16. HARDNESS MG/L 563 180. 663. 10:45 629. 11:0 17. 50D IUM 17. 20 167. 228. 1:12 176. 18:0 19.0 19. DIS OXYGEN-HU MG/L 720 2.4 2.5 7:0 2.4 7:0 29. TOT HALOCAREON PPB OUT 0UT 0UT 9/3/78 24:00:00 DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/3/78 24:00:00 OUT DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/3/78 24:00:00 OUT DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/3/78 24:00:00 OUT DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/3/78 24:00:00 OUT DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. OUT OUT OUT		MCA	694	379	204	10. 0	7.77 2.0
14. CUMBUCTIVITY HIMMOLT 720 1491.9 1491.9 1491.8 1459.2 18:8 16. HARDNESS MG/L 720 180. 663. 10:45 629. 11:0 17. SDDIUM MG/L 720 167. 228. 1:12 176. 18:0 19. DIS OXYGEN-HW MG/L 720 2.4 2.5 7:0 2.4 7:0 29. TOT HALOCARSON PPB OUT DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:0 2. VIAELE BIOMASSMIL C/M 6 0.56 1.73 4:59 1.73 5:0 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:0 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:0 9. TOT OXY DEM MG/L 141 28. 54. 0:48	13. UNLUKIDE		704	210.	234.	19:0	292. 2:0
16. MARUNESS MG/L 353 180. 563. 10:45 629. 11:0 17. SODIUM MG/L 720 167. 228. 1:12 176. 18:0 19. DIS OXYGEN-HU MG/L 720 2.4 2.5 7:0 2.4 7:0 29. TOT HALOCARBON PPB OUT OUT 9/3/78 24:00:00 DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/3/78 24:00:00 DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:8 2. VIABLE BIOMASSMIL C/M 5 1.76 3.37 15:44 3.37 16:8 2. VIABLE BIOMASSMIL C/M 6 0.56 1.73 4:59 1.73 5:8 5. RES CHLORINE MG/L 478 3.3 5.6 12:27 4.3 12:8 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:27 7.2 </td <td>14. CUNDUCTIVIT</td> <td>INTHU/LI</td> <td>(20</td> <td>1401.9</td> <td>1490.0</td> <td>17:15</td> <td>1459.2 18: 8</td>	14. CUNDUCTIVIT	INTHU/LI	(20	1401.9	1490.0	17:15	1459.2 18: 8
17. SUDIUM MG/L 720 167. 228. 1:12 176. 18:0 19. DIS OXYGEN-HU MG/L 720 2.4 2.5 7:0 2.4 7:0 29. TOT HALOCAREON PPB OUT OUT 9/3/78 24:00:00 DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/3/78 24:00:00 DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:8 2. VIABLE BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:8 2. VIABLE BIOMASS MIL C/M 6 0.56 1.73 4:59 1.73 5:8 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:8 8. TOT OXY DEM MG/L 141 28. 54. 0:48 42. 1:8 9. TOT ORG CARB MG/L 479 6.2 9.1 19:27 7.2 8:0 18. CMDONIA MG/L 466 12.5 12:39	IS. HARDNESS	1167L	583	180.	663.	10:45	629.11:0
19. DIS OXYGEN-HU MG/L 720 2.4 2.5 7:0 2.4 7:0 29. TOT HALOCARGON PPB OUT OUT 9/3/78 24:00:00 DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/3/78 24:00:00 CHA SENSOR UNITS DATA DAILY POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:0 2. VIABLE BIOMASS MIL C/M 5 1.76 3.3 5.6 12:27 4.3 12:0 S. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:0 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:0 9. TOT ORG CARB MG/L 141 28. 54. 0:48 42. 1:0 9. TOT ORG CARB MG/L 479 6.2 0.1 19:27 7.2 8:0 14. CONDUCTIVITY MG/L 445 10:0 12.5 12:39 12.1 4:0 15. ONDUCTIVITY MG/L 564 268. 275. 0:54 272. 1:0	17. SODIUM	MG/L	720	167.	228.	1:12	176. 18: 0
29. TOT HALOCARSON PPB OUT DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/3/78 24:00:00 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME VALUE TIME 1. TOTAL 810MASS MIL C/M 5 1.76 3.37 15:44 3.37 16:8 2. VIAELE 810MASS MIL C/M 6 0.56 1.73 4:59 1.73 5:0 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:0 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:0 9. TOT OXY DEM MG/L 141 28. 54.0:48 42.1:0 9. TOT ORG CARB MG/L 470 6.2 8.1 19:27 7.2 8:0 10. ATMONIA MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268.275.0:54 272.1:0 14. CONDUCTIVITY MTMHO/CM 668 1392.4 1438.0 19:1 1395	19. DIS OXYGEN-HU	MG/L	720	2.4	2.5	7:0	2.4 7:0
DAILY REPORT FOR: 6-RECLAMATION FAC. A EFFLUENT 9/3/78 24:00:00 CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:8 2. VIAELE BIOMASSMIL C/M 6 0.56 1.73 4:59 1.73 5:8 5. RES CHLORINE MG/L 478 3.3 5.6 12:27 4.3 12:8 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:8 8. TOT OXY DEM MG/L 141 28. 54. 0:48 42. 1:8 9. TOT ORG CARB MG/L 478 6.2 8.1 19:27 7.2 8:8 12. PH PH 534 7.93 7.99 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275. 0:54 272.	29. TOT HALOCAREON	PP8	OUT				
CHA SENSOR UNITS DATA DAILY INSTANTANEOUS PEAK HOURLY PEAK NO. POINTS AVERAGE VALUE TIME VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:8 2. VIAELE BIOMASSMIL C/M 6 0.56 1.73 4:59 1.73 5:8 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:8 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:8 9. TOT OXY DEM MG/L 141 28. 54.8 42.1 1:8 9. TOT ORG CAR8 MG/L 470 6.2 8.1 19:27 7.2 8:8 0 12. PH MG/L 445 10.0 12.5 12:39 12.1 4:8 12. PH PH 534 7.93 7.98 8:57 7.97 9:8 13. CHLOR	DAILY REPORT FOR:	6-reclama	TION FA	C. A EFF	LUENT	9 ⁄3	3/78 24:00:0 0
NO. POINTS AVERAGE VALUE TIME VALUE TIME 1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:8 2. VIAELE BIOMASSMIL C/M 6 0.56 1.73 4:59 1.73 5:8 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:8 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:8 9. TOT OXY DEM MG/L 141 28. 54. 0:48 42. 1:8 9. TOT ORG CARB MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275. 0:54 272. 1:0 14. CONDUCTIVITY MTHO/CM 660 1382.4 1438.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 66	CHA SENSOR	UNITS	DATA	DAILY	INSTANTANE	DUS PEAK	HOURLY PEAK
1. TOTAL BIOMASS MIL C/M 5 1.76 3.37 15:44 3.37 16:8 2. VIAELE BIOMASSMIL C/M 6 0.56 1.73 4:59 1.73 5:8 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:8 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:8 9. TOT OXY DEM MG/L 141 28. 54. 0:48 42.1:8 9. TOT ORG CARB MG/L 470 6.2 8.1 19:27 7.2 8:0 10. ANTONIA MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275.0:54 272.1:0 14. CONDUCTIVITY MTHO/CM 660 1382.4 1438.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128.12:0 527.12:0 17.50 12.5 12:0 17.50 12:0 17.0	NO.		POINTS	AVERAGE	VALUE	TIME	VOLUE TIME
2. VIAELE BIOMASSMIL C/M 6 0.56 1.73 4:59 1.73 5:0 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:0 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:0 9. TOT OXY DEM MG/L 141 28. 54. 0:48 42. 1:0 9. TOT ORG CARB MG/L 445 10:0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275. 0:54 272. 1:0 14. CONDUCTIVITY MTHO/CM 660 1382.4 1438.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 660 154. 220. 7:1 156. 17:0 13. DIS OXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 8:0 29. TOT HALOCARBON PP	1. TOTEL BIOMOSS		5	1 76	7 77	15.44	7 77 16 9
2. VINUEL BIOLHASTILL CALL 0 0.30 1.173 4.35 1.173 3:0 5. RES CHLORINE MG/L 470 3.3 5.6 12:27 4.3 12:0 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:0 9. TOT OXY DEM MG/L 141 28. 54. 0:48 42. 1:0 9. TOT ORG CARB MG/L 141 28. 54. 0:48 42. 1:0 9. TOT ORG CARB MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275. 0:54 272. 1:0 14. CONDUCTIVITY MTHO/CM 660 1382.4 1438.0 19:1 1395.5 13:0 14. CONDUCTIVITY MTHO/CM 660 1382.4 1438.0 19:1 1395.5 13:0 14.			E S	9 66	1 77	4.50	1 77 6. 6
3. RES CHLORINE INCL 478 3.3 5.6 12:27 4.3 12:6 6. TURBIDITY-SI02MG/L 660 2.1 4.1 19:4 3.1 16:0 8. TOT OXY DEM MG/L 141 28. 54.0:48 42.1:0 9. TOT ORG CARB MG/L 470 6.2 8.1 19:27 7.2 8:0 10. ANMONIA MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275.0:54 272.1:0 14. CONDUCTIVITY MMMO/CM 660 1382.4 1430.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128.12:0 527.12:0 17. SODIUM 527.12:0 17. SODIUM MG/L 660 154. 220.7:1 156.17:0 13. PIS OXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 0:0 29. TOT HALOCARBON PPB OUT 0UT 2.4 <			470	0.30	1.13	4:35	
6. TORBIDITY-SIDERL 660 2.1 4.1 19:4 3.1 16:0 8. TOT OXY DEM MG/L 141 28. 54. 0:48 42. 1:0 9. TOT ORG CARB MG/L 470 6.2 8.1 19:27 7.2 8:0 10. ANMONIA MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275. 0:54 272. 1:0 14. CONDUCTIVITY MMMO/CM 660 1382.4 1430.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 660 154. 220. 7:1 156. 17:0 13. PIS OXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 0:0 29. TOT HALOCARBON PPB OUT 0UT 0UT 0UT 0UT 0UT	5. RES LALURINE		470	3.3	3.0	12:27	4.3 12: 0
8. TOT DXY DEM MG/L 141 28. 54. 0:48 42. 1:0 9. TOT ORG CARB MG/L 470 6.2 8.1 19:27 7.2 8:0 10. ANMONIA MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275. 0:54 272. 1:0 14. CONDUCTIVITY MTMH0/CM 660 1382.4 1430.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 660 154. 220. 7:1 156. 17:0 13. PIS DXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 0:0 13. PIS DXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 0:0	6. TURBIDITT-5102		660	2.1	4.1	19: 4	3.1 16: 0
9. TOT ORG CARB MG/L 470 6.2 9.1 19:27 7.2 8:0 10. ANMONIA MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275. 0:54 272. 1:0 14. CONDUCTIVITY MTMH0/CM 660 1392.4 1430.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 660 154. 220. 7:1 156. 17:0 13. PIS OXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 0:0 29. TUT HALOCARBON PPB OUT 0UT 0UT 0UT 0UT 0UT	8. TOT DXY DEM	MG/L	141	28.	54.	0:49	42. 1:0
10. ANTIONIA MG/L 445 10.0 12.5 12:39 12.1 4:0 12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275. 0:54 272. 1:0 14. CONDUCTIVITY MTHHO/CM 660 1392.4 1430.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 660 154. 220. 7:1 156. 17:0 12. PIS DXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 0:0	9. TOT ORG CARB	MG/L	479	6.2	.9.1	19:27	7.2 8:0
12. PH PH 534 7.93 7.98 8:57 7.97 9:0 13. CHLORIDE MG/L 564 268. 275. 0:54 272. 1:0 14. CONDUCTIVITY MTHHO/CM 660 1392.4 1430.0 19:1 1395.5 13:8 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 660 154. 220. 7:1 156. 17:0 12. PIS DXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 8:0 29. TUT HALOCARBON PPB 0UT 0UT 0UT 0UT 0UT 0UT	18. APPONIA	MG/L	445	10.0	12.5	12:39	12.1 4:0
13. CHLORIDE MG/L 564 268. 275. 0:54 272. 1:0 14. CONDUCTIVITY MMMO/CM 660 1382.4 1430.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 660 154. 220. 7:1 156. 17:0 13. DIS OXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 8:0 29. TUT HALOCARSON PPB OUT OUT 0 0 0 0 0	12. PH I	PH	534	7.93	7.98	8:57	7.97 9: 0
14. CONDUCTIVITY HTHO/CH 660 1382.4 1438.0 19:1 1395.5 13:0 16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 660 154. 220. 7:1 156. 17:0 13. DIS DXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 8:0 29. TUT HALOCARBON PPB OUT OUT 000000000000000000000000000000000000	13. CHLORIDE	MG/L	564	268	275.	0:54	272. 1: 0
16. HARDNESS MG/L 467 169. 2128. 12:0 527. 12:0 17. SODIUM MG/L 660 154. 220. 7:1 156. 17:0 12. PIS OXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 8:0 29. TUT HALOCARBON PPB OUT OUT 0 0 0 0	14. CONDUCTIVITY	TTHO/CH	668	1382.4	1439.9	19:1	1395.5 13: 8
17. SODIUM MG/L 660 154. 220. 7: 1 156. 17: 0 13. PIS OXYGEN-HU MG/L 660 2.4 2.5 7: 3 2.4 8: 0 29. TOT HALOCARSON PPB OUT OUT 0 0 0 0	16 HOPTHESS	MGA	467	129	2129	121 8	527 12.0
13. PIS OXYGEN-HU MG/L 660 134. 220. 131. 136. 171.0 13. PIS OXYGEN-HU MG/L 660 2.4 2.5 7:3 2.4 8:0 29. TOT HALOCARSON PPB OUT	17 600100		560	127.	2120.	7. 1	JET. 12. U 182 17. A
29. TÚT HALOCARBON PPB OUT			000	134.	220.		130. 1/1 0
27. IUI MHLUURKBUN PPB UUT	IN. HIS UXTUENTHU		000	2.4	2.5	(; 5	2.4 8:0
		000	<u></u>				

.

and a state of the

atom and a start

7

ţ

Figure 13 Typical Daily Data Report

. . م

Historical Data Reports

and so and the

The historical reports provide the hourly averages for the current day or any day within a 3-month period. The historical data file is a rotating file that is designed to contain 93 days of actual data. Only the sample source data recorded for each day are stored on the disk file. Whenever 93 days have been recorded, the next day is positioned at the beginning of the historical file, effectively rewinding the file for subsequent recording.

A typical historical report is shown in Figure 14. The hourly averages for the hour ending and sample source are shown for a complete day. The sample source shown for each hour indicates the multipoint source sampled for the hour. A blank indicates no data was recorded for the hour.

Coliform Biosensor Data Reports

Coliform results require 3 to 14 hours for determination following cell inoculation. The results are available for individual cells after the minimum voltage and 200 millivolt time have been determined. A typical coliform report is shown in Figure 15. The first data set for 8-25-78 are actually for a current day in which no cells have completed reaction or have attained a minimum volt level, and the second data set for 2-14-78 are for a previous day. The report includes the inoculation time, the time at which the minimum voltage was attained, the value of the minimum voltage, the reaction time, and the cell count. The coliform evaluation is not terminated until the maximum reaction time has elapsed since inoculation of the last cell. The results are reported as cells/100 ml. Figure 15 shows that total coliform were evaluated on 8-25-78 and the cell count varied from a minimum value of 190,000 for cell #1 to a maximum value of 290,000 for cell #7.

Volatile Halocarbon Concentration and Data Reports

The gas chromatograph is a modified Hewlett-Packard Model 5710/5840 that is fully automated and operates under internal program control. The processing time requires 50 minutes for a complete analysis of nine volatile halogenated hydrocarbons. An Electron Capture Detector (ECD) is used for accurate quantitating at the parts per billion (ppb) level. The gas chromatograph is normally scheduled to begin processing at the start of each hour. The GC results are printed on the calculator and transmitted to the EVE interface approximately 50 minutes after the hour. Only the number and compound area are required by EVE Lecause a modified calibration curve is used to determine the measured concentration based on the area. The EVE calibration curve is exponential with constants for the slope and intercept ($Y = e^{ax + b}$).

The halocarbon concentrations are summed and recorded as an hourly average of total halocarbon on channel 29. The calibration curves presently used have an accuracy of \pm 10% at the parts per billion (ppb) level. The brominated compounds have a threshold limit of 3 ppb and the chlorinated compounds have a threshold limit of 1 ppb.

	2478 HOURLY P	VERAGES FO	R HULTIP	DINT SEN	SORS			
CHA	SENSOR	UHITS	**	* * HCU	R OF DAY	SAMPLE	SOURCE #	* * *
1.	TOTAL BIOMASS	HIL C/H	1/16	2/3	3/3	4/5	5/6	5/3
2.	VIABLE BIOMAS	SHIL CAN	0.57	18.16	18.18	0.58	8.61	12.61
5.	TURBIDITY-SIC		2.8	12.2	10.4	2.5	2.8	7.7
	TOT DAY DEM	HGAL	55.	78.	89.	58.		182.
18.	ANTIONIA	HG/L	8.4 13.4	14.5	14.5	9.2		14.1
12.	PH	PH	7.24	7.18	7.10	7.23	7.26	7.11
13.	CONDUCTIVITY	NEAL	292.	307.	306.	279.	279.	296.
16.	HARDNESS	MG/L	243.	141.	139.	239.		168.
17.	SUDILIH DIS OXYGEN-HU	MGAL	288.	194. 2 9	194. 2 9	286.	7 9	29
29.	TOT HALOCARES	N PPB	143.	C . J	778.	2.3	78.	2.3
CHA	SENSOR	UNITS	**	* * HOU	R OF DAY	/SAMPLE	SOURCE_*	***
ND.			7/3	8/3	9/6	10/3	11/3	12/6
Ż.	TABLE BIOMAS	SMIL CAT	12.62	8.12	8.14	13.48	13.51	
5.	RES CHLORINE	нсл. 2нсл	9.1		3.9	6.3	6.4	2.8
. Į.	TOT OXY DEM	MEAL	99.		56.	111.	139.	128.
9. 18.	TUT ORG CARE	MGAL MGA	13.9		9.4	12.3	12.5	7.6
12.	PH	PH	7,89		7.21	7.88	6.93	7.31
13.	CHLORIDE	HEAL	295.	1577 8	261.	285.	293.	296.
ić.	HARDNESS	HG/L	175.	1323.3	293.	160.	153.	219.
17.	SODIUM	MG/L	2 9	2 9	7 a	2 9	2 9	155.
29.	TOT HALOCARBO	N PPB	659.	2.7	82.	2.3	620.	2.3
	SENSOR	UNITS	**	* * HOU	R OF DAY	SAMPLE	SOURCE #	* * *
NO.	SENSOR TOTAL BIOMASS	UNITS MIL CAT	* * 13⁄6	* * HQUI 14/3	R OF DAY 15/3	/SAMPLE 16/6	SOURCE * 17/6	* * * 18/3 11.00
CHR ND. 1. 2.	SENSOR TOTAL BIOMASS VIABLE BIOMASS	UNITS MIL C/M SMIL C/M	* * 13/6	* * HOU 14/3 12.48	R OF DAY 15/3	SAMPLE	SOURCE * 17/6 0.02	* * * 18/3 11.00
CHR ND. 1. 2. 5.	SENSOR TOTAL BIOMASS VIABLE BIOMAS RES CHLORINE TURBIDITY-510	UNITS HIL CAT SHIL CAT HGAL	* * 13/6 1.7 3.6	* * HQUI 14/3 12.48 6.2 13.5	COF DAY 15/3 12.36 6.2 10.6	2.4	SOURCE # 17/6 8.82 2.5 2.2	* * * 18/3 11.00 6.6 18.6
CHR ND. 1. 2. 5. 6.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT OXY DEM	UNITS MIL CATI SMIL CATI MGAL 24GAL MGAL	* * 13/6 1.7 3.6 116.	* * HOU 14/3 12.48 6.2 13.5 153.	COF DAY 15/3 12.36 6.2 10.6 165.	SAMPLE 16/6 2.4 2.2 113.	SOURCE # 17/6 0.82 2.5 2.2 138.	* * * 18/3 11.00 6.6 10.6 182.
CHR ND. 1. 2. 5. 6. 9.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SI8 TOT OXY DEM TOT OXY DEM TOT ORG CARB AMMONIA	UNITS HIL CAT STIL CAT HEAL HEAL HEAL HEAL	* * 13.6 1.7 3.6 116. 7.1	* * HOU 14/3 12.48 6.2 13.5 153. 11.6 19.1	COF DAY 15/3 12.36 6.2 10.6 165. 12.2 19.7	2.4 2.2 113. 7.9	SOURCE # 17/6 0.82 2.5 2.2 138. 7.3 16.8	* * * 18/3 11.00 6.6 10.6 182. 12.7 18.2
CHR ND. 1. 2. 5. 6. 9. 18. 12.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SI8 TOT OXY DEM TOT ORG CARB ANTIONIA PH		* * 13/6 1.7 3.6 116. 7.1 16.5 7.33	* * HQUI 14/3 12.48 6.2 13.5 153. 11.6 19.1 6.90	COF DAY 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86	/SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24	SOURCE * 17/6 0.82 2.5 2.2 138. 7.3 16.9 7.23	* * * 18/3 11.00 6.6 10.6 182. 12.7 18.2 6.98
CHR ND. 1. 2. 5. 6. 9. 10. 12. 13.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT CXY DEM TOT CXY DEM TOT CAS CARB ANNON IA PH CHLORIDE CONDUCTIVITY	UNITS HIL CAT SMIL CAT HEAL 2004 HEAL HEAL PH HEAL HTHEACTH	* * 13/6 116. 7.1 16.5 7.33 387. 1539.0	* * HQUI 14/3 12.48 6.2 13.5 13.5 11.6 19.1 6.90 386. 1541.7	C OF DAY. 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 210. 1546.0	/SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7	SOURCE * 17/6 0.02 2.5 130. 7.3 16.8 7.29 1538.0	* * * 18/3 11.00 6.6 10.6 182. 12.7 18.2 6.90 310. 1538.7
CHN ND. 1. 2. 5. 6. 9. 18. 12. 13. 14. 16.	SENSOR TOTAL BIOMASS VIABLE BIOMASS ARES CHLORINE TURBIDITY-SIE TOT ORG CARB ANTONIA PH CHLORIDE CONDUCTIVITY HARDNESS	UNITS HIL CAT HEAL HEAL HEAL HEAL HEAL HEAL HEAL HEAL	* * 13/6 1.7 3.6 116. 7.1 16.5 7.33 387. 1539.0 221.	* * HQUI 14/3 12.48 6.2 13.5 153. 11.6 19.1 6.90 386. 1541.7 150.	CF DAY 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 310. 1546.0 147.	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222.	SOURCE * 17/6 0.82 2.5 2.2 139. 7.3 16.9 7.23 299. 1538.0 227.	* * * 18/3 11.00 6.6 10.6 102. 12.7 19.2 6.90 310. 1538.7 158.
ND. 1. 2. 5. 8. 9. 12. 13. 14. 16.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT OKY DEM TOT OKY DEM TOT OKG CARB ANTONIA PH CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OVYCEN-HU	UNITS HIL CAT HIL C	* * 13/6 1.7 3.6 116. 7.1 16.5 7.33 387. 1539.0 221. 153.0 221. 151. 2 8	* * HQUI 14/3 12.40 6.2 13.5 153. 11.6 19.1 6.90 306. 1541.7 150. 156. 2.8	CF DAY 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 310. 1546.0 147. 131. 2.8	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2 8	SOURCE * 17/6 0.82 2.5 2.2 138. 7.3 16.9 7.23 299. 1538.0 227. 123. 2 8	* * * 18/3 11.00 6.6 10.6 102. 12.7 19.2 6.90 310. 1532.7 158. 120. 27
ND. 1. 2. 5. 6. 9. 10. 12. 13. 14. 17. 19. 29.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT OKY DEM TOT OKY DEM TOT OKY CARB ANYONIA PN CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HUJ TOT HALOCARBOI	UNITS HIL CAT HEAL HE	* * 13/6 113/6 116. 7.1 16. 7.3 307. 1539.0 221. 1539.0 221. 151. 2.8	* * HQUI 14/3 12.40 6.2 13.5 153. 11.6 19.1 6.90 306. 1541.7 150. 136. 2.8	R OF DAY 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 310. 1546.0 147. 131. 2.8 618.	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.8	SOURCE * 17/6 0.82 2.5 2.2 138. 7.3 16.9 7.23 299. 1538.0 227. 123. 2.8 196.	* * * 18/3 11.00 6.6 10.6 192. 12.7 19.2 6.90 310. 1538.7 158. 129. 2.7
CHA ND. 1. 2. 5. 6. 8. 9. 10. 12. 13. 14. 16. 17. 19. 29.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT OXY DEM TOT OXY DEM TOT OXY DEM TOT OXY DEM CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HUJ TOT HALOCARBOI	UNITS HIL CAT HEAL HE	* * 13/6 1.7 3.6 116. 7.1 16. 7.3 307. 1539.0 221. 151. 2.8	* * HQUI 14/3 12.40 6.2 13.5 153. 11.6 19.1 6.90 306. 1541.7 150. 136. 2.8	R OF DAY 15/3 12.36 6.2 10.6 165. 15.2 19.7 6.86 310. 1546.0 147. 131. 2.8 618.	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.8	SOURCE * 17/6 0.82 2.5 2.2 138. 7.3 16.9 7.23 299. 1538.0 227. 123. 2.8 196.	* * * 18/3 11.00 6.6 10.6 182. 12.7 19.2 6.90 310. 1538.7 158. 129. 2.7
CHA ND. 12. 5. 6. 9. 13. 14. 17. 19. 29. CHA ND.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SI8 TOT OKY DEM TOT OKY DEM TOT OKY DEM TOT OKY DEM CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HU TOT HALOCARBOI	UNITS HIL CAT HEAL HEAL HEAL HEAL HEAL HEAL HEAL HEAL HEAL N PPB UNITS	* * 13/6 1.7 3.6 116. 7.1 16.5 7.33 387. 1539.0 221. 151. 2.8 * * 19/3	* * HQUI 14/3 12.48 6.2 13.5 153. 11.6 19.1 6.90 386. 1541.7 150. 136. 2.8 * * HQUI 28/6	R OF DAY. 15/3 12.36 6.2 10.6 15.6 12.2 19.7 6.96 210. 1546.0 147. 131. 2.8 619. R OF DAY. 21/6	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.9 SAMPLE 22/3	SOURCE * 17/6 0.02 2.5 130. 7.3 16.8 7.23 299. 1538.0 227. 123. 2.8 196. SOURCE *	* * * 18/3 11.00 6.6 10.6 10.2 12.7 10.2 6.90 310. 1538.7 158.7 158. 129. 2.7 * * * 24/6
CHA ND. 2. 5. 6. 8. 9. 12. 13. 14. 17. 19. 29. CHA ND. 1.	SENSOR TOTAL BIOMASS VIABLE BIOMASS VIABLE BIOMASS TURBIDITY-SIB TOT ORG CARB ANTONIA PH CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HJJ TOT HALOCARBOI SENSOR TOTAL BIOMASS	UNITS HIL CAT HIL CAT HIL CAT HIL CAT HIL CAT HIL CAT HIL CAT	* * 13/6 1.7 3.6 116. 7.1 16.5 7.33 387. 1539.0 221. 151. 2.8 * * 19/3 9.97	* * HQUI 14/3 12.48 6.2 13.5 153. 153. 154. 159.1 6.90 306. 1541.7 150. 136. 2.8 * * HQUI 20/6 0.93	CF DAY. 15/3 12.36 6.2 10.6 15.3 12.2 19.7 6.96 210. 147. 131. 2.8 618. CF DAY. 21/6	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.9 2.9 SAMPLE 22/3 20.47	SOURCE * 17/6 0.82 2.5 138. 7.3 16.8 7.23 299. 1538.0 227. 123. 2.8 196. SOURCE * 23/3 15.17	* * * 18/3 11.00 6.6 10.6 10.2 12.7 19.2 6.90 310. 1538.7 158. 120. 2.7 * * * 24/6 1.01
CHR ND. 2. 5. 6. 9. 12. 13. 14. 17. 19. 29. CHR ND. 1. 29. 5.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT ORG CARB APTONIA PH CHLORIDE CONDUCTIVITY MARDNESS SODIUM DIS OXYGEN-HU TOT HALOCARBO SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE	UNITS HIL CAT HIL CAT HIL CAT HIL CAT HIL CAT HIL CAT HIL CAT HIL CAT HIL CAT HIL CAT	* * 13/6 1.7 3.6 116. 7.1 16.5 7.33 3087. 1539.0 221. 151. 2.8 * * 19/3 9.97 £.7	* * HQUI 14/3 12.48 6.2 13.5 153. 11.6 19.1 6.90 386. 1541.7 150. 1361. 2.8 * + HQUI 20/6 0.93 2.6	CF DAY. 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 310. 1546.0 147. 131. 2.8 618. CF DAY. 21/6	/SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.9 /SAMPLE 22/3 20.47 6.5	SOURCE * 17/6 0.82 2.5 139. 7.3 16.9 7.23 299. 1538.0 227. 123. 2.8 196. SOURCE * 23/3 15.13 6.5	* * * 18/3 11.00 6.6 10.6 10.6 10.2 12.7 19.2 6.90 310. 1530.7 158. 120. 2.7 * * * 24/6 1.01 2.6
CHR ND. 1. 2. 5. 6. 8. 9. 12. 13. 14. 16. 17. 19. 29. CHR ND.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT OKY DEM TOT OKY DEM TOT OKY DEM TOT OKY DEM CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HU DIS OXYGEN-HU SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT OKY NEM	UNITS HIL CAT HGA HGA HGA HGA HGA HGA HGA HGA	* * 13/6 1.7 3.6 116. 7.1 16.5 7.33 307. 1539.0 221. 151. 2.8 * * 19/3 8.97 £.7 16.1	* * HQUI 14/3 12.48 6.2 13.5 153. 11.6 19.1 6.90 306. 1541.7 150. 136. 2.8 * * HQUI 20/6 0.93 2.6 1.7	CF DAY. 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 310. 1546.0 147. 131. 2.8 618. CF DAY. 21/6 1.8 2.6 1.8	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.9 SAMPLE 22/3 20.47 6.5 11.5	SOURCE * 17/6 0.02 2.5 2.2 138. 7.3 16.9 299. 1538.0 227. 123. 2.8 196. SOURCE * 23/3 15.13 6.5 10.9	* * * 18/3 11.00 6.6 10.6 10.6 10.6 10.2 12.7 19.2 6.90 310. 1530.7 158. 120. 2.7 * * * 24/6 1.01 2.6 1.0
CHR ND. 1.2. 5. 6. 8. 9. 12. 13. 14. 16. 17. 19. 29. CHR ND. 1. 2. 5. 6. 8. 9. 14. 16. 17. 19. 29. 29. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SI8 TOT OXY DEM TOT OXY DEM TOT OXY DEM CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HU TOT HALOCARBOI SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SI8 TOT OXY DEM TOT ORG CARB	UNITS HIL CAT HEAL HA	* * 13/6 1.7 3.6 116. 7.1 16.3 7.33 307. 1539.0 221. 151. 2.8 * * 19/3 9.97 £.7 16.1 16. 13.3	* * HQUI 14/3 12.40 6.2 13.5 153. 11.6 19.1 6.90 306. 1541.7 150. 136. 2.8 * + HQUI 20/6 0.93 2.6 1.7 108. 7.7	CF DAY. 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 310. 1546.0 147. 131. 2.8 619. 2.6 1.8 76. 7.2	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.8 2.8 2.9 20.47 6.5 11.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	SOURCE * 17/6 0.82 2.5 2.2 138. 7.3 16.9 7.23 299. 1538.0 227. 123. 2.8 196. SOURCE * 23/3 15.13 6.5 10.8 98. 14.1	* * * 18/3 11.00 6.6 10.6 182. 12.7 19.2 6.90 310. 1538.7 158. 128. 2.7 * * * 24/6 1.8 54. 7.8
CHA ND. 12. 5. 6. 9. 12. 13. 14. 16. 17. 19. 29. CHA ND. 1. 2. 5. 10. 12. 13. 14. 16. 17. 19. 29.	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SI8 TOT OXY DEM TOT ORG CAR9 ANNONIA PH CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HU TOT HALOCARBOI SENSOR TOTAL BIOMASS VIABLE BIOMASS VIABLE BIOMASS TOTAL BIOMASS DIS CHLORINE TURBIDITY-SI8 TOT OXY DEM TOT ORG CAR9 ANNONIA	UNITS HIL CAT HIL C	* * 13/6 1.7 3.6 116. 7.1 16.5 7.33 387. 1539.0 221. 151. 2.8 * * 19/3 0.97 £.7 16.1 161. 13.3 19.0 2.0	* * HQUI 14/3 12.48 6.2 13.5 153. 11.6 19.1 6.90 306. 154.7 136. 2.8 * * HQUI 20/6 0.93 2.6 1.7 108. 7.7 136. 2.9	CF DAY. 15/3 12.36 6.2 10.6 15. 12.2 19.7 6.86 210. 1546.0 147. 131. 2.8 619. 21/6 1.8 76. 7.2 13.4 2.0	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.8 2.8 5AMPLE 22/3 20.47 6.5 11.5 182. 13.7 18.7	SOURCE * 17/6 0.02 2.5 130. 7.3 16.9 7.23 299. 1538.0 227. 123. 2.9 196. SOURCE * 23/3 15.13 6.5 10.8 90. 14.1 19.9	* * * 18/3 11.00 6.6 10.6 10.6 10.2 12.7 10.2 6.90 310. 1538.7 158. 128. 2.7 * * * 24/6 1.01 2.6 1.8 54. 7.8 13.7
CHA ND. 12. 5. 6. 9. 18. 13. 14. 17. 19. 29. CHA ND. 1. 2. 19. 29. CHA ND. 1. 13. 14. 17. 19. 29. 10. 12. 13. 13. 14. 13. 13. 14. 13. 13. 13. 14. 13. 13. 14. 13. 13. 14. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SI8 TOT ORG CAR9 ANNON IA PH CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HU TOT HALOCARBOI SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE RES CHLORINE TOT ORG CAR9 ANNON IA PH CHLORIDE	UNITS HIL CAT HIL C	* * 13/6 1.7 3.6 116. 7.1 16.5 7.33 387. 1539.0 221. 151. 2.8 * * 19/3 8.97 £.7 16.1 161. 13.3 19.8 6.98 387.	* * HQUI 14/3 12.48 6.2 13.5 153. 11.6 19.1 6.90 306. 1541.7 150. 136. 2.8 * * HQUI 20/6 0.93 2.6 1.7 108. 7.7 13.6 2.7. 13.6	CF DAY. 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 310. 1546.0 147. 131. 2.8 618. CF DAY. 21/6 1.8 76. 7.2 13.4 7.29 297.	/SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.	SOURCE * 17/6 0.82 2.5 138. 7.3 16.8 7.23 299. 1538.0 227. 123. 2.8 196. SOURCE * 23/3 15.13 6.5 10.8 98. 14.1 16.9 7.9 299.	* * * 18/3 11.00 6.6 10.6 10.6 10.2 12.7 19.2 6.90 310. 1538.7 158. 120. 2.7 * * * 24/6 1.01 2.6 1.8 54. 7.8 13.7 7.27 295.
CHA ND. 12. 5. 6. 9. 12. 13. 14. 17. 19. 29. CHA ND. 1. 29. CHA ND. 12. 13. 14. 17. 19. 29. 10. 12. 13. 14. 12. 13. 14. 12. 13. 14. 12. 13. 14. 14. 15. 19. 12. 13. 14. 14. 15. 15. 15. 16. 17. 19. 17. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT ORG CARB ANTONIA PH CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HU TOT HALOCARBOI SENSOR TOTAL BIOMASS VIABLE BIOMASS	UNITS HIL CAT HIL CAT HIL CAT HIL CAT HIGAL HIGAL HIGAL HIGAL HIL CAT HIGAL HIGAL HIL CAT HIGAL HIGAL HIGAL HIGAL HIL CAT HIGAL HIL CAT HIGAL	* * 13/6 1.7 3.6 116. 7.1 16.3 7.33 387. 1539.0 221. 151. 2.8 * * 19/3 8.97 £.7 16.1 161. 13.3 19.0 6.98 307. 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1514.5 1515.5 1	* * HOUI 14/3 12.48 6.2 13.5 153. 11.6 19.1 6.90 386. 1541.7 150. 136. 2.8 * * HOUI 20/6 0.93 2.6 1.7 108. 7.7 13.6 7.26 297. 1526.3	CF DAY. 15/3 12.36 6.2 165. 165. 12.2 19.7 6.86 310. 154.6 147. 131. 2.8 618. CF DAY. 21/6 1.8 76. 7.2 13.4 7.29 297. 1534.5	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.9 20.47 6.5 11.5 182. 182. 182. 182. 182. 182. 182. 182.	SOURCE * 17/6 0.82 2.5 139. 7.3 16.9 7.23 299. 1538.0 227. 123. 2.8 196. SOURCE * 23/3 15.13 6.5 10.8 99. 14.1 18.9 7.89 299. 14.1 18.9 7.89 299. 14.1 18.9 7.89 299. 14.1 18.9 7.89 299. 14.1 18.9 7.89 299. 19.1	* * * 18/3 11.00 6.6 10.6 10.6 10.6 10.6 10.2 12.7 150. 1530.7 150. 2.7 * * * 24/6 1.01 2.6 1.8 54. 7.27 295.7 1529.7
CHR ND. 1. 2. 5. 6. 8. 9. 12. 13. 14. 16. 17. 29. CHR ND. 1. 29. CHR ND. 1. 13. 14. 16. 17. 29. 10. 11. 12. 13. 14. 16. 17. 19. 29. 10. 11. 17. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT OKY DEM TOT OKY DEM TOT OKY DEM CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HU TOT HALDCARBO VIABLE BIOMASS VIABLE BIOMASS RES CHLORINE TUTAL BIOMASS VIABLE BIOMASS RES CHLORINE TUT OKY DEM TOT OKY DEM TOT OKY CARB AMMONIA PH CHLORIDE CONDUCTIVITY HARDNESS SODIUM	UNITS HIL CAT HIL C	* * 13/6 1.7 3.6 116. 7.3 16.5 7.33 307. 1539.0 221. 151. 2.8 * * 19/3 0.97 <i>f.</i> 7 16.1 161. 13.3 19.0 6.98 307. 152. 128.	* * HQUI 14/3 12.48 6.2 13.5 153. 11.6 19.1 6.90 306. 1541.7 150. 136. 2.8 * * HQUI 20/6 0.93 2.6 1.7 108. 7.7 13.6 7.26 297. 1526.3 225. 158.	CF DAY. 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 310. 1546.0 147. 131. 2.8 618. CF DAY. 21/6 1.8 76. 7.2 13.4 7.29 297. 1534.5 258.	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 7.24 295. 1526.7 222. 120. 2.9 5AMPLE 22/3 20.47 6.5 11.5 102. 13.7 18.5 7.10 298. 1477.7 156. 136.	SOURCE * 17/6 0.02 2.5 2.2 130. 7.3 16.9 7.3 1538.0 227. 123. 2.8 196. SOURCE * 23/3 15.13 6.5 10.0 90. 14.1 18.9 7.09 259. 1460.0 149. 122.	* * * 18/3 11.00 6.6 10.7 15.2 2.7 * * * 2.7 * * * * * * 2.6 * * 2.7 * * * * 2.7 * * * * 2.7 * * * * * * 2.7 * * * * * * 2.7 * * * * * * * * * * 2.7 * * * * * * * * * * * * * * *
CHR ND. 1.2. 5. 6. 9. 12. 13. 14. 16. 17. 19. 29. 10. 12. 13. 14. 16. 19. 29. 10. 12. 13. 14. 16. 19. 29. 10. 12. 13. 14. 16. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	SENSOR TOTAL BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT OKG CARB ANNON IA PH CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HU TOT HALDCARBOI SENSOR TOTAL BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS RES CHLORINE TURBIDITY-SIG TOT OKG CARB ANNON IA PH CHLORIDE CONDUCTIVITY HARDNESS SODIUM DIS OXYGEN-HU CHLORIDE CONDUCTIVITY HARDNESS SODIUM	UNITS HIL CAT HIL CAT HEAL	* * 13/6 1.7 3.6 116. 7.1 16.5 7.33 307. 1539.0 221. 151. 2.8 * * 19/3 8.97 £.7 10.1 161. 13.3 19.0 6.98 307. 152. 153. 154. 154. 154. 154. 154. 154. 154. 154. 154. 154. 154. 155. 152. 155. 152. 155.	* * HOUI 14/3 12.40 6.2 13.5 153. 11.6 19.1 6.90 306. 1541.7 150. 136. 2.8 * * HOUI 20/6 0.93 2.6 1.7 108. 7.7 13.6 7.26 297. 1526.3 225. 158. 2.7	CF DAY. 15/3 12.36 6.2 10.6 165. 12.2 19.7 6.86 310. 1546.0 147. 131. 2.8 618. 2.8 618. 2.8 618. 2.8 618. 2.8 618. 2.8 61.8 61.8	SAMPLE 16/6 2.4 2.2 113. 7.9 17.7 225. 1526.7 222. 120. 2.9 SAMPLE 22/3 20.47 6.5 182. 13.7 18. 7.10 298. 1477.7 156. 136. 2.7	SOURCE * 17/6 0.82 2.5 2.2 138. 7.3 16.9 7.23 299. 1538.0 227. 123. 2.8 196. SOURCE * 23/3 15.13 6.5 10.8 98. 14.1 18.9 7.09 299. 140.8 149. 122. 2.7 140.8 149. 15.13 18.9 19. 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1 18.9 14.1	* * * 18/3 11.00 6.6 10.6 10.6 10.6 10.7 15.7 15.8 12.7 15.8 12.7 15.8 12.7 15.8 12.7 15.8 1.20 2.7 * * * 24/6 1.8 54. 7.8 13.7 7.27 295. 1529.7 231. 124. 2.7

Figure 14 Typical Historical Data Report

COLIFORM REPORT:	****	* * * *	* * * *	SEN	ISOR *	* * * *	***	8/25/78 * * * *
INCLLATION TIME	10144	18148	18:52	18156	11: 0	111.4	11: 8	11112
Minimum Volts Time	14153	14:58	14:58	14:58	14:58	14:58	14:58	14:58
VALUE	36	76	-6	33	187	-13	96	48
200HV TIME								
REACTION TIME								
LOG18(CELLS/TL) TOTAL								
FECAL								
NAKIMUM REACTION TIME	- 14 HOU	RS : * * *	* * * *	* SEN	Isor *	* * * *	* * *	2/14/75
INDCLLATION TIME	1 24:19	2 24114	3 24:18	4 24:22	5 24:26	6 24:38	7 24:34	9 24:38
MINIMUM VOLTS TIME	25:38	25:35	25:38	25:38	25:55	25134	25:37	25:39
VALUE	99	84	49	112	98	92	23	83
200MV TIME	29:14	29: 2	29:12	29: 7	29127	29:22	29: 17	29:38
REACTION TIME	51 4	4:48	4:54	4:45	5: 1	4152	4:43	4:52
CELLS / 100ML TUTAL FECAL	1 .9 E5	2.6E5	2.325	2.885	2.0E5	2.485	2.9E5	2.4E5

and the second second

Figure 15 Typical Coliform Data Report

.-

Reports are normally available every hour for trace concentrations of the brominated and chlorinated halocarbon compounds for the multipoint sample source. A typical report is shown in Figure 16 and includes the calibration number, compound name, hour of day, and sample source for each halocarbon.

Daily and Monthly Reports

Plotting capability is provided by separate programs for daily and monthly results. The NOVA 3D resources are allocate for FVE report generation in the foreground and plotting in the background memory partitions. The hourly plot program will graph the hourly averages of any three channels for the same day. The monthly plot program will graph the daily averages of any one channel for any month. The plot data are recalled from the historical data file that is shared by the EVE report generation program.

A typical hourly plot is shown in Figure 17. Three channels are plotted for the multipoint sample sources 1 and 3. The data points are annotated with the sample source number that is identified at the top of the graph. The scaling parameters are selected by the operator for each channel during the plotting process.

A typical monthly plot is shown in Figure 18. The daily average, standard deviation, hourly peak, and hourly peak time are plotted for the month. The sample source is indicated by the square plot symbol and a highlighted sample source identification at the top of the graph. The daily averages are indicated by the square symbol for each day plotted. The hourly peak values are indicated at the top of the lower plot.

Sample Source Trend Report

Hourly average values of a parameter over a period of a month for a given point in the treatment process can be determined using the format illustrated in Figure 19. The average for each hour of the day that the process was sampled is reported for each day of the month. The data are also summarized in terms of the daily average.

Statistical Report

The performance of a single process or group of processes in terms of percent removal can be reported as illustrated in Figure 20. Influent and effluent values are compared, including number of days sampled, monthly averages, daily and hourly variations (1σ) , and the average and variation (1σ) in daily removal. Figure 20 shows these data for reclamation plant influent and effluent and thus reflects plant overall monthly performance.

0/24/78 HALOCARBON CONCENTRATIONS - PPB									
CAL NO. 1. 2. 3.	COMPOUND TETRACHLOROETHYLENE METHYLENE CHLORIDE 1.1-DICHLOROETHYLENE 1.2-DICHLOROETHYLENE	* * * 1/6 19.4 5.9 1.6 42.2	* HOUR OF DAY/S 2/3 3/3 189.8 19.9	AMPLE SOURCE * * * 4/6 5/6 6 14.8	*				
5. 6. 7. 8. 9. 10.	CHLOROFORM 1.1.1.TRICHLOROETHANE BROMODICHLOROMETHANE TRICHLOROETHYLENE DIBROMOCHLOROMETHANE BROMOFORM	32.1 9.9 4.9 20.2 3.8 3.7	87.2 229.1 5.3 388.4 9.8 2.1	22.9 10.4 3.9 19.3 3.1 3.5					
CAL NO. 1. 2. 3. 4. 5. 6. 7. 8. 9. 16.	COMPOUND TETRACHLOROETHYLENE METHYLENE CHLORIDE 1.1-DICHLOROETHYLENE 1.2-DICHLOROETHYLENE CHLOROFORM 1.1.1-TRICHLOROETHANE BROMODICHLOROMETHANE DIBROMOCHLOROMETHANE BROMOFORM	* * * 7⁄3 76.4 9.2 82.5 156.4 7.1 313.5 11.3 2.6	* HOUR OF DAY/S 8/3 9/6 12.7 1.6 27.7 10.2 4.1 19.8 3.2 3.2	AMPLE SOURCE * * * 10/3 11/3 12 51.0 0.2 15.2 62.8 126.1 7.4 333.0 12.0 4.5	*				
CAL NO. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	COMPOUND TETRACHLOROETHYLENE METHYLENE CHLORIDE 1.1-DICHLOROETHYLENE 1.2-DICHLOROETHYLENE CHLOROFORM 1.1.1-TRICHLOROETHANE BROMODICHLOROMETHANE DIBROMOCHLOROMETHANE BROMOFORM	* * * 13⁄6	* HOUR OF DAY/S 14/3 15/3 62.3 8.8 50.1 102.1 5.2 375.4 11.7 2.6	NMPLE SOURCE * * * 16/5 17/5 18 14.8 6.3 1.7 6.3 1.7 81.2 35.6 9.6 5.9 31.9 4.3 4.5	*				
CAL NO. 1. 2. 3. 4. 5. 6. 7. 8. 9.	COMPOUND TETRACHLOROETHYLENE METHYLENE CHLORIDE 1.1-DICHLOROETHYLENE 1.2-DICHLOROETHYLENE CHLOROFORM 1.1.1-TRICHLOROETHANE BROMODICHLOROMETHANE DIBROMOCHLOROMETHANE BROMOFORM	* * * 19/3 117.3 17.2 84.0 98.6 5.1 365.7 11.2 2.4	* HOUR OF DAY/S(20/6 21/6 17.7 21.0 9.8 3.6 29.8 3.3 3.3 3.9	MPLE SOURCE * * * 22/3 23/3 24 128.2 68.2 148.5 106.6 95.6 7.3 331.1 11.7 2.3	** ~5				

Figure 16 Typical Gas Chromatograph Data Report

こうない うちょう しんしき しいてい しょうまたい なんなな かみの あまし アイ・シート

Figure 17 Typical Hourly Plot († of 3)

41

، ومرا

1

A STATE OF A STATE OF

Figure 17 Typical Hourly Plot (2 of 3)

Ŧ

ţ

1

1

and the second second

Figure 17 Typical Hourly Plot (3 0f 3)

Figure 18 Typical Monthly Plot

.....

TURBIDITY-SI82 (HG/L) HOURLY AVERAGES FOR JUL 1979

							-	-	-				
	1	4	3	٩	3	6	7	U	9	18	11	12	
2 1													
4	0.1	7.8			•		7.8	8.8					
5 T 6 F	8.7	8.3					9.8 8.7	9.2 8.9					
78	11.6	11.3					18.0	18.0					
8 S 3 M	7.9	0.9 8.4					7.3	7.9 8.5					
18 T 11 H	7.7	7.5					7.3	7.7					
12 T	9.8	18.4					9.8	8.5					
14 5	'												
15 S													
17 T	7.6	7.8					8.1	9.4					
19 T		9.2		•				3.5					
21 5		7.1 6.7						6.9 6.8					
22 5		6.8		-				7.4					
23 M 24 T		15.4		•				14.2					
25 U 26 T													
27 F 28 S	•	7.2						7.8					•
29 5		8.2				فيعربون الأكروا		8.8					
11 T		8.9 7.6						8.7 9.9					
													DAILY
	13	14	15	16	17	10	19	20	21	22	23	24	AVG
15			•										
3 T 4 U	18.2	18.9 6.9					9.2 8.5	8.9 8.7					11.0
5 T 6 F	9.0 11.5	18.5			•		9.3	9.8					9.3
75	0,1	0.2					7.8	8.8					9.4
8 S	8.8	7.7					7.9	0.8					7.9
ê T	7.9	0.2					7.7	0.4					U.3 7.0
2 T		9.5					₩.1	8.9					0.1 9.4
3 F 4 S													
5 5									*****				
ап 7 Т	6.2 8.7	6.7 8.8					8.5	7.5. 8.3					7.2
9 U 9 T		7.1 5.4						6.6					8.1
9 F 1 S		6.5						6.4					6.7
2 8		11.4						16.7		*****			1
3 M 4 T		11.3						••••					14.6
								·					
5 4						-					- • •		
6 T 7 F		8.1						67					• •
		6.0						6.5					F.2 6.0
) \$ • M		5.8						5.9					7.0
īΤ		9.8						5.8 9.3					6.8 9.1

and the second front

1

:

Figure 19 Typical Sample Source Trend Data Report

STRTISTICAL DATA FOR JUN 1979

*

`

١

ĺ

SAMPLE SOURCE 2 - PALO ALTO SECONDARY EFFLUENT

	SENSOR	UNITS	SAMPLING PREGUENCY	AVERAGE	DAILY AVE VARIATION	HOURLY AVE VARIATION
1.101		HIL CAH	11	5.381	1.1495	1 . 9382
2. VIA	BLE BIOMAS	MIL CAN	12	1.382	8.2339	8.6848
5.8E	CHLORINE	HG/L	11	11.153	3.1388	3.3284
6.TU	BIDITY-SIC	MG/L	15	25.701	4,2681	6.8323
9.101	ORG CARE	HE/L	15	12.243	2.8628	2.7746
18.47	TONIA	HG/L	15	21.683	4,5386	5.6734
11.NIT	RATE	MEL	2	1.777	2.9063	2.1581
12.PH		PH	15	5.945	8.1686	0.1885
14.00	DUCTIVITY	HTHO/CH	15	1258.139	68.6159	68.6781
15. TEP	PERATULE	DEGF	15	74.236	1.8811	2.6845
16.HA	DNESS	MG/L	Ĩ	166.711	53,7395	55,6983
17.500	IUM	MGAL	15	132.683	18.8478	23.4195
28.AM	IDIT TOP	DEGF	15	76.543	3.5442	4.5798
29.101	HALOCARBO	I PPS	4	354.352	156.2437	263.3189

SAMPLE SOURCE 6 - RECLAMATION FACILITY EFFLUENT

	SENSOR	UNITS	SAMPLING FREQUENCY	NONTHLY	DAILY AVG VARIATION	HOURLY AVG	PERCENT DAILY AV	Renoval G STD Dev
1.10	TAL BIOMASS	HIL CAN	23	8.582	8.2154	8.3511	89.18	5.81
2. 11	HOLE BIOMAS	SHIL CAN	24	6.155	0.1231	8.2432	59.14	10.74
S.RE	CHLORINE	MGAL	25	2.618	0.3839	0.8632	76.52	11.82
6. TU	BIDITY-SIG	2161	29	3.696	8.4575	6.5861	85.67	3.13
9.10	T ORG CARD	MGAL	29	1.966	0.8118	8.9555	83.94	7.25
18.001	ONIA	HGAL	27	16.551	2.3278	3.2153	23.30	13.5.
11.NT	TRATE	MEAL	īi	6.492	1.6143	2.1892	#-254.	451.65
12.PH		PH	29	7.535	8.2941	8.3163	-9.49	2.52
14.00	NEUCTIVITY	HTTHO/CH	29	1289.261	51.3698	59.5482	3.96	2.41
15.TE	PERGTURE 01	DEGF	29	73.829	1.3628	1.8932	8.55	0.52
16.10	IDNESS	HEA.	28	156.534	49.2368	46.5497	6.18	29.86
17.50	D TUM	HEA.	29	118.410	18.8745	28.1944	18.75	4.67
21.41	IDIT THE		29	75.146	2.9278	1.5218	1.63	1.14
29.10	T HALDCARED	N PPB		\$2.576	85.6385	57.8125	17.30	37.20

Figure 20 Typical Statistical Report

SCVWD WATER RECLAMATION FACILITY DESCRIPTION

General

日本の話になるの

The SCVWD Palo Alto Reclamation Facility is a pilot facility designed to treat $0.09-m^3/s$ (2 mgd). Figure 21 shows the basic processes in the Reclamation Facility, which has as an influent the chlorinated, nitrified, filtered secondary effluent from the $1.53-m^3/s$ (35 mgd) Regional Water Quality Control Plant located in Palo Alto. The reclamation plant includes the following: High-lime treatment, single-stage recarbonation, breakpoint chlorination for further nitrogen removal, mixed-media filtration, activated carbon sorption with carbon regeneration, ozonation, chlorination for disinfection, and storage. Innovative design of the plant allows flexibility in the sequence of the unit processes. For instance, the water can be filtered prior to or after activated carbon treatment, or both, depending on the need to protect the carbon beds or to eliminate carbon fines in the effluent. This flexibility was provided to permit research and testing of various alternatives prior to building a larger plant.

The facility has a direct digital computer control system that allows operators to alter control parameters. Process configurations are easily changed by the engineering staff. The computer supplies operational data to personnel on shift, while operating the plant.

The following are general descriptions of the processes. Table 4 describes capacity parameters for the processes.

Control and Instrumentation

A Modcomp II/221 computer with 64K words of main memory, two moving head disk drives with 2.6M words of memory, one fixed head disk with 512K words of memory, one REMAC multiplexer unit, three CRT's, a card reader, and a printer are utilized for plant data acquisition and control. The software utilized is a modified version of a standard control package called FLICK.

All instruments in the plant, as listed on Table 5, are standard commercially available devices.

The need for exceptional process flexibility (i.e., arranging unit processes in any desired order) led to the selection of a DDC (digital data control) system with no conventional analog backup control. It was felt that such a hardwired backup, as found in many plants, would restrict process flexibility to an unacceptable extent. Also, because of the "pilot" nature of this plant, a backup computer system was not justifiable. Because of the lack of a backup system, outages due to the control system were much more frequent than would be experienced in a conventional plant where usual backup and redundancy measures were utilized.

maker in a start for the

{

48

، م

Chemical Clarification

Chemical treatment is effective in removing suspended solids, colloidal solids, and some dissolved constituents, such as heavy metals and phosphates. During the initial periods of operation, removal of ammonia by air stripping was implemented for the reclamation system. Therefore, since this process requires a high pH, lime was selected as the chemical of choice. A secondary benefit was achieved, since the high pH resulting from additional lime is also considered to be quite effective in pathogen destruction.

The process consists of separate rapid mix, flocculation, and sedimentation basins. Lime is added in a slurry form to the rapid mix basin. The feed rate is automatically controlled to achieve the optimum pH of approximately 11. The dose to achieve this pH was 100 to 200 mg/l as calcium oxide. The water flows from the bottom of the flash mix basin to a center column in the flocculator clarifier. The influent enters the center column of the tank at its bottom, rises up the center column, and comes out through the side openings at the column near the top. The flocculation basin contains two flocculating mixers within a circular mixing compartment. These provide complete mixing so as to develop a substantial rapid settling floc. After mixing and blending, the influent exits from the bottom of the flocculating compartment and flows radially outward in the clarification compartment. The tank's effluent passes over a weir into a shallow trough around the periphery of the tank.

TABLE 4

SCWD-WRF/PA UNIT PROCESS CHARACTERISTICS AT 0.09 m³/s (2 MGD)

Flash Mix

and the state of the state

Lime Feed Capacity: Process Volume: Mixer Horsepower: Detention Time:

15.9 m³ (560 cu. ft.) 5 hp 3 minutes

Flocculator/Clarific-

Type: Circular Diameter: Depth: Flocculator Detention Time: Clarifier Detention Time: Center Feed, Peripheral Weir,

2700 kg/day (3 tons/day)

16.8 meters (55 feet) 3.4 meters (11 feet) 0.5 hr. 1.9 hr.

TABLE 4

Î

SCVWD-WRF/PA UNIT PROCESS CHARACTERISTICS

(Continued)

Aeration (Ammonia Stripping) - Aeration pumps were not operated during this test period. Tank Dimensions: 16.8 m L x 9.1 m W x 4.3 m D (55 ft. $L \times 30$ ft. $W \times 14$ ft. D) No. of Aerators: 2 Combined Horsepower: 100 hp Circulation Fan Horsepower: 30 hp 2.1 hr. Detention Time: Recarbonation Tank Dimensions: 6.4 m L x 2.1 m L x 2.1 m W x 4.2 m D (21 ft. L x 7 ft. W x 13.75 ft. D) 10 hp Mixer Horsepower: Stack Gas Feed Capacity: 550 SCFM Detention Time: 11 minutes Ozonation Tank Dimensions: 6.4 m L x 2.1 m W x 4.1 m H (21 ft. L x 7 ft. W x 13.5 ft. H) Ozonator Capacity: 42.6 kg/day (94 1b/day) Detention Time: 10.5 minutes Filters* Number of Filters: ٨ Mixed Media 20.5 m² (221 sq. ft.) 0.9 m₃(3 tt.) 7.1 m²/sec/m² (3.1 gpm/sq. ft.) Type: Surface Area (each): Media Depth: Hydraulic Loading: Granular Activated Carbon Number of Columns: 4 Type: Upflow 3.0 m (10 ft.) 6.1 m (20 ft.) 177.8 m (6280 cu. ft.) Diameter: Bed Depth: Total Carbon Volume: Calgon₃Filtrasorb 300 (8 X 30 mesh) 10.1 m /sec/m² (4.4 gpm/sq. ft.) Carbon Type: Hydraulic Loading: Empty Bed Contact Time: 34 minutes

*Filters may be assigned to pre-GAC and post-GAC filtration in any combination. Hydraulic loading value given is for two filters on each service.

TABLE 5

PLANT INSTRUMENTATION

INSTRUMENT TYPE	NUMBER	INSTRUMENT TYPE	NUMBER
Flow	10	Dissolved Oxygen ppm	1
Level	19	Sludge Density %	1
Pressure psi	5	Tachometer RPM	1
Temperature C ⁰	4	Analog Output Test % Max	1
Turbidity FTU & NTU	6	Valve Monitor % Open	18
pH	3	Valve Monitor % Closed	2
Conductivity MHO	1	Pump Menitor % Max	5
Residual Chlorine ppm	1		

The results of lime clarification at Palo Alto have shown this process to be effective in reducing turbidity, organics, suspended solids and heavy metals.

Recarbonation

and the second second second

Following settling, the effluent flows through an open tank, formerly used for air stripping, into the recarbonation basin for adjustment of the pH. Stack gas from the existing sludge incineration furnaces of the Palo Alto Regional Water Quality Control Plant is transferred to the recarbonation basin. The stack gas, providing the carbon dioxide source, and the liquid are thoroughly mixed by a flash mixer before leaving the chamber. A sediment trap is provided for removal of contaminants from the stack gas before it enters into the blower. The pH in the recarbonation chamber is automatically controlled by the in-plant computer and determines the amount of stack gas needed and automatically adjusts the opening at the motorized gas inlet valve to provide the proper recarbonation pH. During the test period, this pH was selected to be 7.0.

Mixed-Media Filtration

The recarbonated effluent is then pumped to two open gravity multimedia filter basins designed for a hydraulic loading rate of 7.1 m/sec/m² (3.1 gpm/ft²). The purpose of the mixed-media filtration is additional removal of suspended solids and floc carried over from preceding steps. Filtration is performed prior to granular activated carbon sorption since the possibility of fouling by suspended solids and colloidal matter exists. The filter media are 910 cm (36 inches) deep and consist of coarse coal, sand, and garnet supported by a layer of sand and garnet gravel.

Ozonation

Following mixed-media filtration, the flow is directed to an ozonation chamber. Ozonation was provided to evaluate its effectiveness for enhanced disinfection and trace organics removal. The ozonation system consists of an ozonator, diffusers, and baffles. Ozone is an unstable form of oxygen, which is produced in nature when oxygen in the atmosphere is exposed to an electrical discharge, such as lightning. It is also produced artificially, as in an ozonator, by passing clean, dry air through electrodes when high-voltage electrical discharges occur. The ozonator is capable of generating 42.6 kilograms (94 pounds) of ozone at 1% minimum concentration in 24 hours.

Granular Activated Carbon Sorption

From the ozone chamber, the water is pumped to the carbon towers and flows upward through the diffusers at the underdrain plate of the carbon column. Effluent discharges through the collection lauders located near the top of the towers. Each tower is 3.0 meters (10 feet) in diameter, 9.1 meters (30 feet) in overall height, and contains a 6.1 meter (20 foot)-high column of granular activated carbon. All four carbon towers are identical. The contactors operate in parallel, each having an empty bed contact time of 34 minutes. The hydraulic loading rate for each column is $10.1 \text{ m}^3/\text{sec/m}^2$ (4.4 gpm/sq ft). Following GAC sorption, the flow is diverted through the other two mixed-media filters. The purpose here is to remove any carbon fines that may have washed over the tower weirs. Finally, chlorine is added to provide a residual of about 1 mg/l and then the flow is directed to a storage tank for future use.

PLANT/PROCESS PERFORMANCE EVALUATION

WMS data on the operating characteristics of the plant were collected beginning in 1978 through February 1981. During that 3-year timeframe the plant has operated in various configurations which are summarized in Table 6. The table shows that changes have occurred to plant influent processing as well as to in-plant configurations.

Figure 21 illustrates the process stream from raw wastewater to well injection. Table 7 describes the 'eclamation plant design criteria and a physical description of equipment. Table 8 presents the reclamation plant effluent discharge limits.

Nominal Input/Output Characteristics

It was found that five parameters best represented the effectiveness of process contaminant removal under various operating conditions and plant configurations. These parameters are TOC, total halocarbons, turbidity, and total and viable biomass. Figure 22 summarizes percent removal performance based on dail, averages of plant input/output measurements. Figure 23 illustrates the same data in terms of concentrations. It may be generally concluded from these data that (1) flocculation significantly improves effluent quality and (2) with the exception of biomass, effluent quality depends on a variable influent quality, thus constant effluent quality may not be expected.

The above data represent a summation of unit process performance illustrated in Figures 24 through 28. These figures represent the actual measurements (Appendix A) reduced to a mathematical expression relating process output to input over the observed range of inputs. For example, TOC removal in the reclamation plant for an influent value of 15 mg/lit can be computed from the data presented in Figure 24, as follows:
Table 6 Process Configurations for Test Periods

₹ Ú

	NOI LON	<u>ب</u>	<i>.</i>	v.		<u>0</u>	o.	o	Q	۰.	•	2 .8.	.5	.5
	101507		-		-	2	-			5	5	50 50	5	2
SES	PICLER IN A	7	7	~	~	a		4						-
ROCES	41:0	*	*	×	×	×	×	×	×	×	×	×	×	×
LANT P	C1C 12	1,2,4	1,2,4	1,2,4	7	ব	3,4	3,4	3,4	2	-1	-	1	1
TICH P	20102 2010 2010 2010 2010 2010	4	ব	3	•	t	•	•	\$	11	11	11	11	11
CLATS.	AU: 10	×	×	×	×	×	×	ł	×	×	×	×	×	Ħ
P.E	¥ 1. 1. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	×	×	×	×	×	×	×	×	•	ı	×	•	×
	AC:1+33Y	•	•		×	×	×	×	•	1	•	×	١	×
	2 C C C C	11	11	11	11	11	11	п	9.5	•		Ξ.		11
ESSI W	CHE COLIVELION	×	×	×	×	<u> </u>	•	×	×	×	×	×	×	×
Cid II	N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	×				12 FLON						٠	ł	٠
HFLUEN	Crelic ICellon	×	×	×	×		×	×	×	×	×	×	M	×
UANT 1	VERATION KERATION	×	×											
TICK P	STRALED VCLIANLED					·		~	2		~		×	×
CLAMA	N 71 3 01 3 3			×		Î		-	Î	Ŷ		~		
	Swi Tulis	×	×	•	'		• 1	ł	•	٠	٠	ł	ł	•
	Niki Ki	×	×.	×	×	×	×	×	×	×	×	×	×	×
		2/28/81	68/82/2	63/90/5	03/11/2	62/01/T	0/08/79	01128/79	5/02/79	6//61/2	11/12/11	81/0£/6	6/10/78	3//02/18
	TEST PERIOD	ي ع	0 - 9	ບ 30 - 0	0 - 61	1 - 6/	1 - 62	0 - 62	0 - 6/	78 - 0	78- 1	- 2	- 87	י ג
	_	1/20/60	02/07/2	027120	אנענ	/60/61	717,80	05 R.V.	03/31/	11/28/	11/13/	6/11/	1/1	Z
	TEST PERIOD SYIBOL	×	8	U	a	LA.J	u.	9	X	.	7	×	ب	x

Criteria
Design
Plant
Reclamation
Water
Table 7

\$

-

INCOMING FLOW CHARACTERISTICS

Elow (full treatment) and	6	OZONATION SYSTEM	
riow (iuri treatment), mgu Riochemical (ryoon (omard (5-day), mg	/) 20		
Chemical Oxygen Commune (2	06	Tank Length. ft.	21
Suspended Solids, mg/l	20	Tank Width, ft.	~
Aamonia, mg/l	25	Tank Depth, ft.	13.5
MBAS, mq/l	2	Detention Time, min.	10.5
Turbidity, jtu	30	Capacity Ozonator, Ibs/day	8
Coliform, MPN/ 100 ml	Less than IOUU	FILTERS (0 2 mod/2 filters split flow)	
DESIGN OBJECTIVES			
	Average Maximum	Number of Filters	4
Biochemical Oxygen Demañd, mg/)	1 2	SUFIACE AFEA EACH, TL. Filtar Madia Danth (nominal) fe	22
Chemical Oxygen Demand, mg/l	10 15	Wydraulic Loading growff.	- -
Suspended Solids, mg/l			
Ammonia, mg/l	د م	CARBON ADSORBTION SYSTEM	
	0.1 5.2		
Controlaty, Jtu Controlaty, Webb (Modian)/ 100 ml	r.u	Number Adsorbers	-
COLITORN, FICH (MCGIGHI)/ TOO HI Jece than	2.2 23	Length Column, ft.	ຊ:
		Ulameter Column, ft. 3 Total Parker Velice Jon 24 3	2 ç
LIME CLARIFICATION SYSTEM		total tarbon fotume, 100 F5. Hvdraulic Loading, gnæ/ft.	8.20
	Ş	Detention Time, win.	5
L' Sturage Capacity, Tons	2	Assumed Carbon Loading, 1bs. COD/1b. Carbon	0.3
Capacity Lime feed System, lons/day	.	Number Carbon Storage Tanks	2
Detention lime Kapid Mixing, main.	5	Total Carbon Storage Capacity, 100 ft,	66
Flocculator/Clarifier Unameter, Tt.	66 [Carbon Regeneration Furnace Area, ft.	25
Flocculator/Clarifier Wepth, ft.		Carbon Regeneration Furnace Loading, lbs/ft. ⁵ /hr.	4.2
Plocculator Detention lime, nrs. Sotting Extention Time has			
Setting beteining time, may		BACKMASH WASTE STORAGE	
AMMONIA STRIPPING		Tank Length, ft.	8
:	5	Tank Width, ft.	8
Tank Length, ft.		Tank Depth, ft.	2
Tank Width, ft.	06	Capacity, 1000 gals.	8
Tank Depth, ft.			}
Detention Time, hrs.	2.1	FINAL STORAGE	
Number Aerators	2		
Combined Aerator Norsepower	100	Tank Diameter, ft.	70
Horsepower/1000 cf	۰. د	Tank Operating Depth, ft.	20
		"A" Water Storage Capacity, 1000 gals.	151
KE LAKBUNAT I UN		"B" Water Storage Capacity, 1000 gals.	415

21 7 13.75 11

Tank Length, ft. Tank Width, ft. Tank Depth, ft. Detention Time, min.

54

-<u>-</u>--

Table B Reclamation Plant Discharge Water Quality Permit Requirements

(

					IRRIGATION	
	GROUND WATE	R INJECTION			VAV	MIN
	30 DAY AVG.	MAX.	MIN.	7 DAY AVG.		
						•
11 17 557 555	1.0	2.0	ı	I	0.04	
BOUS, MU/LII	0 01	15.0	ł	١	١	ı
COD, MG/LIT	0.01		C r	ı	١	ł
	١	8.5	0.1			
нd		5 0	•	ı	I	1
TURBIDITY, JTU	ı				ı	ı
TOTAL NITDOGEN MG/LIT	5.0	10.0	1	ı	ŀ	
INTAL MULLYONERS THE FLORE	•	¢ 0	ı	ı	۱	I
MBAS, MG/LIT	0.1	0.6			0.1	١
DISSOLVED SULFIDE, MG/LIT	ı	0.1	١	ı)	1.0
ATTERN MG/LIT	2.0	ı	1.0	1	1	
	2.2	ı	ı	23	١	ŧ
MDN, #/ 100 ML	(7 Day)					

- +

.

55

- Section Add

Į.

Figure 22 Reclamation Plant Nominal Steady-State % Removal Characteristics (1 o Input Range Indicated)

È

L

5

. .

a the lot

ころとうないというないない

^{*} DEPENDENT ON OPERATING HISTORY

Figure 24 Unit Process Steady-State Input(I)/Output (O) Characteristics at 1 mgd

State and the state of the stat

* DEPENDENT ON OPERATING HISTORY

1 - ACTIVATED SLUDGE/CHLORINATION (15-50 MGD)O = 0.312 - FLOCCULATION/AERATION/RECARBONATIONA - pH 11O = 0.51B - pH 9.5O = 0.51C - pH 9.5 W/O AERATIONO = 0.613 - FILTRATION/OZONATION/ CARBON ADSORPTIONO = 0.2514 - CARBON ADSORPTION W/O FILT/O3O = 0.4515 - FILTRATION/CHLORINATION $O = 1e^{-1/15}$

Figure 26 Unit Process Steady-State Input(I)/Output (O) Characteristics at 1 mgd

Í

2 - FLOCCULATION/AERATION/RECARBONATIO	N
A – pH 11	O = 0.2
B - pH 9.5	O = 0.2
C - pH 9.5 W/O AERATION	○ = 0,121
3 - FILTRATION/OZONATION	O = 0.05
4 - CARBON ADSORPTION	O = 1 + 0,1
5 - FILTRATION/ CHLORINATION	0=1

Figure 28 Unit Process Steady -State Input(I)/Output (O) Characteristics at 1 mgd

For process stream; Floc (pH 11)/aeration/filt/03/GAC/filt/C12 TOC OUT = { $[(TOC In - 5.5) 0.85] -6 \} 0.85$ $= \{ [(15 - 5.5) \ 0.85] -6 \} \ 0.85 \}$ = 1.8 mg/lit % REMOVAL = (TOC IN - TOC OUT) 100/TOC IN = (15 - 1.8) 100/15 = 38% For process stream; Filt/03/GAC/Filt/Cl2 TOC OUT = [0.85 (TOC IN) - 6] 0.85= [0.85 (15) - 6] 0.85 = 5.7 mg/lit % REMOVAL = (TOC IN - TOC OUT) 100/TOC IN (15 - 5.7) 100/15 -= 62%

The unit process performance data presented in Figures 24 through 28 were determined during testing from April through July 1979. In mid-August 1979, the flocculation process pH sensor in the system for controlling lime dosage was found to be caked with sludge and had a calibration error which resulted in low values. In order to estimate the impact this may have had on previous data, a dosage test was performed and compared with plant operating records of lime consumption. Analysis of these data, Table 9, indicates that the pH was low throughout the test period and that the pH 9.5 and pH 11 performance data presented in this report probably are representative of performance within a pH range of 9-9.5 and 10-11, respectively. The sludge covering the pH probe may also have reduced sensor response time thereby contributing to the data scatter observed in Appendix A.

In addition to the removal characteristics provided by the five key parameters, ammonia, nitrate/nitrite, dissolved oxygen and biomass provided information concerning biological activity in the process stream, while dissolved oxygen, pH and total residual chlorine reflected operational status of the plant. The charts in Appendix B summarize representative WMS data and comparable lab data takes curing this test program.

The reclamation processes which produced the most significant changes in the measured parameters may be described as follows:

TOC

Equal removal by flocculation and GAC; controllable by pH and activated carbon operating history/environment.

		pH Set Point	A Alkalinity, MG/LIT(CaCO ₃) Avg. ± 1₀	D Average Lime Dosage, MG/LIT	Calculated* <u>Average</u> pH
APRIL		9.5	237 ± 17	114	4.6
MAY		11	179 ± 30	211	10.6
JUNE		11	192 ± 21	204	10.4
JULY		11	176 ± 23	213	10.7
AUGUST	1-15	11	190 ± 16	297	11.2
	16-31	11	157 ± 12	216	11.0 (REFERENC

Estimated Flocculation pH Based on Lime Consumption and Influent Alkalinity Table 9

日本のないないのであっていたい

* pH = 8.55 + 455 V

.-

Where,

V = Volumetric ratio of lime slurry to plant influent - equation fits the results of dosage test for pH range 9 to 11.2 and alkalinity of 200 mg/lit with a correlation coefficient of 0.998.

and,

Assuming dosage/alkalinity ratio is constant for a given pH (Reference 18) $pH = 8.55 + 1.78 \left(\frac{D}{\overline{A}} \right)$

Total Halocarbons	Removal by aeration (or purging including the effects of aeration and recarbonation with CO_2).
Turbidity	Removal by flocculation.
Biomass	Removal by flocculation; growth in GAC.
Dissolved Oxygen	Quantity added by aeration is removed by biological growth in GAC and filters; frequent filter backwash is necessary to maintain a residual in the effluent.
Conductivity Chloride, Solium Hardness	No change.
Ammonia	Equal removal by aeration (below design requirement) and GAC (by biological conversion).
Nitrate/Nitrite	Increases due to biological growth in GAC.
Total Residual Chlorine	Removal in GAC
рН	Neutralization by recarbonation.

As shown above, flocculation is a key process in attaining high effluent quality; however, to date, tests to determine optimum operating parameters for this process have not been performed. Testing has been planned and preparations are in progress. The data presented herein represent a fixed set of operating parameters, e.g., a sludge recirculation rate of 600 GPM and a wasting rate of 50 GPM, over an uncertain pH range (as discussed above).

Influent Variations

「「「「「「「」」」

A consistent source of variation in plant effluent quality results from the diurnal flow of raw wastewater into the primary and secondary processes. Organic and suspended solids removal in the activated sludge process is directly related to detention time (input flow) which normally varies by a factor of two each day. Secondary effluent quality has comparable variations. The pattern of the diurnal flow cycle results in highest effluent quality at midday and lowest quality at midnight. The consistence of this pattern is apparent in Figure 29, which shows the time of day of pears uses and Figure 30 which shows the daily profile.

To confirm the relationship between flow and effluent quality, a math model (Appendix C) was developed to determine suspended solids (biomass) and organics (non-volatile TOC) in the secondary effluent as a function of influent concentration, plant operating parameters and hourly flow variations. The results illustrated in Figures 31 and 32, show that measured biomass values can be duplicated by a model representing variable performance in the secondary process clarifiers. The results show that effluent quality is high at a time where, based

ĺ

Figure 30 Hourly Plot Indicating Diurnal Cycle (2 of 3)

ويفيان فيطيبها فالاستان فحقا

.

ಸ

こうちょう たましい いろうちょう したい and reaction bent

ŧ

i

and the second find the state

MATH MODEL SIMULATION OF PROCESS SOLIDS IN ACTIVATED SLUDGE PROCESS EFFLUENT

70

a Car

ないという言語

FIGURE 32 MATH MODEL SIMULATION OF NON-VOLATILE ORGANICS

only on detention times, lower quality might be expected. It is interesting to note that the non-ideal performance (mixed flow in the clarifiers) results in a better overall quality effluent than might otherwise be predicted. This is attributable to the daily "morning break" where flow falls below 25 MGD and ideal (plug flow) settling occurs. It is expected that wet weather or a large increase in plant flow due to local growth, where high flows were sustained, would produce a significant decrease in secondary effluent quality.

The potential exists for utilizing the biosensor to improve secondary effluent quality. If the return sludge rate and wasted sludge rate (Appendix C) were controlled for optimum biological solids in the aerator, the conditions which result in the excusions in effluent quality might be reduced. However, no testing has yet been performed to prove this concept due to other priorities.

The observed diurnal cycle might have some influence on plant operational procedures. For example, the normal procedure for determining conformance of the secondary effluent to discharge permit requirements (240 coliform per 100 ml, 7 day average) is by grab sample collected at noon each day; however, based on the diurnal cycle, a higher biological population in the effluent would te expected around midnight. A small group of samples were collected and analyzed which showed that prior to disinfection the biological population was indeed higher at midnight (Table 10) as measured by coliform, biomass and turbidity, but the plant disinfection strategy (constant concentration of chlorine dosage) appeared adequate for the higher number of coliform. A control strategy that recognized not only dosage and contact time, but also quantity of biological material, while maybe desirable, was not justified in this short testing period, where coliform was the only standard of performance.

The changes in secondary effluent quality due to the diurnal cycle could have an influence on reclamation plant operations as will be discussed later in this section.

Major variations in total halocarbons follow a weekly cycle. Figure 33 shows that these variations result in high concentrations midweek and low concentrations on the weekend. Some of these compounds are commonly used solvents and the weekly cycle presumably reflects work patterns of local industry.

Typical concentrations of the nine individual compounds comprising the total halocarbons are shown in Figure 34, which also shows process removals. Significant removals occur in the purging processes, e.g., aeration (activated sludge) aeration (ammonia stripping) and recarbonation, and across the GAC.

Carbon Adsorption

Organics removal decreased with operating time as the adsorbent surface of the granular activated carbon (GAC) became saturated. For example, Figure 35 shows that chloroform removal suddenly decreased after processing about 20 mgal. After processing 35 mgal, the GAC was saturated at the average influent concentration of 39 μ g/lit and the effluent was characterized by a great deal of data scatter as the GAC alternately adsorbed and desorbed in concert with the influent concentration. The performance of two other carbon towers, at plant configurations

Table 10 Diurnal Variation in Biological Quality

1-10-10 1-10-10 1-10-10

Ę.

A STATISTICS AND A STAT

						AST CH DETUATION		
	TOTAL BIOMASS MC/M.	E-CHLORINATION VIANLE NC/NL	COL 17000	TOTAL BIOMSS NC/N.	VIABLE DIOMASS NC/ML	CGL 1F00M 4/100 ML	TUMBIDITY NG/LIT	TUTA. RESIDIA CHLORINE NG/LIT
1000 1-36-73	•	6.1	1.65 x 10 ⁵	3.7	9.6	•	n	•
5-1-79	16.4	4.7	2.30 × 10 ⁵	4.2	0.3	~	14	•
6-2- <i>7</i> 9	10.2	2.4	1.15 × 10 ⁵	4.1	0.3	•	4	2
61-6-5	<u>0.1</u> 11.1	1.7	7.0 × 10 ⁴ 1.32 × 10 ⁵	3.9	0.4 0.4	م ام	32	
T'91NOIN			u			•	2	~
5-7-79	29.1	10.9	3. X × 10°	6.1		, .	1	•
6/- 8-5	17.6	3.9 10.0	3.30 × 10° 22.4 × 10'			• ••	9	•
6-1-79 5-10-79	39.9 25.5	20.5 11.3	<u>1.40 x 10⁵</u> 27.8 x 10 ⁵	9.9 7.9	5.5 4.1		<u>ज</u> ्जा (1	

.

5

the second second

ų g

Figure

74

.....

April Averages (ug/LiT) ± 10

1

) THOULDE	ĺ		ACTIVATED	4	FLOCCULATION		511 TO 2110		W TO JE	6	6011761 H	1-
15-50 HG0	PRIMARY	1	CHEORINE		STRIPPIKG*		NC11:NOZO		LET IVATED		HL671 AT10	
			Avg. X Qemoval		Avg. 5 Removal		Arg. 5 Removal		Avg. 2 Removal		Avg. 2 Removal	
TE TRACHLOROETH:"LENE	NED. Sur.	298±162 15± 5	50 50	109 ± 55 12 ± 9	62 42 (83)	41 ± 14 7 ± 3	\$ \$	23 ± 5 4 ± 1	83 75	4 ± 1 1 ± 1		. 4 ± 2 1 ± 1
NETNYLENE CHLORÌCE	WED.	320±128 27±15	8.2	27 ± 27 1 ± 0	95 95 95	12 ± 10 31 ± 23	88	8 ± 4 24 ± 24	-213 4-	25 ± 7 25 ± 7	214	22 ± 5 24 ± 7
1,2 DICHLORDETHYLENE	NED. Sun.	101±34 67±11	55	31 ± 9 32 ± 15		32 ± 10 33 ± 14	-9 -15	51 ± 56 51 ± 86	# \$	31 ± 9 20 ± 11	-15	26 ± 10 23 ± 10
CHL. OROFORM	KED. Sun.	44±30 20±4	ы К С	30 ± 15 20 ± 4	69 22 69	18 ± 5 15 ± 3		17±4 15±2	26 23	4 ± 2 4 ± 1	••	4 ± 1 4 ± 2
1,1,1 TRICHLOROETHYL	ENE VED. Sun.	227±126 17±8	66 41	78 ± 36 10 ± 8	74 50 (95)	20 ± 10 5 ± 3	44	11 ± 7 3 ± 2	55	1 + 1	00	1 + 1
BRONDOI CHIL ORONE THANE	NED.	311 241	<u>د</u> ز 100-	4 4 4 2	50 (Ľ)	3 ± 1 1 ± 4	55 25	3 ± 1 3 ± 1	6)33	2 ± 1 1 ± 1	<u>8</u> 0	1 ± 1
TRICHLOROCTHYLENE	MED. Sun.	150±62 22±5	8 8	52 ± 50 7 ± 2	8 6	20 ± 8 4 ± 1	32 N	14 ± 10 3 ± 1	88 63	2 ± 0 1 ± 0	30	1 ± 0 -1 ± 0
DI BROHDCHLORONE THAME	NED. Sun.	111	-100	2 ± 0 2 ± 0	88 88 89	1 * 1 1 ± 1	••	- 1	••	1 + 0	00	1 + + 0
BRONDF ORM	NED. Sun.	6±3 2±1	6 ⁷	2 ± 1 2 ± 1	000	2 ± 1 2 ± 1	••	2 ± 1 2 ± 1	00	2 ± 1 2 ± 1	00	2 ± 1 2 ± 1
TOTAL HALOCARDONS (FUNTHLY AVERAGES)		990±858	83	313 ± 210	(15) (75)	167 ± 86	8	126 1 54	46	68 ± 28	12	59 ± 21
 ACKATORS WERE - TYPICAL REMOVAL 	OUT OF SE L MITH AE	ERVICE DUR	ILMG APRIL. SERVICE (1	MY AVERAGES								

Figure 34 Weekly Cycle of Halocarbon Concentrations (Influent Concentration Varies From a Maximum at Mid-week to a Minimum at Weekend)

.

··· ·

-

35 Mgal at Saturation)

76

.

which resulted in different influent concentrations, were similarly monitored. Figure 36 presents an analysis of these data showing GAC adsorption capacity for chloroform over a range of influent concentrations. Average carbon regeneration rates necessary to maintain active chloroform removal can be computed based on this capacity curve using the following equation:

R = 33,500 Q
$$\frac{C_i - 7}{C_i 1.77}$$

Where R = Activated carbon average regeneration rate, lb/day

Q = Flow, mgd

 $C_i = Average influent chloroform concentration, <math>\mu g/lit$

Thus, for the 3 plant configurations tested, the following regeneration rates would have been required at plant rated flow to prevent GAC saturation.

	Plant Configuration	C _i	R @ 2 mgd	
Δ	FILT/GAC/FILT	39 µg/lit	3274 1b/day	
¢	FLOC/FILT/GAC/FILT	28	3862	
0	FLOC/AER/FILT/GAC/FILT	15	4441	

Or, if a limit were placed on the average effluent concentration, say 30 μ g/lit, regeneration would be required only for the first configuration listed above.

These regeneration rates are much higher than the plant contractor's est te of 1000 lb/day to maintain COD removal capability, and would represent a significant operating expense if used as criteria for carbon regeneration. However, trihalomethanes are not currently restricted by the plant's discharge permit. These data may be of interest in the future since the EPA is contemplating limits on trihalomethanes for drinking water supplies (Reference 2). It should be noted that chloroform was the first of the nine trace organics measured to saturate the GAC, thus a different effective carbon life will result if other measures are used as indicators.

TOC removal, for example, stabilized for a period, after 2-3 months of operation - Figure 37. Apparently, biological activity in the GAC had reached equilibrium where the quantity of non-volatile organics adsorbed equalled the quantity consumed by the bacterial population. Bacterial growth is apparent from the measured biomass elution from the column, the decrease in dissolved oxygen and the nitrification across the column (Appendix B, April-July 1979). The rate of the biological growth was undoubtedly affected when, after 55 days of operation, ozonation, which preceded GAC in the process stream, was turned off. Also, growth may have been inhibited for the first month of operation due to a low dissolved

ſ

oxygen, due to inoperative aerators. Subsequent performance stabilization may have reflected the healthier growth environment, e.g., plenty of oxygen and no ozone. This biological cleaning may offer a less expensive alternative to the heating method of carbon regeneration. This is discussed further in Section 8.

Decay in performance began again after 5 months of operation. The cause is not known, but the decay was accompanied by a decrease in the earlier observed rate of biomass elution, suggesting reduced biological activity.

The rate of performance decay, Figure 37, during the first 2 months of operation, 1 mg/lit per month, indicates that an average carbon regeneration rate of 700-800 lb/day at 2 MGD would be required to maintain peak performance. This corresponds to the plant contractor's estimate of 600-1000 lb/day.

POTENTIAL WMS APPLICATIONS FOR PROCESS CONTROL

Several opportunities are available in the reclamation plant to utilize automated water quality data for process control. These are listed in Table 11. In addition, the number of available processes in the plant and the flexibility in selecting on-stream processes presents another control option, e.g., process stream configuration control. For example, listed in Table 12 is the maximum influent concentration to various process streams where discharge permit limits for COD (10 mg/lit) would not be exceeded. Also shown are the cost of consumables associated with the processes. This illustrates that the process stream could be selected based on the most economical way of treating specific influent conditions. If this example concept had been used during July 1979, flocculation and aeration would have been unnecessary for most of the month (1σ TOC range was 9.2 to 14.6 mg/lit) and a significant portion of the potential savings of \$4,600 could have been realized. Of course this example was simplified to demonstrate the concept and the impact on removals of other contaminants must also be considered.

Alternately, plant flow could be controlled to maintain the highest quality effluent. During periods of low demand, the configuration and flow could be adjusted for peak performance and the water delivered or stored for later mixing with the effluent during high demand periods.

This concept of storage and selective dispensement of high quality water may be a necessary alternative if discharge permit limits are not to be exceeded. As illustrated in Figure 23, for example, the TOC limit of 4 mg/lit (COD of 10 mg/lit) can be exceeded for expected influent conditions.

Biologically regenerated GAC offers another potential opportunity for significant savings by process control. If the GAC can be operated at conditions faborable to biological growth, it may be possible to reduce or eliminate the expense of carbon regeneration with minimum impact on effluent quality. For example, if the four GAC columns could be scheduled such that flow to one of the columns were terminated during periods of low influent organics, the bacteria in this column would have the opportunity to "clean house" under favorably quiescent conditions. Improved performance would be expected when this column was again placed on-line during periods of high influent organic concentrations.

-2

いたいとうとうないのであるとないであるというです。

Figure 37 Rate of Activited Carbon Saturation with Non-Volatile Hydrocarbons

Process	Control Parameters	Potential Criteria
Flocculation		
Chemical Feed Rate	pH or Inorganic Carbon (Alkalinity)	Constant pH
	pH/Turbidity, Biomass or TOC	Variable pH based on influent
Sludge Return Rate	Flow/Turbidity or Biomass in/out	Relationship to be determined
Sludge Wasting Rate	Sludge density or turbidity	Relationship to be determined
Aeration (Ammonia stripping)	DO, Total Halocarbons, Flow	0, 1 or 2 pumps based on influent THC and effluents DO
Recarbonation	μ	Constant pH (7-8)
Filtration	ΔΡ, DO	Backwash at limit
GAC	TOC, Total Halocarbons	Carbon regeneration rate based on remova performance
Chlorination	Flow	Constant dosage
	or Total Residual Chlorine	Constant residual
Ozonation	Flow	Constant dosage
Flow	Turbidity, TOC, Total Halocarbuns, Biomass	Regulate flow to store/deliver highest quality effluent during periods of low demand.

Table 11 Reclamation Plant Systems Amenable to Automatic Computer Control

Table 12 Configurations/Costs of Controlling Effluent COD \$10 Mg/Lit at 1 mgd

active and a state of the

4.5

	MA Y	THEFTERT TOC FOR 2 4 HO H		CONSUMA	BLE COSTS, \$/DAY	
PROCESS STREAM		IN THE EFFLUENT	E.	GAC	ELECTRICITY FOR AERATION	TOTAL
FLOC(pH 11)/AER(2)/FILT/GAC/FILT		18.1	70	150	80	300
FLOC(pH 9.5)/AER(2)/FILT/GAC/FILT		15.6	23	150	80	258
FLOC(pH 9.5)/AEC(1)/FILT/GAC/FILT		14.9	28	150	40	218
FLOC(pH 9.5)/FILT/GAC/FILT		14.1	28	150	0	178
FILT/GAC/FILT		:2.6	0	150	C	150
FLOC(pH 11)/AER(2)/FILT		4.7	70	0	908	150
FLOC(pH 9.5)/FILT		4.7	28	0	0	28
FILT		4.7	0	٥	0	0

BASIS

1. COD/TOC RATIO OF 2.5

- CARBON REGENERATION AT 500 LB/MGAL, \$0.3/LB. (ESTIMATE BASED ON 100% ESCALATION OF 1973 OPERATION AND MAINTENANCE COSTS QUOTED IN REFERENCE 19) <u>ہ</u>
- LIME DOSAGE AT 280 MG/LIT FOR pH 11, 112 MG/LIT FOR pH 9.5 \$60/TON э.
- 4. ELECTRICAL ENERGY AT \$0.04/KMH
- 5. NOMINAL STEADY-STATE TOC REMOVAL PERFORMANCE (FIGURE 7-4)

Opportunities to utilize these off-periods are available daily, due to the diurnal cycle, on weekends, and during certain seasons. However, wet weather, seasonal variations and random upsets in the secondary process suggest that the off-periods should be dictated by the influent quality considerations rather than by time period scheduling in order to assure product water quality.

1

During the column off-periods excess flow might be routed to the other three columns, resulting in some performance penalty, but proper selection of influent critiera would prevent exceeding effluent discharge limits.

A disadvantage may be the reduced capability for removal of trace hydrocarbons, e.g., chloroform. Testing may be necessary to demonstrate the total impact of biological regeneration, but the potential savings, $300/day \approx 2 mgd$, warrants due consideration.

SECTION 3

PART II FIELD DEMONSTRATION TEST RESULTS

This portion of the Technical Summary covers the test data recorded during the test period July 1980 through February 1981. This portion of the test period was jointly funded by NASA, the EPA, the California State Department of Water Resources, and the Santa Clara Valley Water District. Data were recorded on WMS and subsystem downtime and on maintenance and operations cost. Similar data were recorded by the Santa Clara Valley Water District for the reclamation plant. Additional test data were recorded on the quality of the water at various points within the reclamation plant as measured by the sensors within the WMS and the City of Palo Alto Laboratory. These data were used to evaluate the performance, reliability, availability, and costs of the reclamation plant, its individual processes, and the WMS and its components. Major problems encountered in the operation of the WMS and the reclamation plant are discussed.

TEST OBJECTIVES

The objectives of the test program described in this report were as follows:

- To determine the steady-state performance (ability to remove contaminants) of the water reclamation facility unit processes based on WMS data.
- 2. To determine unit process and plant availability. Availability is defined as the portion of the time that an item operates on demand. Availability was measured as follows:

```
A = 100T/(T + D)
```

```
where, A = availability, %
    T = operating time, hours
    D = Downtime for repair, hours
    T + D = total available operating time, hours
```

Once established, availability can be used to estimate annual repair time; thus, for a continuously operated item:

D = (1-A/100) (365 days/year) (24 hours/day)

3. To determine plant reliability. Reliability is defined as the percentage of the operating time that an item performs within specified limits. For the water reclamation plant, reliability was measured as the percentage of time that a water quality parameter was within specified effluent limits. The WMS data were statistically evaluated based on a lognormal data distribution model and compared to an MCL (maximum concentration limit). The MCL's are based on references 9, 10, 11, 12, and 13. The percentage of time that a measured parameter was less than the MCL represented plant reliability for that parameter. The product of multiplying availability times reliability gives the portion of the total available operating time that an item will perform within given limits.

P = (A)(R)

- 4. To determine plant operating and maintenance costs.
- 5. To determine similar parameters for the WMS; i.e., performance, availability, reliability, and operating and maintenance costs.

CONCLUSIONS

- 1. The following conclusions relative to process performance are based on the WMS data:
 - a. Chemical clarification removed over 90% of the influent suspended solids (biomass) and as much as 30% of the organic contaminants (TOC).
 - b. Flocculation (floc) carryover from the chemical clarification process results in additional loading on the mixed-media filters. This caused decreased filter run times; i.e., more frequent backwashing.
 - c. Except for some reduction in trace halocarbons and biomass, the contribution of ozone to water quality does not appear to be significant at the concentrations used in the study.
 - d. The removal of ammonia during treatment was not significant. Some biological oxidation to nitrate occurred in the GAC towers.
 - e. A reduced level of many dissolved contaminants is characteristic of water processed by activated carbon, when its useful life is not exceeded. However, the COD effluent limit of 10 mg/l is difficult to achieve without significant cost incurred by continuously regenerating carbon.
 - f. Just prior to and during the first few weeks of this test period, processing of the influent to the reclamation plant was changed from an activated sludge reactor to a fixed-film reactor with nitrification and dual-media tiltration. These changes generally reduced the contaminant levels to the reclamation plant. Data from a 1-month period, which are representative of conditions before these changes, have also been included in this report.
- 2. The capability to collect and process data for convenient and improved analysis of water quality information has been demonstrated. Over three million water quality measurements were recorded during the test period and are summarized in this report.

3. Both the reclamation plant and the WMS were designed and constructed as experimental test beds where reliability was of secondary importance to flexibility. Neither system was intended to function as an operational system. Rather, they were intended for testing various concepts and configurations for water treatment, automated quality monitoring and process control. Consequently, the numbers quoted in this report for availability and reliability are not meaningful of the performance that should be expected from operational systems. Rather, the data reported here provide a focus on problem areas which strongly influence reliability. This experience should guide the future design of reliable operational systems.

主要なないと言語をいたり

and the second second

l

- 4. Automated monitoring provides a mechanism for better effluent quality control. Where real-time monitoring is not available, plant- or influentinitiated upsets may go undetected until laboratory test results are received by the operators, which may be several hours or days later. Such a method of operation places a severe restriction on quality control, especially where direct water reuse is involved, and would be unacceptable, for example, in manned spaceflight. Automated, real-time monitoring provides the capability to immediately identify abnormal conditions when they occur, in time to do something about them.
- 5. Automated water quality monitoring will be an economic necessity in the future as effluent quality control restrictions are tightened. The costs of repetitive laboratory analyses will become prohibitive, thereby increasing the demand for automated sensing, analysis, and reporting.
- 6. Automated water monitoring offers the potential for reduced water production costs through process and plant configuration control.
- 7. There is a need for improved reliability of many of the available components used for automated water quality monitoring.
- 8. The sophistication and advanced technology of some water quality sensors often require highly skilled personnel to isolate and resolve problems. These skills are generally unavailable in many wastewater plants.
- 9. Interference problems which had previously plagued the NASA-developed coliform sensor have been resolved. However, the complex plumbing arrangement necessary to operate a totally automated multicell sensor is prome to random contamination which, when experienced, has been difficult to eliminate. During the current test period, approximately 1 month of operating time was lost because of contamination. A configuration with less complexity should reduce this problem. Since the potential for reducing the coliform detection time from 72 hours by the laboratory MPN test to 11 hours by the electrode test is quite significant, the system is worthy of further development.
- 10. Problems have occurred because of different suppliers for WMS computer equipment. In the case of the reclamation plant these problems were avoided by virtue of having single contractor responsibility.
- 11. The experience of both the reclamation plant and the WMS has been that a computer service contract is key to maximizing system availability.

- 12. The high labor cost (three-fourths of water production cost) indicates that more attention should be given to maintainability in the design of water treatment and instrumentation systems.
- 13. Early implementation of a preventive maintenance program for the plant machinery and instrumentation systems can significantly reduce downtime.
- 14. Process and instrumentation checkout and verification are essential prior to turning the plant over to the operators.
- 15. The value of plant process instrumentation is significantly reduced if operators are not trained to properly interpret the data.

RECOMMENDATIONS

R. I. F. BALLARD BALLARD

1

この中国には、「「「「「」」」

- 14

l

- 1. Much of the data collected by the MMS over the 3 1/2 years of operation at SCVWD-WRF/PA, prior to that reported here, have received only cursory review. During that period the plant was operated in several configurations with influent conditions ranging from high quality secondary effluent, which is presented in this report, to low quality influent, including settled primary effluent. The capability now exists and these data should be analyzed, similar to the analysis presented in this report, to show a full range of performance of plant processes.
- 2. Data exist for periods with and without an operating ozonator. These data should be analyzed to clearly show the net effect of ozonation in a real-world environment and to evaluate cost effectiveness.
- 3. A test program should be performed to identify key control parameters for effective chemical clarification by lime treatment. The experience at SCVWD-WRF/PA has been that the cost of the process in terms of labor and downtime may offset the benefits in water quality improvement.
- 4. When using lime for chemical clarification, it is recommended that a filtration step be included prior to GAC sorption. This will reduce the possibility of clogging the GAC with coagulant and/or calcium carbonate precipitant.
- 5. The potential for reducing activated carbon regeneration costs by operating the towers in a "biologic activated carbon" mode (no regeneration) should be explored.
- 6. Many operational difficulties after plant startup could be avoided by design verification testing, more intense and continuous operator training, and established requirements for a preventive maintenance program before acceptance from the contractor.
- 7. The requirements for the installation of computer systems in wastewater plants must consider the environmental requirements of the equipment. Computers must operate in dust and vibration free conditions.
- 8. Maintain a daily log to be used for recording plant and process downtime, the cause of the downtime, and the number of man-hours required to correct the problem.

- 9. Maintain a comprehensive record of materials and consumables, including the process in which they are used.
- 10. The WMS as configured is not ideal. The mobility design criteria dictated its design. The following factors should be considered in designing an in-place integrated plant water quality monitoring system:
 - a. Locate electronic equipment in an area away from potential contact with process or other chemical exposure.
 - b. Use state-of-the-art computer technology to simplify the data acquisition system. New improved equipment is available almost daily.
 - c. Use a single contractor for all computer equipment.

l

- d. The system should be designed for automatic fault detection. If not, the time required to diagnose electronics failures typically will far exceed the time required to correct the problem.
- e. All sensors should be evaluated with regard to serviceability and cost of consumables prior to purchasing.
- f. Design the sampling system to ensure continuous, adequate sample flow to all sensors.
- g. Take into consideration extensive requirements for drains, vents, air conditioning, and electrical power.
- h. Take into consideration storage requirements for consumables and spares.
- i. Include some laboratory area to do periodic wet chemistry verification work.
- 11. The NASA-developed biosensor has demonstrated the capability to quantify biological activity at the low concentration levels present in reclamation processes. However, its potential in monitoring and controlling biological treatment processes, such as activated sludge, has not been explored. A vital need for such a capability has been previously identified (reference 14).
- 12. The NASA-developed coliform sensor should be reconfigured to eliminate complex plumbing thereby improving reliability. The sample size should be increased to provide a minimum sensitivity of one organism per 100 ml. The potential benefits of single analysis units for automated analysis and also for laboratory applications have been previously identified (reference 14).
WMS PERFORMANCE EVALUATION

The true measure of performance by developmental systems, such as the WMS, is the contribution made toward producing effective operational systems. This means that problem areas are uncovered and possible solutions are tested before commiting the design of operational systems.

Much experience has been accumulated from WMS operations. Solutions to some identified problems are yet unresolved due to practical constraints (time and money). Available resources to date have been allocated primarily to functional considerations including the understanding of sensor characteristics (standardization requirements, interferences, data collection and validation), and software development to support a variety of potential data applications (sensor and system control, treatment process characterization, and plant process control). Reconfiguring the system to totally eliminate data errors and minimize downtime has received lower priority attention.

Predicting performance of some future operational system in terms of availability, reliability and O&M costs of an existing preprototype setup is approximate, at best, and is subject to misinterpretation. Nonetheless, such data are presented in the following paragraphs. The reader should recognize that this information contains measured performance of production hardware (commercial sensors) as well as preprototype systems (biological analyzers, GC analyzer, and computer software) whose production configurations have not yet been established and tested.

Hardware age contributed to the failure frequency. The biological sensors, for example, contain some NASA surplus hardware, primarily valves, which are approximately 10 years of age. The age of most of the commercial sensors is about 4-5 years or less.

Sample Collection and Distribution System

The sample collection and distribution system was used to collect and distribute samples from six locations which included water of a quality ranging from City of Palo Alto final ef ent to tertiary treated wastewater. The system worked very well throughout the test period. Fifty micron-woven stainless steel filters were used for filtration purposes for the test period. The filters are .08 cm thick and 10 cm in diameter. Two filters are located in the filter housing and are both used concurrently. Because of the high flow rate of sample across the filter surface and the backflushing action, the system had no difficulty removing particles and debris from the sample staram. What did present a problem was grease contained in the City of Palo Alto effluent during the last part of July and the first part of August. Also during the same time period, the high amount of lime present in effluent from the flocculator/clarifier also clogged the filters. During July, a malfunction in the reclamation facility resulted in the filters becoming clogged with carbon fines. In order to prevent a loss of sample flow during this problem period, the normal procedure of cleaning the filters on Monday, Wednesday, and Friday was modified to clean the filters five times a week. Figure 3 in Volume I shows the flow schematic for the system.

The only persistent problem that occurred during the test period was the buildup of debris in the pump recirculation valve which resulted in increased sample flow and the introduction of air bubbles to the sample. One backflush cylinder and control relay failed during the test period. Four sample valves failed also during the test period. Additionally, the main sample pump had to be rebuilt because of a bearing failure.

Chemiluminescence Biosensor

いたかないとうないでいたとうというないですのできたが、

The chemiluminescence biosensor currently processes and measures total and viable bacteria once during each 1-hour period. Typical values measured in the various wastewater effluents monitored by the WMS are illustrated in Figure 38. The sensor is routinely calibrated using a Coulter electronic particle counter and the firefly luciferase - ATP assay for total and viable bacteria, respectively.

The biosensor mechanically and electronically operated satisfactorily during the test period. There were, however, several minor problems encountered during this time. The flow cell became clogged with precipitant from the reagents. This problem was solved by disassembling and flushing the flow cell. The drain line became clogged with calcium carbonate and had to be replaced. Several pilot valves and the diaphragm in the compressed air pressure regulator failed and had to be replaced.

Correlation of the viable bacteria results of the biosensor presents special problems. Various values for viable bacteria can be obtained depending on the type of method employed. Each method measures a particular parameter associated with viability. The ATP method and luminol - CO method are measures of metabolism while the standard plate count method is a measure of the ability of a cell to reproduce and form colonies in an artificial environment. For this reason the luminol method cannot be expected to produce the same results as the plate counts. The ATP results have shown correlation with the luminol data; however, it is known that ATP levels within bacteria can fluctuate depending on environmental conditions and growth phase. For this reason, the ATP method can be used for "ball park" comparison and some deviations should be expected, the most consistent correlation occurs with the Coulter electronic particle counter.

Gas Chromatograph

The GC operated quite well during the first part (July through September) of the test period. However, early in October, the preparatury columns lost carrier gas flow for several hours because of a malfunction of the shutoff valve on the carrier gas cylinder. As a result, the two preparatory columns began exhibiting an excessive amount of column bleed, which totally masked the compounds being monitored. Efforts to reduce the column bleed by baking out the columns at above normal operating temperatures were unsuccessful. Two new preparatory columns were ordered to allow the analyzer to be put back on line as soon as possible. However, when the new preparatory columns arrived and

O POCH PAGE IS

and the second second

Figure 38 Total and Viable Bacteria Levels in Various Waste-Water Effluents

، ب

were installed, they showed a high baseline signal. Procedures to reduce the baseline signal were immediately started. The procedures called for raising the operating temperature of the preparatory GC to increasingly higher temperatures (from $105^{\circ}C$ to $150^{\circ}C$) and injecting ultrapure water into the preparatory columns to reduce the baseline to a usable level. This procedure was extremely time consuming. The baseline was determined to be at a usable level just prior to shutting the WMS down for the Christmas holidays. The Bendix automatic injector was found to be leaking air into the sampling chamber during the column bakeout period. Replacement parts were ordered and the injector rebuilt. The preparatory column oven and the analytical oven were shut down for the Christmas holidays, and both carrier gases were allowed to continue flowing. It was believed that this would prevent the columns from becoming contaminated; however, when the GC ovens were brought back up to operating temperature the columns showed extreme column bleed. Once again, the lengthy process of baking out the columns was begun. This process was still underway at the end of the test period. As a result, the GC only collected data for the months of July, August, and September. This fact is reflected in a very low availability.

Total Organic Carbon Analyzer

いため、「「「「「「」」」をするというという

and in the state of the state

l

The new low temperature ultraviolet light TOC analyzer was operational for the test period. Overall the analyzer worked quite well. Stability and response time were greatly improved over the old high temperature unit. Overall maintenance time was reduced considerably. The analyzer was modified to allow for computer-controlled automatic calibration. This system consisted of two Teflon air-actuated slider valves, two pilot valves, and two microswitches.

Several problems did occur during the test period. The first problem encountered was that the sparging system was not removing all of the inorganic carbon from the sample. This problem was corrected by adding 9.1 m of 0.5 cm inside diameter tubing to increase the contact time for conversion of inorganic carbon to CO₂. Additionally, a change was made in the TOC calibration curve in the ADAM minicomputer. Two separate pump tubing failures occurred. The first of these was in the sample pump and resulted in some erroneous data. The second failure took place in the pump leading to the ultraviolet light reaction chamber. This was much more serious as it allowed the ultraviolet lamp to overheat and subsequently two of the three lamps failed. The water separator and sparger assembly developed a significant crack and had to be replaced.

Hardness Analyzer

The operation of the analyzer was hampered by one persistent problem. The analyzer was found to be very susceptible to interferences from residual chlorine levels above 0.5 mg/l. The interference effect would cause the analyzer to show excessively high (400-1,000 mg/l) values. Additionally, the high amount of lime being added in the reclamation chemical clarification process flash mixer in July and August resulted in lime accumulation in the electrode chamber. The reagent tubing in the reagent container periodically clogged with debris suspended in the reagent container. With these exceptions, the analyzer's overall performance was good during the test period. The hardness analyzer is extremely expensive to operate in terms of labor and materials costs.

Nitrate Analyzer

The nitrate analyzer's operation during the test period was limited. The main cause of the problem was the extremely high level of nitrate in the City of Palo Alto effluent. In July it was found that the analyzer was reading 9 mg/l on a sample having a lab verified value of 19 mg/l. The apparent cause was that above 9 mg/1 the colormetric system was unable to differentiate darker shades of blue. A decision was made to order a new autodiluter system to return the color of the sample to a usable level. The new diluter took over 6 weeks to arrive from the manufacturer since it is a nonstock item. Once the new metricone was installed, an effort was made to immediately calibrate the analyzer and put it back on line. However, at that point a problem was dis-covered with the transmission of the sensor status and data signal to the ADAM minicomputer. This problem was finally resolved after several weeks of troubleshooting. Once again, an attempt was made to put the analyzer back on line. However, it was found that the sensor would not stay in calibration for more than a few hours of operation. The manufacturer was contacted in an effort to resolve this problem. It is believed that the high levels of nitrate in the samples were causing the cadmium in the reduction chamber to become spent very quickly. The test period ended before a lasting fix was found for this problem.

pH Analyzer

The Great Lakes Instrument Model 70 pH Analyzer provided good, reliable data. The sensor required calibration on an average of once a month during the test period. There wasn't any serious fouling of the probe as a result of sampling secondary effluent or the high lime content in the clarifier effluent. When the probe was removed for calibration, the electrode was checked for any accumulations of foreign material. The electrode tip was cleaned in a 0.1 N acid solution if a significant accumulation was found. For calibration, a pH standard of 7 was first used; followed by a pH standard of 10 to check the slope.

Total Residual Chlorine Analyzer

Overall the analyzer operated very well and provided reliable data throughout the test period with a minimum of problems. The only lengthy downtime the analyzer encountered was due to the unavailability of the needed reagent from the manufacturer. The manufacturer has apparently worked out a new production schedule to resolve this problem. The analyzer is fairly expensive to operate in terms of routine maintenance and consumables.

Sodium Analyzer

The Beckman Sodium Analyzer provided good data throughout the test period. However, the analyzer's flow system repeatedly clogged during the test period. This and the need to refill the zero and span standard containers on a daily basis require a high number of man-hours of effort each week. It has been found that it is necessary to disassemble and clean the flow system once a week with dilute hydrochloric acid. This is because the anhydrous ammonia used in the analyzer causes the particles in the sample to clump and settle in the flow system. The anhydrous ammonia is necessary to adjust the pH level of the sample prior to introducing it to the electrode chamber. A problem was encountered with the gravity flow system that feeds electrolyte to the analyzer's reference electrode. A pressurized system was installed and the problem resolved, except for one occasion when the reference electrode tip clogged. This was resolved by placing the tip in boiling deionized water.

Temperature Analyzer

The analyzer provided good reliable data throughout the test period except during the last week of operation when the Action-Pac amplifier failed. Additionally, the socket to which the amplifier is attached was replaced at the beginning of the test period. The probes' output was checked once each month against that from a glass thermometer inserted into the sample stream.

Turbidity Analyzer

The Sigrist Photometer Turbidimeter worked extremely well throughout the entire test period. The analyzer provided excellent data with a minimum of routine or unscheduled maintenance. The only component which failed during the test period was the replaceable light source. The only routine maintenance required by the instrument was a once-a-week cleaning of the mirror in the flow cell and a check of the calibration. The TJ25 flow cell was used throughout the test period.

Coliform Detector

Prior to the beginning of the test period, the coliform detector was reworked to the four-broth, four-buffer cell configuration as previously described. This change significantly enhanced the capability of the detector to eliminate false positive reactions caused by noncoliform bacteria. These changes were necessitated when it was discovered that several noncoliform bacteria strains found in the Reclamation Plant effluent were capable of imitating the electrode response generated by coliform bacteria.

The majority of the effort expended on the colliform detector was divided between testing the new sensor configuration and solving an internal contamination problem which will be discussed in this section.

Specially selected samples of coliform and noncoliform bacteria and mixtures of the two were tested in an extensive effort to prove the validity of the buffer cell principle. When evaluating each experiment, a 200 mv change in the buffer cell electrode was accepted as evidence of coliform growth in the nutrient cell. The buffer cells repeatedly showed negative reactions for the noncoliform bacteria strains that were producing positive reactions in the broth cells. Based on these results, it was determined that the proper operating procedure is to use the millivolt output of the buffer cells to determine the presence of coliform bacteria and to use the broth cells millivolt output results to determine the initial coliform concentrations. As an example, if the broth and buffer cells showed positive results, the time required for the broth cells to show a 200 mv change would be plotted on the calibration curve to determine the initial coliform concentration. In all instances, this additional criterion was sufficient to allow for differentiation between coliform and noncoliform samples. Consequently, the reconfiguration of the coliform sensor has been deemed a success in dealing with the problem of false positives.

Į

One major problem that surfaced during testing of the coliform sensor was that of internal bacterial contamination. The contamination problem was evidenced by the fact that on numerous occasions a sample which was known to be sterile showed growth in the nutrient cells. It was concluded that a significant population of bacteria was surviving the sensor's normal sterilization process and resided internally within the sensor at various times. Repeated washing and flushing of the sensor with various bacteriocides reduced but did not permanently eliminate the problem.

Presently, it is believed that the contaminating bacteria have been residing either within the sensor's pneumatic valve parts or inside the Teflon lines leading to the cells. As the sliding parts of the valves began to wear and their tolerance increased, small pools of nutrient and previous samples were discovered within the valves. In many instances, the leaks were not visible from the outside of the valves until the problem was well advanced. It is also thought that a bacterial and protein matrix may have been built up inside the sensor's tubing. In either case, the proposed solution for the contamination problem is a routine schedule of replacement for the coliform sensor's internal parts. It is believed that this action, along with close monitoring of internal valve tolerances, would alleviate the contamination problem.

In conjunction with the samples mentioned thus far, more than 20 samples of reclaimed effluent were tested for coliform concentrations. No positive reactions were observed in any of the reclaimed water samples. Correlating MPN tests substantiated the coliform results. It should be noted that the permissible number of coliforms in finished reclaimed effluent is 2.2/100 ml while the lower confidence limit for the coliform sensor is approximately 10/100 ml.

Mechanically, the coliform sensor operated very well during the test period. The few instances of component failure can be attributed to the sensor's age as it had seen more than 4 years of continuous service prior to the test period. It is believed that the parts that failed did so because they had reached the end of their useful lives. The following component failures were encountered during the test period:

- 1. Several PVC fittings on the hot water tank failed and were replaced with stainless steel.
- 2. Two temperature control boards failed during the test period. In each instance a single capacitor failed and was replaced.
- 3. Two electrodes began to give erratic readings and were replaced.
- Several of the pneumatic valves began to leak fluids. In each instance new bushings were installed and the valve fittings were readjusted.

Table 13 shows the number of false positives which occurred during the test period. The data show that out of 48 broth cell tests made with Reclamation Plant effluent there were 8 false positive reactions. For the same samples there were zero false positive from the buffer cells. The results are even more impressive for the City of Palo Alto secondary effluent samples. Based on these data, the broth/buffer cell configuration appears to have successfully resolved the problem of false positive reactions caused by noncoliform bacteria.

TABLE 13

COMPARISON OF COLIFORM FALSE POSITIVES

	Reclamation	Effluent	Secondary No. of False	Effluent
	Positives	<u>Reliability</u>	Positives	Reliability
Broth Cells	8/48	83.3%	19/40	53.3%
Buffer Cells	0/48	100.0%	0/40	100.0%

Ammonia Analyzer

The analyzer provided reliable data during the majority of the test period; however, several problems did occur which hampered operation. One problem which occurred repeatedly was air bubbles blocking sample flow in the gravity feed system. This was determined to be a flaw in the design of the analyzer. The metricone motor failed in July 1980, as did the signal amplifier unit. A problem with the colorimetric system was found in February 1981. The proper color change was not taking place in the flow system. The problem was traced to the pH value of the sodium hypochlorite reagent which was below the acceptable range of 7-8. The pH was adjusted upwards and the analyzer calibrated. The procedure for preparation of the reagent was modified to verify the pH of the sodium hypochlorite before preparing the reagent.

The analyzer is equipped with the WMS autostandardization system and was automatically calibrated once each day. Because of the frequency of reagent preparation, the analyzer was quite labor intensive.

Conductivity Analyzer

The Beckman analyzer performed throughout the test period without any significant problems. Periodically the flow cell was removed from the flow system and checked for buildup on the cell walls. The values were routinely compared with the two conductivity analyzers in the laboratory at the reclamation facility.

Dissolved Oxygen Analyzer

The Delta Scientific analyzer performed reliably throughout the test period without any major problems. One Teflon electrode membrane failure occurred. The calibration of the analyzer was routinely checked using a Hach wet chemistry dissolved oxygen kit.

Deionized Water System

The system reliably provided high quality deionized water to the various parts of the MMS. The one problem which periodically occurred was bacteria contamination in the reverse osmosis storage tanks. As a result of this contamination it was necessary to sanitize the entire system once every 30 days. The RO60 reverse osmosis cartridge was found to have a useful life of 6 months with the available tap water. This is approximately one-half the expected useful life. The recommended procedure for storing the reverse osmosis cartridge during an extended shutdown period calls for shutting off the tap water flow to the cartridge and placing it in a formaldehyde solution. This procedure did not seem to work satisfactorily for the 2 week shutdown at Christmas. It was found that the best procedure was to leave the tap water flowing and run the effluent from the cartridge to the drain.

Data Acquisition and Report Generation System

Numerous hardware failures occurred for both computer systems during the test period. Some were hard failures and could easily be traced to printed circuit boards for the peripheral device control interfaces such as A/D, terminals and the magnetic tape unit. In addition, one computer memory board failure occurred on the average of every 3 months. Other failures were intermittent and could not be isolated to either software or hardware when one of the computers would halt. On the average, one failure occurred every week that resulted in approximately 16 hours downtime, although normally 8 hours per week can be expected.

Except for one software error in the NOVA 3D operating system that produced intermittent computer halts throughout the test period and was corrected in February 1981, all the failures could be traced to the hardware. A substantial number of failures were directly the result of poor electrical contacts. This problem may have been aggravated by the instances of chlorine gas entering within the WMS trailer when the WRF/PA had an equipment failure. The computer equipment is approaching the limit of its useful lifetime and can be expected to fail more frequently.

Some downtime was associated with software development activities during August 1980 and cannot be realistically charged to equipment availability. Also, the failures in January 1981 were the direct result of the equipment being turned off during the last 2 weeks of 1980. If these times are not considered, the average downtime is reduced to 5.5 hours per week.

WMS Availability

WMS availability (percent of time the subsystems/sensors operated on demand) was monitored during the test period. The operating time and downtime periods for each of these are summarized in Table 14. The downtime recorded for each of the sensors/subsystems includes actual repair times and downtime attributed to waiting for necessary reagents or parts.

TABLE 14

WMS AVAILABILITY/RELIABILITY

:

- 100 March 100

ĺ

WMS OPERATING ELEMENTS	DOWN TIME (HRS)/ OPERATING TIME (HRS)/	(%) AVAILABILITY	ERRONEOUS DATA (HRS)/ TOTAL DATA (HRS)	(%) RELIABILITY	SIGNIFICANT PROBLEM(S)
Sampling System	11/3931	99.7	246/3916	94.5	Periodic Plant Process Upsets
Computer System	551/4454	87.6	371/3903	90.5	Printed Circuit Board Failures
Biosensor	171/3633	95.3	110/3418	96.8	None
Coliform Detector	17 ¹ /97 ¹	82.5	0/88		Contamination and Hardware Failures
TOC	355/3553	90.0	148/3111	95.2	Failure of UV Lamps
Residual Chlorine	870/3672	76.3	15 /2994	99.5	TempOrary Unavailability of Reagent
Turbidity	1/3739	99.9	4/3737	99.9	None
D.O.	2/3729	99.9	20/3724	9 9.5	None
Ammonia	267/3324	92.0	448/3055	85.3	Pump and Valve Failures, Reagent Problems
Nitrate/ Nitrite	3366/3587	6.2	39/221	82.4	Cadmium Reduc- tion System Malfunction
pH	3/3764	99.9	48/3744	98.7	None
Conductivity	0/3770	100.0	3/3753	99.9	None
Temperature	38/3762	99.0	11/3719	99.7	Corrosion of Contacts in Socket
Haridness	84/3504	97.6	1249/3420	63.5	Interference of Residual Chlorine

		TABLE 14	(Continued)		
Sodium	100/3689	97.3	259/3591	92. R	Buildup of Debris in Elec- trode Holder
6.C.	2613/3635	28.1	100/1022	90.2	Column Bleed in Preparatory G.C.
D.I. Water	271/5447	95.0	0/5282		None
A.C. System ²	3/5832	99.9	0/5756	****	None

NOTE:

The sector the sector that the

¹Coliform Detector Operations and Downtime Reported in Days.

 $^{2}\mathrm{A.}$ C. System is a dual unit, each independent of the other.

WMS Reliability

Sensor/subsystem reliability (percent of operating time the data generated were valid) is summarized in Table 14. These values are calculated based on the number of hourly averages determined to be erroneous divided by the total number of hourly averages recorded. This calculation was made for each individual sensor/subsystem.

WMS Operations and Maintenance Cost Summary

This section deals with the operations and maintenance costs for each of the sensors/subsystems. This is intended to cover all consumables, hardware and labor required for 8 months of continuous operation. This cost estimate is based on actual expenses incurred during the test period and as such may vary depending on the age of the hardware. An additional goal of the program was to determine, when possible, the life expectancy of the various subsystems. These data where available are reported in Appendix G.

The O&M costs for the sensors/subsystems of the WMS are summarized in Table 15. Extrapolation of these data gives a projected annual O&M cost of \$94,125.

The distribution of costs may be summarized as follows:

	Labor	<u>Materials</u>	Total
Operations	18.0%	4.9%	22.9%
Maintenance	57.6%	19.5%	77.1%
Total	75.6%	24.4%	100.0%

These calculations are based on the detziled data contained in Appendix G. Appendix G additionally contains a list of the recommended spares for each sensor/subsystem.

TABLE 15

OPERATIONS AND MAINTENANCE COST OF WATER MONITOR SYSTEM

JULY 1, 1980 THROUGH FEBRUARY 23, 1981

	<u>1/ 0</u>	perations	Maintenance	Totals
Sampling System				
Materials and	Sunnlie	e 5 340	\$ 220	560
labor	Jupping	300	190	490
Computer System				
Materials and	Supplie	s 1070	2230	3300
labor	oupp :	4140	13600	17740
Biosensor				2000
Materials and	Supplie	< 180	240	420
labor	Japping	450	2080	2530
Coliforn Detector			2000	2000
Materials and	Supplie	s 300	470	770
Labor		2900	3070	5970
Gas Chromatograph		2300	•••••	•27.•
Materials and	Supplie	s 200	670	870
Labor	oappire	1380	4500	5880
TOC Analyzer				
Materials and	Sunnlie	s 790	940	1730
labor	oupping	340	860	1200
Residual Chlorine /	laal voor			
Materials and	Supplie	<	1480	1480
Labor	Jupping	70	1370	1440
Turbidity Analyzer			20/0	2
Materials and	Supplie	S	60	60
Labor		60	110	170
Dissolved Oxygen Ar	nalvzer			
Materials and	Supplie	•<	100	100
labor	-app	30	110	140
Ammonia Analyzer		•••		
Materials and	Supplie	S	790	790
Labor		570	4320	4890
Nitrate/Nitrite Ana	lvzer			
Materials and	Supplie	S	960	960
labor		220	1500	1720
pH Analyzer				••••
Materials and	Supplie	S	50	50
Labor	oupping	60	220	280
Conductivity Analyz	zer	••		
Materials and	Supplie	S		
Labor			110	110
Temperature Analyze	<u>er</u>		***	
Materials and	Supplic	S	130	130
Labor		20	110	130

101

. ب

- Spinlar

<u>ر</u>ا د ا

K teeler,

TABLE 15 (Continued)

Hardness Analyzer			
Materials and Supplies		1950	1950
Labor	140	1830	1970
Sodium Analyzer			
Materials and Supplies	200	150	350
Labor	400	1890	2290
Deionized Water System			
Materials and Supplies	i i i i i i i i i i i i i i i i i i i	1370	1370
Labor	240	270	510
General Lab Supplies		400	400
			بمتابكين بالتنب
TOTALS	\$14,400	\$48,350	\$62,750

Projected Yearly O&M Cost = \$94,125

1/ NOTE:

「ない」であるというとう

- internet State

Labor costs of \$37/hr. for engineering; \$27/hr. for all others.

2/ NOTE:

Includes operator time for implementing new software.

Summary

As previously mentioned, the purpose for developmental systems is to identify problems before committing to the design of an operational system. The experience with the WMS has shown that the following will be key considerations when building reliable and inexpensive operational systems:

- 1. The ideal sensor: is an electrode; can be located in the sample; requires no reagents; is not subject to interference from other constituents in the sample; is fail-safe; i.e., it fails in a readily identifiable manner; is easily maintained; is rugged; has proven reliability in a variety of applications; resists fouling by solids or grease; is stable for long periods without calibration; does not require sample preconditioning, i.e., filtering, concentration, fixed flow rate, etc.; does not require complex electronics for control or signal conditioning; provides a direct continuous readout of a controllable parameter. Most water quality sensors do not meet all these specifications. Some conductivity cells and dissolved oxygen electrodes which are available on the market meet many of these requirements. Most other sensors introduce complexities which must be managed.
- 2. Colorimetric procedures and gravity flow through small tubing should be avoided in unattended automated sensor applications.
- 3. Operators should be trained to understand the significance of each measurement and the failure modes of the sensors. Competent vendors will provide such detailed information on the characteristics of their sensors. The comprehensiveness of the vendor's operating manual is often a good indicator of the quality of the product.
- 4. Sensors utilizing proprietary reagents should be avoided unless a contracted delivery schedule is prearranged.
- 5. The system design should provide fault detection, alarm, and alternate operating modes for significant failure modes:
 - a. Loss of sample.
 - b. Air in sample (where it interferes with the analyses).
 - c. Loss of sensor sensitivity, i.e., reagent, sample, etc.
 - d. Filter plugging.
 - e. Erroneous data.
- 6. Automatic standardization is a necessary requirement for unattended operation of most chemical sensors.

- 7. Computer systems hardware and software should be provided with error detection and correction capability. The ability to detect and correct single bit errors in the computer main memory can substantially increase reliability.
- 8. Direct memory access or high speed I/O channel programs should be provided when communicating with other computer systems. This will allow data to be transferred directly into main memory rather than a less reliable transfer by an applications program via a low speed device, i.e., RS232.
- 9. Dial-up/auto-answer communications provide the capability for remote failure diagnosis. Troubleshooting thereby can be accomplished without specialists being retained on-site.

DATA PROCESSING

In addition to the real-time data display and trend plotting, the EVE report generation system has data processing capability for a lognormal distribution analysis and a linear regression analysis. A lognormal distribution was chosen to interpret the data obtained from monitoring based on the study performed by McCarty, et al, at Stanford University (reference 3). The Stanford study evaluated parameters for several probability models using various sets of organic and inorganic concentration data from Water Factory 21 in Orange County, California. Models for normal and lognormal probability distributions were selected for analysis because they produced reasonable data fits and provided ease of statistical interpretation. It was concluded that the lognormal distribution adequately represented the results at least 92% of the time and thus provided an adequate description of the probability for organic and inorganic materials at Water Factory 21. (The lognormal distribution was rejected for only ammonia and conductivity.)

Verification of the validity of the lognormal distribution is provided in the Stanford study, and no attempt was made to consider other probability models for this study. The lognormal distribution has a strong theoretical justification based on the assumption that fluctuations are proportional rather than additive. The chi square statistic was determined for each parameter as a method to evaluate the validity of the lognormal distribution and determine if the data were normally distributed. The results indicate a high correlation exists for most parameters.

A linear regression analysis was performed on all monitored data to evaluate the relationship between parameters across the reclamation plant and among processes. The least-square line obtained by the linear regression allows a determination of the standard error of estimate and the coefficient of correlation and thus provides a means of evaluating the direct dependence of the variables.

ł

Characteristics of the Lognormal Distribution

Normally distributed data will plot as a straight line on probability paper if the ordinate scale is arithmetic, while lognormally distributed data

will plot as a straight line if the ordinate scale is logarithmic. Normal distribution is one of the most important examples of continuous probability distribution and is defined by the following equation (reference 6):

$$Y = \frac{1}{\sigma\sqrt{2\pi}} e^{-(X-\mu)^2/2\sigma^2}$$

, ÷,

Where $\mu = mean$, $\sigma = standard$ deviation, and X is expressed in standard units with Z = $(X-\mu)/\sigma$

In such cases, Z is normally distributed with mean zero and variance 1. A graph of the standardized normal curve is shown below with the areas included between Z = -1 and +1, Z = -2 and +2, and Z = -3 and +3 as equal to 68.27%, 95.45%, and 99.73% of the total area under the curve which is one.

In order to analyze a set of data, the average and standard deviation of the logs are determined by common statistical procedures. The average so obtained represents the intercept, and the standard deviation represents the slope of the regression line for the lognormal distribution.

Computer plots of these results were generated for each parameter and for each period of interest. A representation of a typical result is shown in the following figure. The ordinate presents the log over the data range and the abscissa presents the percentage of time the total population was less than the measured value. The Percent of Time Less Than corresponds to the probability of occurrence for a measured value. The data range represents the daily average obtained from the hourly average which was determined from sample rates of 1 minute for all measurements with the exception of the G.C. and biomass measurements, which were recorded once each hour.

It should be noted that in the heading, on the following figure, the reclamation plant influent (Palo Alto final effluent) is sample source #2 and not #1. This is because prior to this test period, sample source #1 was primary effluent, and the aeration tank was not a sampling point. Since a large amount of data had been collected and stored on computer tape, it was decided to leave the Palo Alto final effluent as sample source #2 so as not to hinder statistical analysis of the historical data.

ł

The Z-score is also shown on the abscissa for comparison. The 50% or zero value for Z represents the geometric mean. This plot is a good example of the waterfall decrease in the dependent variable across each process and readily shows the range of data for the report period.

The normal distribution function Q(x) is defined by Hasting's best approximate equation (reference 7),

 $Z(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$ $Q(x) = Z(x)[b_1t + b_2t^2 + b_3t^3 + b_4t^4 + b_5t^5]$ $t = \frac{1}{1 + px}$ $p = .231642 \quad b_3 = 1.78148$ $b_1 = .319382 \quad b_4 = -1.82126$ $b_2 = -.356564 \quad b_5 = 1.33027$

where Q(x) = area under the standardized normal curve from 0 to +Z

The test for normality or goodness of fit is based on the X^2 (chi square) distribution at the 95% confidence level for 2 degrees of freedom,

 χ^2 = .5.99 (based on Z being a function of μ and σ)

where
$$\chi^{2} = \sum \frac{(f_{o} - f_{e})^{2}}{f_{o}}$$

 f_{o} = observed or actual frequency

f = estimated frequency based on a normal distribution

The chi square statistic has been calculated for each parameter at each sample point to evaluate the goodness of fit to the postulated lognormal distribution. There is only one chance in twenty of chi square exceeding 5.99 if the data are normally distributed. Thus, the lognormal distribution model may be rejected with 95% confidence when the value exceeds 5.99. Much of the data presented in this report is adequately described by a lognormal distribution, however, there are exceptions, as shown in Appendix D.

Characteristics of the Linear Regression

In a linear regression analysis, values of the dependent variable are predicted from a linear function of the form

Where Y' is the estimated value of the dependent variable Y; the constant a (referred to as the Y intercept) is the point at which the regression line crosses the Y axis and represents the predicted value of Y when X = 0; and the constant a (usually referred to as the regression coefficient) is the slope of the regression line and indicates the expected change in Y with a one-unit change in X (reference 7).

The regression method involves the evaluation of a and a in such a way that the sum of the squared residual is smaller than any possible alternative values, i.e.;

 $(Y - Y')^2 = minimum$ where Y - Y' = residual or difference between the actual and estimated value of Y for each case

The optimum values of a and a are obtained from

$$a_{1} = \frac{\Sigma(X - \overline{X})(Y - \overline{Y})}{\Sigma(X - \overline{X})^{2}} = \frac{N\Sigma XY - (\Sigma X)(\Sigma Y)}{N\Sigma X^{2} - (\Sigma X)^{2}}$$

$$a_{0} = \overline{Y} - a_{1}\overline{X} = \frac{(\Sigma Y)(\Sigma X^{2}) - (\Sigma X)(\Sigma XY)}{N\Sigma X^{2} - (\Sigma X)^{2}}$$

The Standard Error of Estimate is a measure of the accuracy of the prediction equation. It is the standard deviation of actual Y values from the predicted Y' values or

$$\sigma_{\rm E}$$
 = Standard Error = $\sqrt{\frac{E(Y - Y^1)^2}{N - 2}}$

The Standard Error is interpreted as the "average residual."

The linear correlation coefficient is the ratio of the explained variation to the total variation or

$$\mathbf{r} = \sqrt{\frac{\text{explained variation}}{\text{total variation}}} = \sqrt{\frac{\Sigma(Yest - Y)^2}{\Sigma(Y - Y)^2}}$$

where Yest = estimated value obtained from linear regression

 $\overline{\mathbf{Y}}$ = average of dependent variable

Y = dependent variable

and is determined by

where m = slope of regression line

ex = standard deviation of independent variable

 σy = standard deviation of dependent variable

Results of the regression analysis for the report periods are presented in Appendix A. Linear (Y = a + a X), parabolic (Y = a + a X + a X), and logarithmic (LogY = a + a LogX) regressions were performed for each parameter across each process and across the reclamation plant. Results indicate that linear and logarithmic regressions generally provide a good prediction for the downstream parameter. In some cases, particularly for the halocarbons and total organic carbon, the logarithmic regression produced a superior improvement in the correlation coefficient compared to the linear and parabolic regressions.

A typical example of a statistical summary and regression analysis is shown in Tables 16 and 17. The monthly average is determined from the hourly averages. The daily average variation is the standard deviation of the daily averages. The hourly average variation is the standard deviation of the hourly averages. The percent removal is determined from

$$\text{$$removal = I - 0 x 100$}$$

the second se

where I = influent value

0 = effluent value

for sample source 1 to 6 across the plant. The percent removal across each process is determined from

> (I-O)proccess = measured concentration removal across the process

In this manner, the removal efficiency of each process can be compared for the plant.

TABLE 16 SAMPLE STATISTICAL DATA

ĺ

100

1

Cital Erada Units Janer, Link Montry Not 1 10114 Algorithm Variation Variation Variation 1 10114 Algorithm Variation Variation Variation 1 10114 Algorithm Variation Variation Variation 1 1010117-0114-010 110 110 110 110 110 1 1010117-0114-01 111 110 110 110 110 110 1 1010117-0114-01 1010111 1000114 1000114 1000114 1000114 1000114 1 10101111 10101114 1000114	SAMPLE 3	DUNCE 1 -	PALO ALTO	BECONDARY	EFFLUENT					· ····	
1. Tork altorias with Crit. 1. 100 1. 100 1. 100 2. Construction and constructin and construption and constru	CHA	3E 440A	411ND	BAMPL THE FREDUENCY	MONTHLY Average	DATLY AVE Variation	MOURLY AVG VANJATION	• • •			1
2 2 <td>1. TOTA</td> <td>L</td> <td>אור כישר</td> <td></td> <td>2.016</td> <td>1.1109</td> <td>1,7454</td> <td>4 - -</td> <td>• • •</td> <td></td> <td></td>	1. TOTA	L	אור כישר		2.016	1.1109	1,7454	4 - -	• • •		
5. TGB CONTRAINED 1.0010 1.0010 1.0010 1.0010 7. TGB CONTRAINED 1.1 1.0010 1.0010 1.0010 7. TGB CONTRAINED 1.1 1.0010 1.0010 1.0010 1. TGB CONTRAINED 1.1 1.0010 1.0010 1.0010 1. TGB CONTRAINED 1.1 1.0010 1.0010 1.0010 1. TGB CONTCAL 1.0010 1.0010 1.0010 1.0010 1. TGB CONTCAL 1.0010 1.0010 1.0010	Z. VIAR	LE ALAMAB	MIL C/HL	:	0.559	0.3024	4.5444	•			
4. TURADIDITY-ONDERVEL 114 11.000 11.000 10.000 1. TURADIDITY-ONDERVEL 114 11.000 11.000 10.000 1. TURADIDITY-ONDERVEL 115 10.000 10.000 10.000 1. TURADIDITY-ONDERVEL 10.000 10.000 10.000 10.000 2. TURADIDITY-ONDERVEL 10.000 10.000 10.000 10.000 10.000	5. 458	CHLARINE	HG/L	•	4.034		2.002				
7. 00110 OFFCER 0.011 1.001 1.001 1. 101 OFFCER 0.011 0.000 0.000 1. 101 OFFCER </td <td>4. TURB</td> <td>10117-8101</td> <td>101</td> <td>=</td> <td>13.450</td> <td>5,1524</td> <td>5.9096</td> <td></td> <td></td> <td></td> <td></td>	4. TURB	10117- 8 101	101	=	13.450	5,1524	5.9096				
10. ALTINITY MCCL 1 35,011 10,000 11. ALTINITY MCCL 1 35,011 10,000 12. ALTINITY MCCL 1 35,011 10,000 13. ALTINITY MCCL 1 35,011 10,000 14. ALTINITY MCCL 1 35,011 10,000 15. ALTINITY MCCL 1 314,010 11,000 15. ALTINITY MCCL 1 1 15,000 15. ALTINITY MCCL 1 1 1 15. ALTINITY MCCL 1 1 1 15. ALTINITY MCCL MCCL 1 1 15. ALTINITY MCCL MCCL 1 1 15. ALTI	7.018	OXYGEN			4.147	1.221	1.9814				
11. WITATE WGAL 11 234,007 0.000 12. VITATE WGAL 11 234,007 0.000 13. 101 OGC CADAMULTITY WGAL 11 110,000 13. VITATE WGAL 11 110,000 110,000 13. VITATE WGAL 11 110,000 110,000 13. WGAL 10 110,000 10,000 10,000 10. MGAL 10 110,000 10,000 10,000 11. WGAL 10 110,000 10,000 10,000 11. WGAL 10 110,000 10,000 10,000 12. WGAL 111,000 111,000 10,000 10,000 10. MGAL WGAL 111,000 111,000 10,000 10. MGAL WGAL 111,000 111,000 10,000 10. MGAL WGAL MGAL 111,000 10,000 10. MGAL WGAL MGAL MGAL 10,000 10. MGAL WGAL MGAL MGAL 10,000 10. MGAL MGAL MGAL MGAL 10,000 <t< td=""><td>10. AMID</td><td>V I V</td><td>MG/L</td><td>:</td><td>5.111</td><td>10,1495</td><td>13.4274</td><td></td><td></td><td></td><td></td></t<>	10. AMID	V I V	MG/L	:	5.111	10,1495	13.4274				
12. PM 113 5,401 0.0000 0.0000 13. COMBUCTUTTY WANNOCCH 115 12,4001 111,000 14. COMBUCTUTTY WANNOCCH 115 12,4001 111,000 15. FARDINGS 0.011 111,000 111,000 15. FARDINGS 0.011 111,000 111,000 15. FARDINGS 0.011 111,000 111,000 16. FALUNATION CECT 111,000 111,000 111,000 10. FARDINGS 0.011 111,000 111,000 20. LUT MALOCLARENA PEN 0.011 111,000 111,000 20. LUT MALOCLARENA PEN 0.011 111,000 120,000 20. LUT MALOCLARENA PEN 0.011 120,000 120,000 20. LUT MALOCLARENA PENCINA 0.011 0.011 120,000 20. LUT MALOCLARENA PENCINA 0.011 0.011 120,000 20. LUT MALOCLARENA PENCINA 0.011 0.011 0.011 20. LUT MALOCLARENA PENCINA	II. NITA	ATE	MG/L	-	224,007		0.000				1
11. 11. 12. 1	12. PH			115	5.401	0.4526	0.5157				
1: CONDUCTIVITY NUMMO/CM 1: 1:1:0:00 1: 1:0:00 1:0:00 1:0:00 1:0:00 1: 1:0:00 1:0:00 1:0:00 1:0:00 1: 1:0:00 1:0:00 1:0:00 1:0:00 1: 1:0:00 1:0:00 1:0:00 1:0:00 1: 0:0:0 1:0:00 1:0:00 1:0:00 1: 0:0:0 1:0:00 1:0:00 1:0:00 1: 0:0:0 0:0:0 1:0:0:0 0:0:0 1: 0:0:0 0:0:0 0:0:0 0:0:0 1: 0:0:0 0:0:0 0:0:0 0:0:0 1: 0:0:0 0:0:0 0:0:0 0:0:0 1: 0:0:0 0:0:0 0:0:0 0:0:0 1: 0:0:0 0:0:0 0:0:0 0:0:0 1: 0:0:0 0:0:0 0:0:0 0:0:0 1: 0:0:0 0:0:0 0:0:0 0:0:0 1: 0:0:0 <t< td=""><td>11. 107</td><td>ORE CARBON</td><td>LOM I</td><td>:</td><td>9.742</td><td>2.4224</td><td>2.4073</td><td></td><td></td><td></td><td></td></t<>	11. 107	ORE CARBON	LOM I	:	9.742	2.4224	2.4073				
11. Transferiturer: 06.6 1 11.000 2.000 12.000 11. Antioner: 06.7 10 13.000 12.000 12.000 11. Antioner: 06.7 10 13.000 12.000 12.000 22. Lawler: 06.7 10 13.000 12.000 12.000 23. Lawler: 06.7 10 13.000 12.000 12.000 24. Universe of a set of a s	14. COND	UCTIVETY	WO/OHNHA	115	1234.413	42,4263	110.6204				
1. PARDING WC/L 10 10,000 1.1 ANTENT FEW 00 10 10,000 2. TUT MALOCAREON PFN 30 22,011 117,000 12,000 2. TUT MALOCAREON PFN 30 22,011 117,000 15,000 2. UT MALOCAREON PFN 30 22,011 117,000 15,000 2. JEMBUE JEMBUE MUTA 20,011 117,000 15,000 2. JEMBUE JEMBUE MUTA 20,011 117,000 15,000 2. JEMBUE JEMBUE MUTA 20,011 117,000 20,000 2. JEMBUE JEMBUE MUTA 20,011 20,011 20,011 2. JEMBUE JEMBUE MUTA 20,011 20,011 20,011 2. JEMBUE JEMBUE MUTA 20,011 20,011 20,011 2. JEMBUE JEMBUE JEMBUE 20,011 20,011 20,011 2. JEMBUE JEMBUE JEMBUE 20,011 20,011 20,011 2. JEMUE JEMUE JEMUE 20,011 20,011 20,011 2. JEMUE JEMUE	IS IF WP	FALLEFAL	OFG F		11.576	2.4593	1.4432				
11. Stollur Scollur 10. Table 11. T	14. MAPD	MF 3.5	MG/L		327.246	110.22.021	396.5041				
20. amelity (cub off 12) 20 72.001 117.007 359.000 24. Uf MALOGAREON PPA 20 92.001 117.007 139.000 24. Uf MALOGAREON PPA 20 92.001 117.007 139.000 24. Ut MALOGAREON PPA 20 92.001 117.007 139.000 24. Distribution 04113 3.4001 MOUNTLY DATE 0.0111417 VA 24. Distribution 04113 3.4001 MOUNTLY DATE 0.0111417 VA 24. Distribution 04113 9.4011 0.0111417 VA 0.0111417 24. Distribution 0411 0.0111417 0.0111417 0.0111417 0.0111417 24. Distribution 0411 0.0111 0.0111 0.0111 0.0111 24. Distribution 0411 0.0111 0.0111 0.0111 0.0111 24. Distribution 0.0111417 0.0111 0.0111 0.0111 0.0111 24. Distribution 0.0111417 0.0111 0.0111 0.0111 0.0111 25. Distribution 0.0111417 0.0111 0.0111 0.0111 0.0111 2						1014.01					
24. TUT MAIOCAREON PPS 39 91.401 117.401 157.500 24. TUT MAIOCAREON PPS 30 91.401 117.401 157.500 24. TUT MAIOCAREON PPS 30 91.401 MAILE SOURCE & RECLAMATION FORLUENT 24. TUT MAIOL UNITS 31.401 MAILE SOURCE & RECLAMATION PERCENT REMOVAL 24. TUT MAIOL UNITS 31.401 MAILE MONTAL PARCENT REMOVAL 24. TUT MAIOL UNITS 31.401 MAILE MONTAL PARCENT REMOVAL 24. TUT MAIOL UNITS 31.401 MAILE MONTAL PARCENT REMOVAL 24. TUT MAILE UNITS 31.401 MAILE MONTAL PARCENT REMOVAL 24. TUT MAILE UNITS 31.401 MAILE MONTAL PARCENT REMOVAL 25. TUT MAILE UNITS 21.401 1.401 1.401 1.401 25. TUT MAILE MAILE MAILE MAILE MAILE MAILE MAILE 25. TUT MAILE		647 75WB					1.1102				1
3.4mmL1 30UNCT A = RECLANATION FAFLURWT 6.11 31MmL2 00UNT3 34mmL100 FAFLURWT 6.11 31MmL2 00NT 70000 6011 70000 6.11 31MmL2 00NT 7000 6011 7000 7 31MmL2 00NT 113 6.421 6.421 6.421 1 7014L 00NT 7000 6.421 6.421 6.421 7.42 1 7014L 110 6.211 0.421 0.421 7.42 1.71 1 7014L 110 0.101 0.101 0.101 7.42 1.71 1 7014L 110 0.101 0.101 0.101 1.001 7.401 1 1001LV 4001 1.001 0.011 0.011 0.011 0.011 1 1001LV 4001 1.001 1.001 0.011 0.011 0.011 1 1001LV 4001 1.001 0.011 0.011 0.011 0.011 1 1001LV 1001LV											
3140016 0.000706 6.001111Y 6761.01044 MANIALY AVA PERCENT REMOVAL CHA 36.00070 4.0111 4.001144 VANIATION PARTE VANIATION PERCENT REMOVAL 1. 7014L 0.0114 0.0114 0.0114 VANIATION VANIATION PARTE VANIATION PARTE VANIATION PERCENT REMOVAL 1. 7014L 0.01140 0.01141 VANIATION VANIATION PARTE VANIATION PARTE VANIATION PARTE VANIATION PARTE VANIATION PARTE VANIATION PARTE				•	• • • • • •						
CM SFNBLD UNITS SAMPLING MONTMLY DATLY AVE DATLY AVE<	SAMPLE SI	OURCE & •	RECLANATE	N FACILITY	EFFLUENT						
1 1014L 1104438 11. C/ML 113 0.4231 0.4231 126.12 1 1014L 1014438 41. C/ML 113 0.4231 1.421 126.12 2 114 0.104 0.104 0.104 0.104 0.104 126.13 3 114 0.104 0.104 0.104 0.104 126.13 4 114 2.102 1.104 2.102 1.104 126.13 5 114 2.022 1.104 2.102 1.104 2.103 7 108 0.104 2.102 1.104 2.102 1.104 7 114 2.022 1.104 2.102 1.104 2.104 7 114 2.102 1.104 2.102 1.104 2.104 7 111 2.102 1.104 2.102 1.104 2.104 11 110 1.104 1.104 2.102 1.104 2.104 11 110 1.104 1.104 2.104 0.014 0.014 11						974 A 1949					
1. 1014L 0104433 41. C/W 115 0.375 0.4231 0.416 55.35 26.53 2. V124LF 0104433441 C/M 116 0.1315 0.4231 0.4231 74.64 26.53 3. 1158 1101 2.1352 1.1013 2.1352 147.73 3. 1108 1.0 2.022 1.1013 2.1252 14.73 4. 110 2.022 1.1013 2.1352 14.73 120.17 4. 110 4.013 1.0013 0.003 0.013 14.14 4. 4.011 1.023 1.023 10.01 10.01 4. 4.011 1.001 0.0334 0.0334 0.0334 0.01 11. 4.112 4.012 1.023 1.023 0.01 0.01 0.01 12. 11. 1.023 1.023 1.023 1.023 0.01 0.01 13. 4.014 4.012 1.023 1.023 1.023 0.01 0.01 0.01 14. 4.012	645			FRE OUENCY	AVERAGE	VARIATION	VARIATION	DATLY AVG.			-
2 V1041F B10433941L C/M 110 0,191 0,497 70,01 47,75 5 RES CHL081WE WGAL 100 2,022 1,1013 2,195 47,75 7 100 D10 D10 0,101 2,022 1,1013 2,196 47,75 7 100 D10 D10 0,101 1,625 49,01 47,75 7 100 D14 0,101 1,625 1,003 0,191 47,75 7 100 D14 0,101 1,625 1,003 0,191 47,15 1 MULL 11 0,101 1,625 10,015 0,191 1,61 1 MULL 11 1,625 1,205 1,205 0,105 0,01 1 MULL MULL 1,000 0,012 0,012 0,012 0,014 1 MULL MULL 1,013 1,012 0,012 0,012 0,014 1 MULL MULL 10 0,012 0,012 0,012 0,012	1 1014		411 C/ML	115	242.0	0.4231	0.0140	95.30	26.53		
5. REG CHLORINE MG/L 104 2.022 1.101 2.152 47,71 7. TUDETDITY=81024G/L 134 4.402 1.7775 5.4041 44.22 16.1 7. TUDETDITY=81024G/L 134 4.402 1.7775 5.4041 44.22 16.1 7. DispetibitY=81024G/L 134 4.402 1.7775 5.4041 44.22 16.1 7. DispetibitY=81024G/L 131 4.419 4.435 1.7353 4.134 17.35 11. MUTRATE MG/L 134 10.477 9.0534 9.0534 9.05 0.0 12. PH PH MG/L 134 131.381 0.5129 0.105 0.0 0.0 0.0 12. PH PH PH 131 13.352 1.353 0.105 0.0 <td>2. V149</td> <td>LE BIOPASS</td> <td>MIL C/ML</td> <td></td> <td></td> <td></td> <td>0.6425</td> <td>14.04</td> <td>120.17</td> <td></td> <td></td>	2. V149	LE BIOPASS	MIL C/ML				0.6425	14.04	120.17		
A. TUGPIDITY-GIO24G/L 13 4.02 1.777 3.004 64.22 10.61 7 DBU 0176EW 46.7L 13 6.191 1.6235 1.601 94.32 34.39 7 DBU 017EW 46.7L 13 6.191 1.6235 1.601 74.35 34.39 10 HIRATE 46.7L 13 16.379 9.033 0.01 74.35 11 HIRATE 46.7L 13 16.379 9.033 0.01 74.35 12 PH W 13 16.379 9.035 0.01 74.35 13 FOL 13 16.379 1.3229 1.3233 0.05 0.05 13 FOL 13 13.131.201 1.3229 1.5.795 0.05 0.05 14 COULULUTY HMHU/CK 13 11.131.201 1.753 0.05 0.06 15 TEMPERATURE 0 0.13 10.4041 332.4055 0.06 0.06 14 1400K2K 137 71.305 11.753 0.06 0.06	S. RES	CHLORINE	HG/L	104	2.022	1.1011	2,1562		47.73		
7. DIS OYVER 46/L 13 4,19 1,4235 1,4015 -0,39 34,39 10. AWUNIA 46/L 17 4,215 12,7591 6,126 10,01 79,43 11. AITRATE 46/L 13 4,010 1,2334 9,0534 0,01 79,43 12. AWUNIA 46/L 13 16,217 1,2334 0,126 10,01 79,43 13. ATTRATE MG/L 13 1,3734 1,3529 1,2333 0,13 0,01 13. 71 13 1313,281 0,3324 0,313 0,121 0,01 0,01 14. CSADUCTIVITY MMMQ/CM 13 13,7321 1,2333 1,231 0,121 0,01 14. CSADUCTIVITY MMMQ/CM 13 13,7321 13,5329 1,231 0,01 0,01 15. TEPERATUREE1 DEG 137 71,501 1,7539 1,2501 0,01 0,01 14. ANDINESS MG/L 137 13,1577 13,5015 0,01 0,01 0,01 14. ANDINESS MG/L 137 13,1597 13,5015 0,01 0,01 0,01 15. ANDINESS MG/L 137 13,5015 13,5015 0,01 0,01 <	A. TURP	1011Y-6162	1/97	130	4.482	1.7975	3.9944	44.22	18.61		
10. Awuukia uG/L 97 4.215 12,7591 0.1426 10.01 79.05 11. HTRATF wG/L 3 10.077 9.0534 0.06 0.0 12. P1 13 1 0.0514 9.0534 0.0 0.0 12. P1 13 0.517 9.0534 0.0 0.0 0.0 12. P1 13 0.5129 0.5129 0.051 0.0 0.0 13. P1 10 0.5129 0.531 0.513 0.0 0.0 14. CSAUCTIVITY NHMMO/CM 1315,201 1.553 0.0 0.0 0.0 15. TEMERATURERI DEG 131 11.301 1.7533 1.9931 0.0 0.0 14. CARDONESS MG/L 131 13.1577 15.2505 0.0 0.0 14. ANDIGUT Ref L 131 15.719 2.2053 1.900 0.0 20. ANDIGUT Ref L 131 15.719 2.4701 0.0 0.0	1. 018	OXYGEN	1/21	130	4.191	1.4235	1.4945	-0.34	34.39		
11. MITRATF MG/L 3 10.477 9.0534 9.0534 0.00 0.00 12. PH PH 134 134 0.00 0.5129 0.4409 -0.55 0.67 13. Concardow MG/L 100 3.759 1.352 0.4409 -0.55 0.65 14. Concardow MG/L 134 131.201 1.7635 1.9501 0.00 0.00 15. TEMPERATURES DEG 7 137 71,301 1.7635 1.9901 0.00 0.00 14. Concardow MG/L 139 131.301 1.7635 1.9901 0.00 0.00 15. AND MG/L 137 71,301 1.7635 1.9901 0.00 0.00 17. AND MG/L 137 71,305 13.1527 15.2603 0.00 0.00 20. AND MG/L 137 13.105 13.1527 15.2603 0.00 0.00	In. Awe	N [A	NG/L	44	1.215	12,7591	0.1126	10.01	79.45		
12. PH PH 134 6,400 6.5129 9,4449 -8.55 0.67 13. 701 CHC CARBON MG/L 106 3,759 1,3529 1,2533 61.51 15.05 14. C.SPOUGTIVITY MMHQ/CM 134 1313,201 1,7352 1,2549 -6.39 5.09 15. TEPPERATURES DEG F 137 71,301 1,7353 1,9540 -6.39 5.09 14. CARBONESS MG/L 130 599,219 30,4944 332,4958 -19,24 83,13 14. ANDRESS MG/L 130 133,305 11,1577 15.54058 -19,24 83,13 20. ANDLEM FEFP DEG F 147 73,149 2,2023 7.4701 9,00 9,00	11. NITR.	ATE	7/9m	-	16.479	•.0534	9.0534				
13. 701 NHC CARBON MG/L 106 3.750 1.3529 1.2533 61.51 15.65 14. CSNUCTIVITY WWWHQ/CM 130 1313.281 65.5974 75.7599 -6.39 5.09 15. TEPERATURESI DEG F 137 71.301 1.7535 1.9961 0.00 0.00 14. ADDRESS MG/L 130 399.219 304.4944 332.4958 m19.24 63.13 17. 80010P 20. ANOTENT TEPE DEG F 137 13.149 2.2023 13.49761 9.00 0.00	12. PH		I	130		0.5129	6011.0	-1.55	0.67		
14. CSADUCTIVITY MMMUD/CM 154 1513.281 65.5474 75.7599 -6.39 5.09 15. TEPERATUREN DEG F 157 71.301 1.7635 1.9961 0.00 0.00 14. MADDLESS MG/L 130 153.705 13.1577 15.5665 0.00 0.00 17. BADIDL MG/L 130 153.705 13.1577 15.5665 0.00 0.00 20. ANDIENT TEVE DEG F 147 15.109 2.2023 7.4761 9.00	13. 701	ONE CARBON	NG/L	106	3.750	1.3529	1.2533	41.51	15.05		
15. TEMPERATUREN DEG F 137 71,301 1,7635 1,9501 0,00 0,00 14. HADDRESS MG/L 27 390,219 300,4944 332,9656 19,24 63.15 17. SODUM MG/L 130 153,195 13,1557 15,5063 0,00 0,00 20. AMOLENT TEMP DEG F 137 73,149 2,2025 3,4701	IA. COND	UCTIVITY	MUND/CM	130	1313.241	45.5474	15.7599	-6.39	5.00		
14. 14PDAE93 MG/L 89.219 300.4944 332.9658 m19.24 63.13 17. 8noluw mg/L 130 153.705 13.1527 15. 5663 0.00 0.00 20. Awrient teve deg f 147 73.149 2.2023 2.6701 9.00 0.00	15. TENP	ERATURES	DEG F	137	71.301	1.7435	1.9501				
17. 8n01um wG/L 130 153.705 13.1527 15.5063 0.00 0.00 20. Awriewt teve deg f 147 73.149 2.2023 2.6701 9.00 0.00	14. 44PD	NE 33	MG/L	5	390,219	1964.4948	332.9056	19,24	65.13		
20. AWOIENT TEVP DEG F [47 73.149 2.2025 2.670] 9.00 0.00	11. 3001	2	46.L	130	153.705	13.1527	15.5043	0.0	96.0		
	20, AMET	ENT TEVP	DEG F	1.47				•••••			

Ur PUCK QUALITY

•

Eor ...

: :

.

•

we to see the

TABLE 17 SAMPLE REGRESSION ANALYSIS

•

1

ŀ.

È,

(

-

F	1474	SAPPLE SOURCE	E 1 TO SAI	PLE SOURCE .				
L	[h]	AR CHRVE PIT	RESULTS (1	/=48 + 41+X)				
5	4X 9.	SENSOR	UNITS	10	AL	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
	i .	TOTAL BIOMASS	HTL CIME	4.2141			0.1124	•2
	•	VIANLE SIGMAS: DES CHADIDE	5HIL C/ML 148/1	0.1577 1 7601	-0,0368	0.3941	0,0291	•3
		TUPRIDITY-SIO	146/L				0.1627	······
	7.	DIS OXYGEN		2,4472	8,5447	1,1001	0.4437	109
	•	APHONIA		-1,0724	1,0154	4,64%		
1		n î î n n î l		0.0000	0,0000	9,880#	0,0000	
1		TOT OPS CARSO	4671	1.5839	0.2310	1.3211	0.3777	1 L U A7
		CONJUCTIVITY	MANHO7CH	351,0230				<u> </u>
1	١.	TEMPERATURFAL	0E6 #	30,3030	0.5749	1,1894	0,7684	109
!!). 	HARONE 35		175,3407		230,5027	0.7105	
1		AMRIENT TEMP		47,4841 26 7661	U.663U	4.40 51	V.0 V13	104
2		TOT MALOCARBO	· PP8	15.9487	0.9304	24.5551	•.• 1 3	22
P	La A		T RESULT	. (YEA& + A4+E	+ +5+1++5)		
		SELLOND			·· ·			
î	9,	32.4504	04119	47	AL	-2	ERROR	COUFF.
			HT: 0.784	A 1441	A. 1837			··· ···
		VIANLE BIRMARS	INTL CZNL	4.15A1			0.38A1	V.134/ 8.038A
	i.	TES CHLORINE	H4/L	1,2779				- 0.2010 -
1		TURAIDITY-SIG	M8/L	2.1270	0.3504	-0.0117	1,4407	4,2923
	.	DIS OXVEEN	HG/L	4,2649	-0.0540		1.4677	0.4789
		NITEATE	-676	2478	0.0453	.	4,5438	0,4993
i		PH	PH	-8.8666	4.4504	+0.3235	0.4244	0.5144
i	J.		+ H67Ľ	7,3314 -	-4. 8341	.0456	- 1.2102 -	0.5297
1		CONDUCTIVITY		-3142,5A10	6.6745	-4,0425	93,3ASA	0.6314
1		TEPPERATURES!	9E% F				1,0343	
1	7.	3001U4	HE/L	-274,7127	4.7432		5445.443	4.741 6.7367
ż	.		066 P	151,2425	-2.4758	4.0247	1,0012	0,7437
5	•.	TOT HALOCARRON	• •••	14,3810	0.0472	4,0002	20,4795	0, 9722
 Li	364	PITHIC CURVE		TS (LOG (Y) =40		11 ⁻		
. E	44	SENSOR	UNITE	A0	A1		CO#= -	
hi	٥.		· · · · · · · · ·			ERROR	COUPF.	
		TOTAL AIGHASA			0.2428	0.2544	1744.6	
	¥.	VIANLE NIOMASS	MIL C/HL	-1.0099	- 4, 1946		- A.4575 -	
4	.	AES CHLORINE	#6/L	0,0674	0,2346	0,2836	0,3404	
	,	TURRINITY+810	MEAL			0,1314	0.3447	
1	1	ANNOWIA	-676 H676	•4.108 •4.1414	U.46 83	₹, 38×5	V.6431 8.8441	
•	•					*****		
•	ı.	NETRATE	46/1			A. 8484		•
i	i.	PH .	PH		0.3927	0.0344	4.3030	
i	I,	TOT OPS CAPRO	# #87L	0,2524	0,3075	0,1325	0,2540	
		CONDUCTIVITY		1,3144	0,5030	4.0180	8.9459	
1	5.	TEPPERAT"SEAL		0,7571	8,5917	4.2071	0.76A2 -	
1		100100	HW76 HQ71	V, VI30 6. A191	¥,432¥ 4,744%	8,1830 A.A91A	U. 8722	
				~		~ ~ ~ ~ ~ ~ ~	TATES	
i.	Ϊ.	ANGLENT TEMP	DES F	····· 0.5000 ·	. 4194		" 0.7ALA	

112

· . .

RECLAMATION PLANT/PROCESS PERFORMANCE EVALUATION

たてい

A Martin Aller

and the second states

This portion of the report was originally intended to describe the steadystate performance of the plant beginning in July 1980 through the end of February 1981. As shown in Table 18, the reclamation plant influent, effluent from the secondary treatment process, changed during this period from that for which the reclamation plant was originally designed; i.e., activated sludge to fixed-film reactor (deep trickling or roughing filter)/nitrification/dual-media filtration. These changes were in the process of stabilization for much of the summer of 1980. Also, once stabilized, these changes had a substantial effect on concentration levels of certain water quality parameters in the reclamation plant influent.

Thus, in order to provide the desired steady-state performance data which arc representative of plant capability, the results of two different periods, A and H, are presented. Plant and influent processing during these two test periods is shown in Table 18. In some respects, period H, even though only a 1-month period, may be more representative than period A of conditions normally present in tertiary treatment. The configuration differences of these two periods are summarized below:

Influent Processing	Period A	Period H
Activated Sludge		X
Fixed-Film Reactor/ Nitrification/ Dual-Media Filtration	X	
Granular Activated Carbon		
New		X
Exhausted	x	
Chemical Clarification		
pH 9.5		X
pH 11	X	

Presented below are plant and process input/output data for periods A and H, plant and process availability and O&M costs as measured for the 8-month period beginning July 1, 1980, through February 28, 1981, and plant reliability for the two test periods.

Γ	PLANTING PLAN	v	v,	Ś	Ņ	0	0	0	o	<u>v</u>	•	4.	
	AND	-	T	4	4	Ň	T.	-	-	Ö	ø	••	ø
123	NOLINI S	8	~	~	m	41	m	4	-	M -	•	•	
CESS	NIRO W	×	×	×	×	æ	×	×	34	.	×t	*	×
	Sec. 1011	2.4	2.4	2.4	-		•	•	•	8		-	
Z	ADDAR N.	7		-									
	NICE STIL	-		-	•	•	•	•	**	a	A	Ħ	7
Eav	MOI I MEDE	×	×	Ħ	×	M	×	٠	×	M	×	M	=
	100 m	*	×	×	×	×	×	×.	×	٠	٠	*	٠
	NON 100	•			×	×	×	×	•				ü
 	CANIFICATION P			_	-1	_	_	_	ń	• .		<u></u>	• -
SIR	NOT I WET BOOM						7		•			<u> </u>	
NOCES	BIN Y	×	×	×	×		٠	×	×	M	Ħ		**
	ANTINCI I	Ħ	•	• •	ŗ	N N	٠	' •	•	٠	٠	٠	\$ 1
INFL	CARIFIC CAFLERI	ж	×	×	×		×	×	×	×	Ħ	×	=
13	ADALIAN IN	X	×										
						·						•	
M	THE WAS			×.	×	Ĩ	M	×	×	×		**	μį.
						11	•						
	A TO NO	×	×	•	•		•	•	•	٠	1	٠	٠
Ŀ	A LEAN AND AND A LEAN AND A LEAN AND A LEAN AND AND A LEAN AND A LEAN AND AN AND A LEAN AND AND AND AND AND AND AND AND AND A	ж ж	ж ж	•	•		•। ×	ı x	1	•	1 26	•	•
		х х т	× ×	- 	× 98			- × €			· = =		78
	A CONTRACTOR	X X INVECTO	08/26/80 X X	02/06/10 x -		x waive	× • • •	- × 6./187/00	- * *		- = = = =	• # 91/06/6	
	TEST FEAT	X X 11/12/20 - 06.	10 - 01/21/10 . x x	на – с5/06/100 – и	- × 00/11/20 - 64	M - LLVIOVN X	79 - 10/00/75 - K	- × • • • • • • • • •	- R	78 - CEVIEVO - 87	ne- 11/17/16 =	- = eL/oc/s - eL/	m - WIA78 I
	TEST PERIOD	X X TR/82/20 - 06/50/60	х x . 08/37/00 - 09/20/50	12/12/00 - 05/06/00 x -		x www.		- x www.	- * ******	- IL CATANA - CONTANA		- E STUC/E - ST/11/3	- T W - KIJUP -
	ST TEST TEST TEST TEST TEST	X X TR/92/20 - 06/50/60	12/12/10 - 01/2/10 - 12/12/20	02/12(\$0 - 05/06/80 x -	- x 00/11/20 - 62/11/11	x erverve - ervevue		- x avans - avans	121779 - 15/12/79 x	11/28/78 - 65/18/79 H		- I =	- 1 W- (13/14)

0.5

•

10

-

=

-

-

.

=

m

.

×

×

●!

'×

BUNCAL - BUNUT

=

Table 18 Process Configurations for Test Periods

(

114

ч**е** 4

<u>Input/Output</u>

Ř

であるというないという

- ----

Figure 39 shows the location of sampling points in the process stream and the sampling schedule. Plant influent and effluent concentrations for the two test periods are summarized in Table 19. It should be noted that for period A, the pH of the influent was significantly lower because of nitrification at the city plant.

The percentage change in concentration across each of the processes is shown in Table 20. The change in a parameter as the water flows through each process can be followed horizontally, from left to right, for both test periods. Large negative values indicate that the process caused a significant reduction of this constituent. The overall effectiveness of each of the processes can be judged by examining the numbers vertically. It is readily apparent from this table that the chemical clarification and activated carbon sorption processes had the greatest influence on changes in water quality.

The results of a statistical analysis of process performance are presented for each WMS parameter in Figures 40 through 59. The upper graph compares plant input to output for the two test periods based on a lognormal distribution model and a \pm 3 σ data range (99.7% of the data). The plot also shows results of measurements made on primary effluent during the H test period, thus providing a graphic illustration of total treatment results beginning with settled raw wastewater through secondary treatment and, finally, through tertiary treatment. Additionally, comparison of the reclamation plant influent data for the two test periods shows the differences in performance of the secondary processes in each of the test periods.

The data displayed in the bottom graphs show process performance and were developed by a linear least-squares fit of each process output $\cdot s$ a function of plant influent concentration based on a log-log model; i.e., $1 \cdot g = m \log I + b$. The results of this analysis are plotted in terms of percent removal and output/input for the influent concentration range indicated by the above lognormal distribution. The resulting curves allow the reader to follow a parameter through the plant (sampling points are consecutively numbered) and determine the cumulative contaminant removal as water progressed from process to process.

Figure 40, for example, shows in the upper graph the statistical distribution of the measured total biomass in the plant influent and effluent for test periods A and H. Total biomass in the primary effluent is also shown. The plotted curve illustrates how often the measured data were less than a particular value. Ideally there were an equal number of data points above and below the 50% point which is thus the mean of the data population. The variation of the data is reflected by the slope of the curve, where a horizontal line indicates that there was no variation. As a further illustration of the interpretation of these plots, the lower graphs in Figure 40 show the contribution of individual processes to contaminant removal. The period A results showed, for example, that most all the biomass in the influent was removed in chemical clarification, whereas the subsequent process, mixed media filtration, introduced additional biomass into the water stream, indicating that bacteria are growing and being continually eluted from the filter media.

PLANT	@	1 13 19
FILT/ CHLOR		
		2 I I 2 8 5
6KC		
		3222
NOZO		
	-(A)	2 I I O F
FILT		
	- - R)-	10 II 16 22
RECARB	•	ж
	-0	75 DA 20 20 20
CHEN		
PLANT	-0	SAMPLING THE 3 9 15 21

SAMPLING POINT 30 MAS ACTIVE BEFORE JULY 11, 1980 (INCLUDING TEST PERIOD H).
 SAMPLING POINT 3D MAS ACTIVE BEGINNING JULY 11, 1980 (INCLUDING TEST PERIOD A).

Figure 39 Sampling Schedule

SAMPLING POINTS

R

1

•.....

TABLE	19	PLANT	PERFORMANCE	FOR	TWO	TEST	PERIODS
		(GEOME	TRIC MEAN)				

•

		PERIOD A			PERIOD H		
		INFLUENT	EFFLUENT	CHANGE	INFLUENT	EFFLUENT	CHANGE
TOTAL BIOMASS	nc/nì	1.7	0.2	-87.2	13.8	2.4	-82.4
VIABLE BIOMASS	ac/al	0.4	0.1	-84.0	3.1	0.2	-92.9
TOTAL RESIDUAL CHLORINE		3.5	1.7	-53.0	9.5	1.9	-79.9
TURBIDITY		12.9	4.4	-65.8	18.8	2.9	-84.4
DISSOLVED OXYGEN		5.8	6.0 .	2.4	-	-	-
TUTAL ORGANIC CARBON	mg/1	9.4	3.6	-62.2	13.8	3.3	-76.4
AIMONIA	mg/1	2.4	1.3	-43.5	18.7	16.4	-12.7
NITRATE / NITRITE	ng/1	SENSOR NOT ON LINE					
pH	pH	5.6	6.1	8.5	7.0	7.2	2.7
CONDUCTIVITY	ju sho/ce	1233.	1312.	6.4	1466.	1560.	6.4
HARDNESS	mg/1	269.	327.	21.3	367.	296.	-19.5
SODIUM	mg/1	158.	153.	-3.2	-	-	-
TETRACHLOROETHYLENE	t/وير	3.1	2.9	-6.7	51.6	3.6	-93.0
HETHYLENE CHLORIDE	µg/1	16.7	10.0	-40.4	10.5	20.8	98.6
1,2-DICHLOROETHYLENE	µg/1	0.0	0.0	2.0	0.0	0.0	0.0
CHLOROFORM	r/وير	11.5	23.1	100.4	24.5	4.9	-79.8
1,1,1-TRICHLOROETHANE	۲/ ویر	1.5	3.4	125.1	21.8	1.3	-94.2
BRONDDICHLOROMETHANE	ן/פע	13.7	18.2	32.7	3.7	1.2	-67.0
TRICHLOROETHYLENE	۲/ ویر	1.5	1.8	19.9	20.8	1.5	-92.7
DIBROMOCHLOROMETHANE	1/وير	7.4	12.9	73.9	1.5	1.1	-29.0
BRCHOFORM	Jug/T	0.0	0.0	0.0	1.7	1.3	-21.6
TRIHALOMETHANES	л/б	33.4	57.0	70.6	31.7	8.3	-73.8
TOTAL HALOCARBONS	f\gu	62.1	77.4	24.7	191.0	38.4	-79.9

TABLE 20 PROCESS PERFORMANCE FOR TWO TEST PERIODS (GEOMETRIC MEAN)

SET - A COMPLE VEHICLE A MARKED DESCRIPTION THE OWNER IS NOT SUBMITION IN LARS WEIGHT LINE THE THE SET

•

ĺ

していたい

ORIGINAL PAGE IS OF POOR QUALITY,

ORIGINAL PAGE IS OF POOR QUALITY

ALC: NO

Figure 41 Data Distribution & Process Removal Characteristics

1

attender og som attender og som

ł

Figure 42 Data Distribution & Process Removal Characteristics

Sec. -

•

Г

i F

Same and the second

-

Ņ

ant 2

dia dia 1

1

l

1

OF POOR QUALITY

و فرا

(

「「「「「「「」」」」

and the second sec

5.00

きょう どうちょうどう

and the second has

l

ないないのであった

Figure 49 Data Distribution & Process Removal Characteristics

ORIGINAL PAGE IS OF POOR QUALITY

「「「「「「「」」」」」」

·

-

からなる かぞうしていまい いたち しまえ たいかく たまた かっかい しょうしょう しょうしょう

÷

Figure 53 Data Distribution & Process Removal Characteristics

OF PERS QUALITY

Sealing and

. .

...

たいであるというというというないできたというできょう

h

a state of the sta

•

Í

Sec. 1

The and the second second second second

Į

OF POOR QUALITY

وتمرة

-

138

<u>ر بار</u>

N.C.

The computerized data analysis from which figures 40 through 59 were constructed is included in Appendix D.

Table 21 shows the results of a test to determine whether process performance can be reliably described, as above, by simple statistical procedures; i.e., by the mean and the standard deviation. Values of chi square are shown for the lognormal data distribution model. If the data for a test period fit the assumed model, a value of 6 or less will be obtained in 19 of 20 trials (test periods), thus, the model may be rejected for values greater than 6 with at least 95% confidence.

Table 21 shows that these values ranged from near zero, indicating a near perfect fit of the data to the model, to 66, indicating an extremely poor fit. Over half (57 percent) of the measurements had chi square values of 6 or less. The parameters which most consistently showed normality were: methylene chloride, total halocarbons, viable biomass, conductivity, hardness, trihalomethanes, chloroform and pH. Total biomass, ammonia and TOC showed a pronounced change in normality between the two test periods.

It is proposed that the chi square value may reflect process stability; i.e., a high value preceded by a low value in the water treatment process train indicates that this process is susceptible to random and unexplained upsets. On the other hand, a low value preceded by a high value shows that the process is tolerant to influent upsets. Table 22 shows the number of parameters which had a significant change between the influent and effluent of processes. Chemical clarification followed closely by ozonation generally reflected a greater stabilizing effect while GAC seemed to have the greatest tendency for unexplained upsets.

A consistently high chi square value may indicate that this particular water constituent or its sensor is inherently unstable. Only one measurement, trichloroethane, failed to show any lognormal distribution characteristics. On the other hand, if the chi square values were always low, say less than 1, the data may be "too good" and the responsiveness of the sensor might be suspect. Such consistently low values did not occur.

The following summarizes significant plant characteristics reflected by the data:

- Influent Processing: The change in secondary treatment from activated sludge to fixed-film reactor/nitrification/dual-media filtration resulted in a significant reduction in reclamation plant loading for many contaminants.
- 2. Chemical Clarification:

「「「「「」」」でになっていたいというというできたからないできた」

a. When operating at pH 11, essentially all the biomass is removed in the sludge and/or by cell lysis (disintegration at high pH). Biomass removal was less effective at the lower pH of 9.5 in period H where about 60% was removed.

こうない ない とうちょう しょうしょう

and the second second

ł,

Ģ Ţ \odot Į 3 ۲ € (E) Ę Ę FILT/CHLOR • ~ 9 ~ ٠ m m 2 ٦ 3 3 + 5 E -윎 . (E) 3 N 6 ŝ 40 ----1020 -3 3 ~ 3 • 8 0 RECARD/FILT FILT/020M (。)---Ċ Ę Ę 3 ٥ Ξ 3 42 (e) ---Z ~ . -+ ---• ----- Period H TABLE 21 (Continued) CHI squares CHEN CLAR/RECARD OF PROCESS EFFLUENTS FOR THD TEST PERIODS િ (6)----6 ٩ . + • 6 8 • - Period A CHEN CLAR 3 . ~ **,** --2 ~ -~ + m 4 SECONDARY 12 3 2 3 ø ۵ 9 **a**p • ~ 0 i **MILINAY** \odot 6 \odot C ૯ E \odot \odot Ē 1,1,1 - TRICHLORDETHANE 1,2 - DICHLOROETHYLENE DI BROMDCHLORONETHANE BRCHOOL CHLORONE THANK TETRACHLOROETHYLENE NETHTLEVE CHLORIDE TRICHLONDETHMLENE PROCESS TGTAL HALOCARDONS TRIHALONETHANES CHLOGOFORM BRONDFORM

•

ちょうちょう ひとう しい

aline martine find

TABLE 22

SIGNIFICANT CHANGES IN NORMAL DISTRIBUTION ACROSS PROCESSES

NUMBER OF PARAMETERS

		بالمسير والالالان الشريبي والأجراب ومنهج ومراكبته والمستعد والمتحد والمتحد والمتحد والمتحد والمحاد			
	MORE NORMALLY DISTRIBUTED		LESS NORMALLY DISTRIBUTED		
	PHYSICAL/ CHEMICAL/ BIOLOGICAL SENSCRS	GC	PHYSICAL/ CHEMICAL/ BIOLOGICAL SENSORS	GC	
SECONDARY (PERIOD H)	4	1	1	3	
CHEM CLAR/RECARB (PERIOD A)	5	2	1	0	
CHEM CLAR/RECARB (PERIOD H)	1	4	3	1	
RECARB/FILT (PERIOD A)	1	3	2	0	
FILT/OZON (PERIOD H)	2	5	3	1	
OZON	3	0	1	2	
GAC (PERIOD A)	2	3	2	2	
(PERIOD H)	0	2	2	3	
FILT/CHLOR (PERIOD A)	2	1	5	1	
(PERIOD H)	3	0	1	1	

- b. The turbidity measurement indicates that only about 25% of the suspended solids removed in the plant are removed by chemical clarification. In light of the biomass data, which indicate that a much larger portion of the suspended solids is removed in the clarifier, this small decrease in turbidity is attributed to floc carryover. Experience with fouling of downstream equipment by calcium carbonate deposits supports this interpretation.
- c. More TOC was removed; i.e., 3 versus 1.5 mg/l, when operating at the higher pH of period A (with aeration at pH 11, TOC removal increased to 5.5 mg/l during period G. The aerators were not operational during periods A and H).
- d. The concentration of the trihalomethanes is increased. This is probably due to the additional time that the chlorine is in contact with organics in the clarifier. This allows more chlorinated organic formation time.
- e. Ionic activity associated with lime treatment increases the conductivity. This suggests the possibility of controlling lime dosage using a conductivity sensor rather than pH sensor for operational reliability reasons; however, the durability of the conductivity probe in this environment has not been tested. The pH control currently used has been a consistent problem because of pH probe fouling in the high solids environment.
- f. An apparent pH anomaly was noted during period A. While the pH was controlled at 11 in the flash mixer, the measured value in the aerator sump tank just ahead of recarbonation was approximately 7. In previous test periods these two pH values have been nearly the same. The noted difference remains unexplained.
- 3. Ozonation:

になっていたが、ことのであっていたい

- distance of the second

- a. Ozonation results in a reduction in few of the measured parameters. (Presented here are the complete data collected during the test period. There were times during this period when the ozonator was not operating because of equipment failure. These periods are known, and an analysis could be performed to quantify the effect of ozonation by comparing ozonator operating data with ozonator nonoperating data. Because of time constraints, that analysis has not been done.)
- b. The increase in turbidity after ozonation appears to be an anomaly. This increase may result from entrained gases in the effluent sample. If so, they are very fine particles since they are not visible to the naked eye.

It may be assumed that turbidity is not a reliable measure of the presence of suspended solids wherever entrained gases are introduced into the process stream. Sample points 2, 3b, 5, and 6 may thus be the only reliable points for measuring suspended solids by turbidity since gases may essentially be recoved in the preceding process; i.e., clarification or filtration. If the ozonation effluent data are ignored, Figure 43 shows that much of the work of removing particulate matter, at least that which reflects light at 25 degrees, is done in the first filtration and not in the GAC as the data may seem to indicate. The plant's experience with persistent flocculant carryover from the clarifier with the accompanying calcium carbonate deposits on downstream equipment may support this interpretation of the data; e.g., there is no significant decrease in turbidity (suspended solids) before the initial filtration and the decrease in organic material (TOC and Biomass) in the chemical clarification is offset by an increase in calcium carbonate precipitant.

4. Mixed Media Filtration:

アトレスをかけた

- a. Biological growth in the first filtration step results in an increase in biomass in downstream processes.
- b. The first filtration step provides the largest portion of the plant's turbidity removal. As discussed previously, this removal is largely floc carryover from chemical clarification.
- c. The addition of dual-media filtration in the secondary plant (period A) reduced the amount of solids in the reclamation influent and thus substantially increased the time periods between backwashes in the reclamation plant filters.

5. Granular Activated Carbon:

- a. A reduced level of many contaminants is characteristic of water processed by GAC, when its useful life is not exceeded. The virgin carbon used during period H resulted in a pronounced reduction in most organic materials. The exhausted carbon in the system during period A was saturated resulting in an increased rather than a decreased concentration for many of the measured trace organics.
- b. All halocarbons are reduced in new GAC except methylene chloride, which is produced. In contrast, methylene chloride was removed by exhausted carbon during period A.
- c. Most halocarbon concentrations were increased by GAC processing in period A because the carbon had been previously saturated at levels higher than the period A influent levels.
- d. It is common to find biomass elution from GAC especially under favorable growth conditions; i.e., high dissolved oxygen, pH < 11, no ozone. Some growth was apparent during period H. Promoting biological growth in the GAC may extend its useful life (reference 4).
- e. Most of the plant's ammonia removal occurs in the GAC probably by biological activity; i.e., by nitrification.

- f. Mean TOC removal varied from 7.7 mg/l (0/I of 0.29) for new carbon in period H to 2.6 mg/l (0/I of 0.60) for exhausted carbon in period A. The TOC removal in period A is attributed to biological activity. In the adsorption operating mode, new GAC may be more accurately characterized as a constant TOC quantity removal process rather than as a percentage removal process (note the negative slope in Figure 42, period H, sample source 5). A different performance characteristic is obtained in the biological mode of period A.
- g. Stanford University's Civil Engineering Department has conducted a test program to characterize activated carbon performance with operating age (reference 5). Composite samples were continuously collected for a period of 7 months (test period C) with the SCVWD-WRF/PA operating with three parallel carbon columns: The first containing virgin carbon, the second containing regenerated carbon, and the third containing exhausted carbon. Composite samples of the influent and the effluent of each column were periodically analyzed (usually once a week) for various organic compounds to determine the change in carbon removal performance with time. These data are presented in Appendix E.

Included with the Stanford data in Appendix E are comparable WMS measurements made during the same time period. However, the WMS data were taken at a point after mixing of the effluent of the three columns. Thus, an average of the Stanford effluent data was computed to provide a data comparison which should be valid assuming equal flow through each of the three columns and good mixing ahead of the sampling point.

A least-squares fit of the Stanford data for two of the measurements, TOC and chloroform, is shown in Figure 60, where performance is plotted as a function of age.

The data for chloroform indicate an effective operating life of 77 days with an adsorption capacity of 0.066 mg/gm carbon at 13.8 g/l. This value is content with previous test results with virgin carbon (reference 4). As indicated by the data in Appendix E, the GAC performance for chloroform is typical of the other volatile organics.

The Stanford data for TOC indicate an effective operating life approaching 179 days indicating an adsorption capacity of 63.2 mg TOC/gm carbon at 8.5 mg/l. However, at about 130 days, a discontinuity in the data indicates that action of biological growth on the carbon reached an equilibrium for the remainder of the test period with a TOC removal of about 5600 gms/day (0.28 mg TOC/gm carbon/day).

$$\frac{TOC}{O/i} = 0.123 + \frac{BV}{8700} \\ = 0.123 + \frac{D}{284}$$
 r = 0.96, T = 8.5 MG/L

CHLOROPORM

1

$$O/I = \log^{-1} [1.87 \log (BV) - 6.58]$$

= $\log^{-1} [1.87 \log D - 3.53]$ r = 0.92, T = 13.8 µG/L

DAYS OF OPERATION (D)

Better TOC removal by biological activity has been measured during previous test periods. During test periods F and G where the aerators were operating and the ozonator was not operating, over 50% better TOC removal performance in the GAC was indicated (reference 4). These results suggest that conditioning the influent to the GAC can have a significant influence on TOC removal performance and, thus, on carbon regeneration costs. These costs are discussed in a later paragraph.

Plant/Process Availability

Ì

Plant and process availability (percent of time the plant/process operates on demand) was monitored during the test period. The objective of operating the plant continuously for the 8-month (5832-hour) test period was met except for 69 hours when plant influent was unavailable, and when plant equipment failed. The operating time and downtime-for-repair periods for each of the processes are summarized in Table 23. Equipment failures experienced during the 8-month test period resulted in an estimated 20 days annually when the plant would be unable to deliver product; i.e., reclaimed water.

Included in this analysis is consideration of product storage capacity. Plant shutdowns of less than 8 hours were not recorded as plant downtime since reclaimed water could be delivered at the operating flow of 0.066 m/sec. Yor up to 8 hours from the 1893 m³ effluent storage tank.

The individual processes did not have the capability to continue process operations when equipment failed because there was negligible intermediate storage. Therefore, the downtimes recorded for each of the processes are actual repair times. However, in many cases equipment failures did not result in plant shutdown because the capability to bypass nonoperating processes was afforded by plant design flexibility.

The problems necessitating process equipment repair are outlined in Appendix C. There were three predominant problems:

- Calcium carbonate encrustations on equipment causing pump malfunctions and scale builder on the inside walls of piping, thereby reducing flow capacity.
- 2. Plumbing failures within the ozonator.
- 3. Carbon furnace equipment component failures. Carbon was regenerated from the unused tower during the test period. The operator efforts required to do this were quite intensive. After complete regeneration of this tower, it was decided to cease any further regeneration. This decision was based on labor requirements and the fact that Stanford University's research involved long-term sorption characteristics of activated carbon without regeneration.

The increased labor was due primarily to carbon furnace failures which included jamming of 1) the dewatering screw, 2) the horizontal feed screw, 3) the carbon drop chute, 4) the outlet at the base of the

TABLE23AVAILABILITY OFPALO ALTO RECLAMATION FACILITYJULY 1, 1980 THROUGH FEBRUARY 28, 1981

	OPERATING TIME, HR.	DOWNTIME, HR.	AVAILABILITY,	ESTIMATED YEARLY DOWNTIME
CHEMICAL CLARIFICATION	4,993	654	88.4	43
RECARBONATION	4,825	91	98.1	7
OZONATION	4,160	1,217	77.4	83
MULTIMEDIA FILTRATION	5,324	0	100.0	0
CARBON SORPTION 1/	5,324	0	100.0	0
CHLORINATION	5,324	0	100.0	0
COMPUTER	5,324	81	98.5	6
PLANT (PRODUCT DELIVERY)	5,455	308	94.7	20

NOTE:

0

í

日本の意味

1. CARBON REGENERATION FURNACE WAS NOT OPERATED DURING THE TEST PERIOD.

carbon furnace as it enters the quench tank, and 5) the bottom of the spent carbon storage tank during carbon transfer. Also, the burner temperature control sensors malfunctioned quite frequently which resulted in improper temperatures within each hearth of the multiple hearth furnace. The operators spent considerable time unjamming the previously mentioned problem areas, and the operation required close attention during the regeneration process. Miscellaneous breakdowns included boiler breakdown, I.D. fan failures, and clogging at the outlet of the quench tank which added to the problems. This necessitated the discontinuance of further attempts to regenerate carbon.

Plant Reliability

Figure 61 illustrates the method of determining plant reliability. The data distribution curve, Figures 40 to 59, at the MCL establishes the probability (reliability) that plant effluent will not exceed the MCL.

Plant reliability (percent of operating time that the plant effluent was within given limits) is summarized in Table 24. Some of these limits are illustrative only in that they are not discharge limits on this particular plant but are potential limits should the plant effluent be used for potable or irrigation purposes.

Plant O&M Costs

The O&M costs of the plant during the 8-month test period are presented in Table 25. Extrapolation of these data gives a projected annual plant production cost of \$311,400. Water production costs were \$0.16 per 1000 liters.

The distribution of costs as determined from the totals shown in Table 18, including all categories, may be summarized as follows:

	Labor	Materials	Total	
Operations	49.4%	25.5%	74.9%	
Maintenance	22.5%	2.6%	25.1%	
Total	71.9%	28.1%	100.0%	

The labor costs shown under the subheading General Plant Operations include preventative maintenance on all equipment contained within the reclamation facility. It also includes maintenance that require less than 4 hours of effort. Operator process monitoring, filter backwashing, plant rounds keeping, and miscellaneous water quality testing are included in this category. Plant operators', electricians', and mechan 's' labor constitutes the majority of the cost in this category. This subhead is to cover those undefinable labor costs that could not be allocated specifically to a unit process.

PERCENT OF TIME LESS THAN

TABLE 24

なるでなるというでしたとう

alist nutrichted

· · ·

ander .

RELIABILITY OF PALO ALTO RECLANATION FACILITY

	MAX IMUM CONCENTRATION LIMIT	MINIMUM CONCENTRATION A IMIT		REL IAB	ורודע
	NC	MCL (MIN)	REFERENCE	PERICO A	PERIOD H
CHEMICAL OXYGEN DEMAND	10 mg/1	ı	5	65.0X /1	57.8%
TR I HAL ONE THANES	100 mg/1	ı	10	, 26.92 <	799.9K
TOTAL NITROGEN	5 mg/1	¢	G	86.1% <u>/2</u> (NH ₃)	X 0.0 X
Hq	8.5	6.5	6	18.7%	36 [°] 66
DISSOLVED OXYGEN		. 1 MG/L	G	X6.99<	• •
HARDNESS	500 mg/1	ı	11	78.6%	37.3%
Mnjoos	250 mg/1	ı	12	36. 99	·
TOTAL RESIDUAL CHLORINE		, 1 MG/L	6	76.2%	77.5%
COMDUCTIVITY	1600 umho/ cm	I	13	X6.92	70.9%
TURBIDITY	5 NTU		0	·	I

NOTES:

1. ASSUMES COD/TOC RATIO OF 2.5. 2. BASED ON AMPONIA OR NITRATE CONCENTRATION.

TABLE 25

OPERATIONS & MAINTENANCE COSTS OF PALO ALTO RECLAMATION FACILITY JULY 1, 1980 THROUGH FEBRUARY 28, 1981

 $\boldsymbol{\mathcal{V}}$

9	OPERATIONS	MAINTENANCE	LAB	ADMINISTRATION & ENGINEERING	TOTALS
CHEMICAL CLARIFICATION LIME LABOR	\$19,290	\$13,600	-	-	\$32,890
RECARBONATION LABOR	÷ – .	650	-	•	650
OZONATION LABOR	-	3,960	-	• .	3,960
MULTIMEDIA FILTERS	-	-	-	-	-
CARBON AUSORPTION	-	-	•	-	-
CHLORINATION CHLORINE	580	-	•	•	580
COMPUTER LÁ80R	-	13,770	•	-	13,770
GENERAL PLANT OPERATIONS 2/ ELECTRIC GAS MATERIALS & SUPPLIES LABOR	30,650 2,360 5 64,870	5,440	23,110	29,310	155,740
TOTALS	\$117,750	\$37,420	\$23,110	\$29,310	\$207,590

TOYAL WATER COST = \$0.16 PER M³ (\$0.60 PER 1000 GAL.)

PROJECTED YEARLY 0 & M COST = \$311,400

ORIGINAL PAGE IS OF POOR QUALITY

NOTES

- 1. LABOR COST OF \$37/HR. FOR ENGINEERING; \$27/HR. FOR ALL OTHERS.
- 2. CARBON WAS NOT REGENERATED DURING THE TEST PERIOD.
- 3. INCLUDES PREVENTIVE MAINTENANCE AND MINOR MAINTENANCE REQUIRING LESS THAN FOUR HOURS LABOR.
 - > THE COSTS REPORTED HERE MAY BE UNIQUE TO THE EQUIPMENT & SYSTEM DESIGN OF THIS PARTICULAR FACILITY. CARE MUST BE EXERCISED IN EXTRAPOLATING THESE COSTS TO OTHER SYSTEM DESIGNS OR DIFFERENT PLANT CAPACITIES.

These costs did not include carbon replacement/regeneration since exhausted carbon was used throughout the test period. If carbon had been regenerated, the costs could have increased significantly.

ł

Figure 62 illustrates potential water cost based on a \$0.227 per kilogram carbon regeneration cost and a TOC effluent upper limit of 4 mg/l. The figure shows the strong cost dependence on influent conditions and performance reliability. For example, the water production cost presented above (\$0.16 per 1000 liters) would about double for plant influent conditions of test period A, if 99 percent reliability were achieved. For the lower quality influent of test period H, the production cost could have more than doubled.

It should be noted that a significant but unconfirmed assumption was made in developing Figure 62; i.e., the performance achieved by continuously regenerated carbon, based on average carbon age existing in the column, will be the same as that obtained when the column contains all carbon of the same age. This assumption allows the carbon performance of Figure 60 to be used in computing continuous regeneration rates. The linear decay in performance seems to substantiate the assumption; however, the resulting computed costs should be considered approximate until actual tests confirm the postulated performance.

The sudden tail-off of the cost curve for period A occurs at about 50% reliability below which steady-state biological growth on the carbon maintains performance without the necessity of carbon regeneration.

It is significant to note that if over 50% reliability is to be maintained, costs will be incurred which will significantly increase the cost of water production.

BASIS

A LANDA CANADA A

Į.

- COD LIMIT OF 10 mg/l. COD/TOC RATIO OF 2.5. INFLUENT CONCENTRATIONS OF FIGURE 20. 1.
- 2.
- PERFORMANCE WITH CONTINUOUS CARBON REGENERATION IS THE SAME AS THAT SHOWN IN FIGURE 60 BASED ON AVERAGE 3. CARBON AGE.
- CARBON REGENERATION COST OF \$0.227 PER KILOGRAM. 4.

Relationship Between Cost & Reliability for Complying Figure 62 With COD Discharge Limit by Granular Activated Carbon Regeneration

SECTION 4

FUTURE APPLICATIONS

- A SALA BARA

A primary responsibility of the Santa Clara Valley Water District is to insure an adequate quantity and quality of water supplies for Santa Clara County, California. The existing needs are met from local and imported supplies. Local supplies are from the natural yields of the County's three interconnected subbasins and the yields of the major tributary surface drainage areas into District reservoirs. Water is imported into Santa Clara County from the South Bay Aqueduct of the California State Water Project. In addition, water is imported through the City of San Francisco's Hetch-Hetchy Aqueduct by various cities in North Santa Clara Valley. Imported water is needed in Santa Clara County even during an average rainfall year, and a new importation supply from the Bureau of Reclamation San Felipe Division of the Central Valley Project is being constructed to fill this need.

The Santa Clara Valley Water District is committed to developing alternative supplies including reclaimed water. There are, however, barriers to reuse - principally economic and assurance of safety (i.e., water quality). The Palo Alto Reclamation Plant and the NASA WMS have been crucial projects for exploring these tarriers.

Early in the Palo Alto Reclamation Project, the Santa Clara Valley Water District concluded that on-line water quality analysis would be essential to the successful marketing of high quality reclaimed water, and contacted NASA for their help and expertise in this area.

It was felt that even though there are wet chemistry analyses available for determination of water quality, these tests would be unacceptable because it often takes days before the results are obtained, long after the water would have been reused.

With the WMS, the effluent quality can be monitored on a real-time basis. If for any reason the effluent quality deteriorates, then the effluent can be diverted to waste. The WMS also was helpful in evaluating reclamation unit processes by monitoring quality improvement in each unit process. This permitted evaluation of the effectiveness of each treatment process and unit process economics. Results from the experiment indicate that such monitoring of treatment plant effluents on a continuous basis can better enable treatment plant operators to achieve optimal performance from each unit process. The long term future applications of automated water quality monitoring appears bright but its immediate future is not well defined. Several factors need clarification, such as, the legal aspects of "product liability" of reclaimed water, and current EPA and DOH monitoring requirements for potable and wastewater. Since the demand for potable water is continuing to increase and the sources of pristine water are not increasing, it appears certain that wastewater will have to be reused. If water is to be reused, it is important that its quality be assured on a continuous basis. Automation is the only economically feasible (see cost comparison in Table 26) means of meeting such a need. The use of continuous monitoring data from the WMS as control functions for the treatment plant process control computer can result in a closed loop control of the wastewater reclamation plant resulting in reduced chemical and power usage in the various treatment processes. These benefits will be optimized by the use of closed loop control. Estimated costs of a comparable number of analyses by typical laboratory techniques are shown. These estimates are based on the results of a telephone survey conducted by the Santa Clara Valley Water District.

TABLE 26

ESTIMATED COSTS AND SAVINGS FOR AUTOMATED INSTRUMENTATION

		LAB		WMS
CAPIT	TAL COSTS, \$			
SE	ENSORS/SUPPORT EQUIPMENT		SAME	
AL	ITUMATION (COMPUTER, PUMPS, VALVES, ETC) .			\$ 150,000
08M 0	COSTS (ANALYSIS AND REPORTING),			
1	SAMPLE/DAY (BASED ON 30 MAN-HOURS FOR 22 LAB ANALYSES @ \$27/M-H.)	\$800		\$26 0
6	SAMPLES/DAY (BASED ON 75 MAN-HOURS FOR 22 LAB ANALYSES @ \$27/M-H.)	\$2,000		\$260
MININ	UM CAPITAL PAYOUT TIME FOR MATION, DAYS		*	
1	SAMPLE/DAY			278 DAYS
6	SAMPLES/DAY			86 DAYS

REFERENCES

- 1. "Boeing/NASA-Water Monitor System Computer Operating Manual," Volumes I and II, D2-118621-1A, Poel, September 11, 1978.
- 2. "National Interim Primary Drinking Water Regulations," EPA-570/9-76-003.

í

· · · · · · · · · · · · · ·

- 3. "Advanced Treatment for Wastewater Reclamation at Water Factory 21," McCarty et al. EPA Technical Report Number 236, January 1980.
- 4. "Water Monitor System Technical Summary Report," Jeffers, Brooks, Thomas, Nibley, and Poel, The Boeing Company, September 26, 1979.
- 5. EPA Grant R804431, Stanford University From Robert S. Kerr Environmental Lab.
- 6. "Schaum's Outline of Theory and Problems of Statistics," Spiegel, Rensselear Polytechnic Institute, McGraw-Hill Book Company.
- 7. "Statistical Package for the Social Sciences," Nie, et al, McGraw-Hill Book Company, Second Edition, 1975.
- 8. "Operation and Maintenance Manual for the Water Reclamation Plant at Palo Alto, California," Santa Clara Valley Water District, Santa Clara County, California, December 1977. Jenks and Harrison.
- 9. "Wastewater Reclamation Requirements for the Santa Clara County Flood Control and Water District and the City of Palo Alto for Direct Injection of Reclaimed Wastewater into the upper aquifer of the Santa Clara Valley Groundwater Basin near Palo Alto," Order Number 73-71, and correspondence dated August 23, 1977, California Regional Water Quality Control Board, San Francisco Bay Region.
- 10. "National Interim Primary Drinking Water Regulations Control of Trihalomethanes in Drinking Water." Environmental Protection Agency 40CFR, Part 141, pp. 68624-68707, Federal Register Volume 44, Number 231, Thursday, November 29, 1979, Rules and Regulations.
- 11. "European Standards for Drinking Water," 2nd. Ed. 1970. World Health Organization.
- "Guidelines for Interpretation of Water Quality for Agriculture," University of California Cooperative Extension, UC - Committee of Consultants, January 15, 1975.
- "California Domestic Water Quality and Monitoring Regulations," California Health and Safety Code. Section 4026, Division 5, Part 1, Chapter 7 Water and Water Systems, California Administrative Code. Articles 1-8, pp. 1701-1719, 1977.
- 14. "Final Report on Water/Wastewater Management user Requirements Committee Meeting of February 14, 1974," Public Technology Incorporated for NASA Office of Applications, July 15, 1974.

15. "NASA JSC Water Monitor System - City of Houston Field Demonstration," Taylor et al, July 1979. NASA Reference Publication 1041.

ĺ

:!

APPENDIX A

PROCESS INPUT/OUTPUT CHARACTERISTICS

FOR PART I OF THE TEST PERIOD JANUARY 1978 TO SEPTEMBER 1979

APPENDIX A

PROCESS INPUT/OUTPUT CHARACTERISTICS

Two points should be noted in evaluating the enclosed data, both of which probably contributed to data scatter:

- Each point represents a daily average of 4 measurements of both the process input and output taken at regular 6 hour intervals. No compensation has been made for hydraulic lag. The lag would have negligible effect on certain processes such as the carbon towers where detention time is 34 minutes; however, data relating plant input to output can have significant error during an influent change since the average detention time is 9-10 hours and up to 24 hours is required to fully respond to a step change. No attempt was made to edit data which occurred during upsets.
- 2. A faulty flocculation process control sensor resulted in pH below the set-point. Subsequent analysis of plant operating records indicate that the data identified herein at pH 9.5 should be considered in the range 9 to 9.5 and data identified as pH 11 should be considered in the range of 10 to 11.
PROCESS CONFIGURATION SYMBOLS

Ο	BIOLOGICAL SECONDARY (ACTIVATED SLUDGE)/CHLORINATION
0	FLOCCULATION (pH 9.5)/AMMONIA STRIPPING/RECARBONATION/ FILTRATION/OZONATION/CARBON ADSORPTION (UNITS 3 & 4), FILTRATION/CHLORINATION - FLOW 1 MGD
Φ	SAME AS O WITHOUT AMMONIA STRIPPING (AERATION)
•	SAME AS O WITH pH 11
•	SAME AS 🌑 WITHOUT OZONATION
• •	SAME AS WITHOUT FILTRATION/OZONATION
Δ	FILTRATION/OZONATION/CARBON ADSORPTION (UNIT 2)/ FILTRATION/CHLORINATION - FLOW 0.5 MGD
	SAME AS 🛆 WITHOUT OZONATION

ACTIVATED SLUDGE/CHLORINATION

NOMINAL REMOVAL = 65%

ĺ

FLOCCULATION/AMMONIA STRIPPING

FILTRATION/OZONATION

and the second se

ļ

NOMINAL REMOVAL =
$$I - 5.61 \frac{0.5}{\mu g/LIT}$$

ĺ

- Andrews Start

FLOCCULATION/FILTRATION/CARBON ADSORPTION/FILTRATION

NOTE: PERFORMANCE CURVES SHOWN ARE SUMMATION OF NOMINAL UNIT PROCESS' PERFORMANCE

2. REMOVAL WITH AMMONIA STRIPPING = I -5.6(0.21)^{0.5} μ g/LIT

µg/LIT

^{1.} REMOVAL WITHOUT AMMONIA STRIPPING =I - 5.6(0.4I) 0.5 μ g/LIT

RECLAMATION FACILITY

Í

ĥ

- NOTE: PERFORMANCE CURVES SHOWN ARE SUMMATION OF NOMINAL UNIT PROCESS' PERFORMANCE.
- 1. NOMINAL REMOVAL WITH FLOCCULATION & AMMONIA STRIPPING =I - 5.6(0.19I) $0.5 \mu g/LIT$
- 2. NOMINAL REMOVAL WITHOUT FLOCCULATION OR WITH FLOCCULATION, WITHOUT AMMONIA STRIPPING = $\frac{1}{2}$ = 5.6 (0.401) $0.5_{\mu g}/LIT$

ACTIVATED SLUDGE/CHLORINATION

NOMINAL REMOVAL-78%

1

NAK BURNE

"Space"

1.	5.5 MG/LIT	REMOVAL @ pH	11 WITH AMMONIA STRIPPING
2.	3.0 MG/LIT	REMOVAL @ pH	9.5 WITH AMMONIA STRIPPING
3.	1.5 MG/LIT	REMOVAL @ pH	9.5 WITHOUT AMMONIA STRIPPING

FILTRATION/OZONATION

NOMINAL REMOVAL = 15% MG/LIT

1

CARBON ADSORPTION

NOMINAL REMOVAL = 6 MG/LIT

FILTRATION/CHLORINATION

NOMINAL REMOVAL = 15%.

FILTRATION/CARBON ADSORPTION/FILTRATION

NOMINAL REMOVAL = I - [(0.851-6)0.85

OTION MU FAGE IS CE PUCA QUALITY

FLOCCULATION/FILTRATION/CARBON ADSORPTION/FILTRATION

NOTE: PERFORMANCE CURVES SHOWN ARE SUMMATION OF NOMINAL UNIT PROCESS' PERFORMANCE.

- 1. NOMINAL REMOVAL 0 pH 11 WITH AMMONIA STRIPPING =I+(I+13.0) 0.8 MG/LIT
- 2. NOMINAL REMOVAL @ pH 9.5 WITH AMMONIA STRIPPING =I-(I-10.5) 0.8 MG/LIT
- 3. NOMINAL REMOVAL @ pH 9.5 WITHOUT AMMONIA STRIPPING =I-(I-9.0) 0.8 MG/LIT

ORIGINAL PAGE IS OF POOR QUALITY

C - 3

ACTIVATED SLUDGE/CHLORINATION

NOMINAL REMOVAL = 70%

FLOCCULATION/AMMONIA STRIPPING

- 1. 50% REMOVAL
- 2. 40% REMOVAL WITHOUT ANMONIA STRIPPING

•

(

d

Π

FILTRATION/OZONATION/CARBON ADSORPTION

1. 75% REMOVAL

l

ŕ

2. 55% REMOVAL WITHOUT FILTRATION/OZONATION

FILTRATION/CHLORINATION

REMOVAL = $I(1-e^{-I/15})$ MG/LIT

NOMINAL REMOVAL =I(1-.25e^{-I/60}) MG/LIT

ĺ

A REAL PROPERTY AND

NOTE: PERFORMANCE CURVE SHOWN IS SUMMATION OF UNIT PROCESS PROCESS'PERFORMANCE

FLOCCULATION/FILTRATION/CARBON ADSORPTION/FILTRATION

NOTE: PERFORMANCE CURVES SHOWN ARE SUMMATION OF NOMINAL UNIT PROCESS' PERFROMANCE.

- 1. NOMINAL REMOVAL = $I(1 .13e^{-I/20})$ MG/LIT 2. NOMINAL REMOVAL WITHOUT AMMONIA STRIPPING = $I(1 .15e^{-I/100})$ MG/LIT
- 3. NOMINAL REMOVAL WITHOUT FILTRATION/OZONATION = 1(1 -.23e -1/67) MG/LIT

FLOCCULATION

1. NOMINAL REMOVAL AT PH 11 = (1-1.0) MC/ML

2. NOMINAL REMOVAL AT PH 9.5 = 80%

(

FILTRATION/OZONATION

1. NOMINAL REMOVAL = 80%

ļ

1

2. NOMINAL REMOVAL WITHOUT DZONATION = 0

A-27

. م. .

NOMINAL ADDITION = 0.3 MC/ML

(

NIN

ş

FILTRATION/CHLORINATION

NOMINAL REMOVAL =I(1-e -I/7) MC/ML

ĺ

Ŀ,

100

A-30

- 1

FLOCCULATION

1. NOMINAL REMOVAL = 882 WITHOUT AMMONIA STRIPPING 2. NOMINAL REMOVAL = (I-0.2) MC/ML WITH AMMONIA STRIPPING

ĺ

NOMINAL ADDITION = 0.1 MC/ML

(

-

FILTERATION/CHLORINATION

FILTRATION/CARBON ADSORPTION/FILTRATION

NOMINAL REMOVAL =(I-0.6) MC/ML

(

APPENDIX B

(

MONTHLY AVERAGES FOR PART I OF THE TEST PERIOD JANUARY 1978 TO SEPTEMBER 1979 APRIL AVERAGES

したまで、たちとうないとう

and the second second

ĺ

			ACTIVATED	-	PLOCCILLATION	-		- -	CANNA A			ſ		
15-50 MG0	ATHIN A	F			STRIPPING 4	+	FILTRATION D7/MUT10N	Ì	ACTIVATED	1	FILTRATION		CCC I CM	
			CONTACT		RECARED TATIC				CLRBON					ŀ
		+	A Removal	-	NOTICE &	 1	T Renova	-	A Nameva	+	X Renoval	-	Necla -	Total
TOTAL BIOMSS	NC/N	29.2	,	11.4	2	2.6	"	0.6	9	1.1	#	0.0	Bition 93	16
VIABLE DIOMSS	HC/N	5.6	,	3.6	8	0.4	76	0.1	-100	0.4	0	. 0.2	3	y
COL LFORM	1/100 N.	•	1	•	•	•	•	,	,	•	•		•	
TURBIDITY	HE/LIT	65.6	3	19.0	8	13.0	*I -	14.0	2	3.9	8	3.1	I	8
TOTAL RESIDUAL CALORINE	MG/LIT	0	•	9 .0	*	8.9	Ħ	6.3	R	0.3	•	. . .	·	•
TOTAL ONGANIC CARBON	-T11/2M	77.0	8	14.1	2	12.1	9	11.0	13	4.7	\$		*	x
TOTAL OXYGEN Demand	ME/LIT	,	•	•	,	,			•	,	• •	•	1	J
TOTAL NALO- CARBONS	117/84	1.086	3	312.6	*	166.7	2	125.6	\$	67.6	2	19.4	18	z
PHENOL	111/3+	,	ı	•	,	1	,	6	,		,		•	•
APPONIA (As N)	MG/LIT	28.5	8	20.6	•	19.6	0	19.6	=	17.4	7	17.71	2	Ħ
NITRATE/NITRITE (A. M)	MG/LIT	ı	1	•	•	•		•	•	,	•	•	•	. 1
7	Ŧ	5.7	•	7.0	7	7.5	7	7.6	~	7.6	~	1.3	•	1
CONDUCTIVITY	MH2/CH	1480.5	3	1406.3	ņ	1622.7	7	1.633.1	•	1538.8	ہ	1575.6	۳	4
MARDNESS	- 111/5W	•	•	2.00	~	297.0	ņ	301.5	2	813.8	3	21.1	٣	
SODTUM	11 1/9N	91.9	6]-	109.0	2	89.4	~	87.4			01-	\$6.2	1	7
CHLORIDE	NG/LIT	,	•	•	•	,	•	•	•	•	•	,	•	•
DISSOLVED OXYGEN	HE/LIT	,	•	•	1	ł	•	,	•	•	,	•	,	•
. AERA	TOR OUT OF SE	INICE 1				•		4				•]

Ţ
APRIL AVERAGES (10 TOTAL VARIATION)

「「ない」」というで、「ない」」というというできた。

.

î,

ł

INFLUENT 16.56 Hzb	PRIMA		ACTIVATED SI UDGE	+ + + + + + + + + + + + + + + + + + +	ROCCULATION AFORTA		FLITATION		ZANILAR VCT [YATED		FIL TRATION	، ا		
			CONTACT		ECARDONATIO				MBON				Errucat Dily Den	1 an
		-	. Renoval	-	Mones 2		Mont	┥	Nome T	┥	T Recoval	-	hecla-	Total
TOTAL BIOMASS	NC/M	29.2	•		2	2.6	\$		Ŗ	1.1	*	0.0	5	61
VIABLE BIOMSS	NC/N.		•		<u>e</u> z		<u>8</u> 7		<u>ĝ</u> n		<u>9</u> 7		3 8 (z
COL I FORM	1/100 M	<u>]</u>	•		<u>.</u>	1	•		•	(a.c)	•	(a. 9) -		,
1100001	NE/L17	55.6	3	19.0	2	13.0	11	14.0	<u>."</u>		2	3.1	M	8
TOTAL RESIDUAL CALORINE	ME/LIT]• @	·		ine]=0		<u>e</u>		<u></u> '	(r.1)	5'	3'
TOTAL ONGANIC LANGON	MG/LIT	7.9 (36)	¥()	1.1	7 28)	12.1 (6.2)	91 91	(). () (). ()		(16.4) (16.4)		3.4 (5.4)	¥9	x9
TOTAL DAYGEN DEMAND	NG/LTT	1	•	•	,	•	1	1	ı	r	•	•	•	1
TOTAL HALO- CARBONS	TI NA	1.06(1)	39	312.6 (480)	- 1 2	164.7	z 2	125.6	(1		¤ 8	•:E	=R	*(iz)
PNENOL	+6/11	•	,	,	ż	•	,	•	ŧ	,	,	•	•	•
ANNONIA (As N)	MG/LIT	2.5	2	20.6	- j	19.6	•	3.91	'n	i.i	-1-	1.1	H	8
NITNATE/NITALTI (Ac. N)	E MG/LIT	<u>.</u>	ğ ,		(a) -	(n))	<u>ę</u> .	(ar) -	(e) ·	<u>.</u>	<u>;</u>	(a) ,		(x)
1	ł	1.1	*	7.0	9	7.6	۲	7.6	~	7.5	~	1.3	•	,
COMPUCT [V] [Y	JAND/CH	1480.5	•	1466.3	?	162.7	7	1.0131	•	1630.0	۴	1575.6	4	وب
HARCHESS	HE/LIT	•	•	303.2	~	297.0	۴	301.6	2	213.0	\$	1.12	۳	•
M11005	11 1/34	91.9	87-	109.0	2	89.4	~	87.4	1	K. 1	-10	\$6.2	2	۲
CHLORIDE	NG/LIT	,	•	•	•	1	•	1	•	ł	•	•	•	•
DI SSOLVED DITGEN	MG/LIT	•	•	•	ł	•	•	1	٠	1	•	•	•	١
• KA	ATOR OUT OF S	ENICE				•								

•

ORIGINAL PAGE IS OF POOR QUALITY

MY AVENAES

116-1617 15-50 1160			ACTIVATED	1 160	R.OCCILATION AMONTA		FILTRATION		AMML A	7	FILTRATION	. г			
			CONTACT		STRIPTING ECANDONATIO				NO ON		CALORIMATIC		EFRUEIT Dally he	2 - Invo	_
		$\left \right $	Mana	-		1	Nono N	-		-	I NOW	-		Tetal	
TOTAL BIOMSS	NC/N	21.1	1	11.8		1.1	3	0.4	8	0.5	z	0.4	8	8	
VIABLE BIOMSS	NC/N	2.3	•	5.3	*	0.3	3	0.1	ş	. 0.2	~	0.2	- 16	. 8	_
COLIFORN	1/100 M	•	•	•	•	•	•	,	,	,	•	•	•	•	
TURIDITY	11/31	66.5	67	21.7	8		ş	10.9	Ŧ	2.0	ş	2.6	8	×	
TOTAL RESIDUAL CALORINE	HE/LIT	0	•	••	\$	4.4	×	3.3	x	0.3	•	2.5	•	8	
TOTAL ORGANIC CARBON	ME/LIT	17.4	52	16.7	2	11.3	-	11.2		4.7	2	2.2	87	46	
TOTAL OXYGEN Demand	MG/LIT	•	•	•	•	•	ð	,	•	•	•	0	• .	8	
TOTAL HALO- CARBONS	JU111	1250.2	3	455.2	25	112.0						104.2	н	ø	
PHENOL	יכינוד	•	•	•	•	•	3	1	•	•	•	1	ŀ	•	
AMORIA (As H)	HE/LIT	29.8		24.2	2	18.6	-1-	16.8	16	15.8	•	15.5	×	\$	
L MIE/MITRITE	MG/LIT	•	•	ŀ	•	•		•	,	ŧ	•	1	·	1	
E . 1	Ł	7.2	•	7.0	-14	7.9	•	7.9	•	7.5	. 0.	7.5	•	•	
CONDUCTIVITY	MHD/CH 1	1448.0	~	1416.5		1375.0	7	1421.9	1-	1429.7	•	1361.2	5	~	فعيرفة
HARDNESS	MG/LIT	•	•	8.612	2	169.6	-11-	187.7	*	136.9	-37	1.09.8	•	,	
MD1005	HG/LIT	142.0	Ś	135.5		136.9	ņ	140.5	•	140.7	•	131.9	m	~	
CHLORIDE	NG/LIT	•	•	•	•	1	1	,	•	•	•	8	•	1	
DI SSOLVED OXYGEN	HG/LIT	1	•	•		a	•	•	•	•	•	ı	•	•	

B-3

INV AVENAES

			ACTIVATED	•	LOCCULATION			2		C		_		
15-50 MD	- RIMIT						FILTRATIO		CTIMIED-					
			CONTACT		ECANONATIO			ت 						al. 5
		-	I Manual 2		I home		- Women X	-	Many	-	[Women]	-	tion -	Tetal
TOTAL BIOMSS	NC/N	21.1	•	11.8	16	1.1	2	0.4	Ŗ	0.5	z	0.4	×	8
VIABLE BIOMASS	HC/HL	2.3	•	5.3	8	0.3	3	0.1	Ŧ	. 0.2	7	0.2	16	. 8
COL I FORM	#/100 M	•	•	•	•	ı	•	•	1	•	•	•	ı	•
TUNGIDITY	HE/LIT	6.5	6	21.7	3	8.7	×,	10.9	1	2.0	i 7	2.6	8	*
TOTAL RESIDUAL	HG/LIT	0	1		\$	4.4	x	3.3	8	0.3	•	2.5	•	•
TOTAL ONGANIC CARBON	MG/LIT	77.4	۶	16.7	R	11.3	-	11.2	3	4.7	8	2.2	87	5
TOTAL OXYGEN Demand	NG/LIT	1	•	Ð	9	1	•	ł	8	0	•		• .	•
TOTAL HALO- CARBONS	111/9M	1250.2	3	455.2	r	112.0						104.2	н	8
PHENOL	ייכירוד	•	1	•	1	1		1	•	1	•	•	•	•
AMONIA (As N)	HE/LIT	2.1	•	24.2	ន	18.6	-1	18.8	2	15.8	~	15.5	×	\$
NITRATE/NITRITE	HE/LIT	•	1	•	•	•	•	•	•	•		•	•	•
7 X X	£	7.2	m	7.0	-14	7.9	0	7.9	•	7.5	0.	7.5	۱	•
CONDUCTIVITY	WHO/CH	1448.0	~	1416.5	M	1275.0	m	1421.9	-	1429.7	un	1351.2	w	2
HARDNESS	HEVLIT	•	•	213.6	21	169.6	11-	187.7	X	136.9	-37	189.8	•	•
SODIUM	HE/LIT	142.0	~	135.5	-	136.9	ų	140.5	•	140.7	•	\$.1EI	m	~
CHLORIDE	HEVLIT	1	•	•	•	•	•	•	•	•	•	•	•	•
DISSOLYED OXYGEN	NG/LIT	•	•	•	•	•			•	لــــــــــــــــــــــــــــــــــــ		لـــــا •		•

B-3

MAY AVERAGES (10 TOTAL VARIATION)

こうかい かんかい うかたか アンド・シーム たいたい たいかん かんかい ちょうしん

No.

ALL ACCO

(

		~	ACTIVATED		PLOCCIL AT 100		FILTRATION		CANNE A	`	FILTNATION	-		
		F	OCCUTING CONTACT		STRIPPING CONSTRUCTION	Ē		Ē		Ľ	ON UNITATIO			
		-		$\overline{ }$		ſ			New Y	┤		-		Tetal
TOTAL BIOMSS	N.	1,15.	•	11.0	16	1.1	3		8	5 i	z	.	×	8
VIALE BIOWES	KIN	<u>.</u>	•		.				24		()		9	2
COL FORM	1/100 R		•						•		•	(r-)	B'	•
TURIDITY	MAIT		3	21.7	8		ņį	59	=	•	ş		8	*
TOTAL NESTORAL CHLONINE	1112]°@] ·]7 <u>E</u>		<u>ja z</u>		9× 3		 ?•	£3,	3.	Ē
TOTAL CAGANIC CANNON	IEVI	4.(¥)	r:	14.7	R	11.3 (0.6)	-2	11.2 (7.0)	8 ĝ	(; ; ; ;	u Â	2.2 (3.2)	8 Ê	8 E
TOTA, GITGEN REVIND	ILVII	•	•	•		•	•	•	•	•	•	•	•	•
TOTA MAD	A ALIT	1100 (1000 (1000	3Ê		×9	112.6	=ĝ					7.91) 7.91)	Ê3	жŝ
NEND	ш љ •	1	•	•		•	,	•	•	ł	•	,	¢	•
(II W) VINDAN	RALIT	2.0	2	8.8	2	10.6	73	R.S.	2	19.0	~į	1.2	×į	*
HETAATE /HETALTH	E MEALIT	<u>.</u>	<u>.</u>	<u>.</u>	<u> </u>		<u></u>		3.		<u>.</u>		J.	¥.
	ŧ	7.2	-	7.0	×-	1.0	•	7.9	•	7.5	•	7.6	•	•
CONDUCTIVITY			~	1416.5	•	1.75.6	7	1421.9	7	1.034	•	1.181	•	•
NAMONE 55	MALIT	•	•	TR	1	ï	n-	1.01	*	18.9	Ŗ	18.0	•	•
NU 1805	IEALIT	142.0	•	18.6	7	14.0	7	Ĩ	•	Ì.	•	11.9	•	P 4
CALINE	шлш	•	•	•	•	•	•	•	•	•	•	•	•	•
DISSOLVED ALVER	IIVII	•	·	•	•	•	•	•	•	•	•	•	•	•

JUNE AVERAGES

(

f :

					-	_														٦
ţ	Vana V	105	•	•	٠	•	1	•	•			•	•	•	•	•	•	•	•	
511 IS			2	8	•	8	2		5	6	2	•	R	ž-	9	-	•	=	•	·
			•	0.2	•	3.7		• •		· 8		•	16.6	6.5	7.5	1208.3	156.5	110.4	•	•
L TRAT 101		1 SA CHESK	10	21	•				2	•	•	•	9	5	vî	7	7	•	•	•
	<u> </u>	<u>e'</u>	9.6	0.2	•	6.0		• •	2.2	•	3	•	18.4	6.9	6.7	1171.5	137.0	106.3	•	
RANUAR CTIVATED	ARBOH		n	17	•	4	: ;	5	 F	•	•	•	~	-156	•	0	4	-	•	·
	<u>.</u>		•	•	,	•			1	•	•	•	•	•	•	•	1	8	1	•
OF SERVIC	ZOWATION		•	•			,	•	•	•	•	,	•	•	1	•	•	•	1	•
5			0.7	0.2	•			9.	7.6	•	116.9	•	19.9	2.7	8.3	1175.9	129.2	112.6	•	•
LOCCULATION A: 7:041A	STRIFPING ECARBONATION	I Removal	87	28	•	5	ì	15	8	•	8	•	•	<u>ş</u>	-50	2	2	15	•	·
		$\left\{ \right.$	5.4	1.3	•	4	9.0	11.2	12.2	•	54.4	•	21.6	1.8	6.9	1258.1	166.7	12.7	•	£
ACT I VATED	CHEORTHE -	I Removal	•	•	•	<u>.</u>		t	•	•	•	•	•	•	0	'	•	•	•	•
	-	-	•	•		1	•	•	•	•	•	•	ı	·	•	•	٠	•	•	•
	PRIMAY -		HC/HL	MCKIN				NG/LIT	HG/LIT	MG/LIT	46/LIT	V6/LIT	MG/L1T	MG/LIT	Ŧ	MH0/CH	MG/LIT	MG/LIT	HG/LIT	
INFLUENT	15-50 M50		TOTAL BIOPASS	VIABLE DIOMASS		COLITICA	11:2310117	TOTAL RESIDUAL CHLORINE	TOTAL ORGANIC CAPEON	TOTAL OXYGEN DErtito	TOTAL HALO- CARBO'IS	PHENOL	AMONIA (As N)	NITRATE /NITRITE	(As #)	CONDUCTIVITY	NARCHESS	Scorum	CHLORIDE	DI SSOLVED OXYGEN

JULY AVERAGES

ţ

	1:34 -	195	•	t	•	•	•	•	•	•	•	,	•	•	•	1	•	,	•
		1	8	8	'	8	3	•	•	•	•	7	9- 1-	7	~	17-		4	R
			••		٠	Ĵ.Ĵ	3.2	1.6	•	•	•	14.3	7.6			200.7	8.611	ž	
FILTRATION	CHA DRIANTI	S Removal	2-	Ę,	٠	IC	6 ([-	2	•	•	•	•	•	•	-	-12	ې	~	8
		+		•.1	•	4.9	•.7	1.6	•	۱	•	14.7	٤.٢	•••	117.0	194.B	111.6	1.132	* .
GRAPH AR		S Peroval	•	-15	•	ŧ	*	2	•	•	•	2	¥	•	7	ŗ	-	?	8
	-	-		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
FILTRATION	OZGHATION	Imacal 2	•	•	•	٠	•	•	•	•	•	•	•	•	٠	ı		•	•
	Ē	+	9. ¢	9.1	•	9.6	8 .7	•	•	•	•	19.0	3.9		1157.9	141.3	1.13.4	2.4.2	6.5
	_ <u>ē</u>	Ŀ																	
FLOCCULA N/2011	STRIPTIA	S heavy	2	Z.	•	3	8	\$	•	•	•	2	ä	ķ	•	11	•	7	×-
A FLOCCILA			6.3	1.6 2.1	•	20.7	 	9.11 14	•	•	•	24.0 - 25	2.1 -2	· · · · · · · · · · · · · · · · · · ·	1159.3 9	170.0	122.7	6I- 1.IC	3.7 -74
ACTIVATED 4 RLOCCULA		Month 2 Iswand 2	8	9:1 -	•	- 20.7 5		•	•	•	•	- 54.0 - 25	2- 1.1 -	×	- 1169.3 9	- 170.0 17	- 122.7 -	- 731.4 -	N- 1.1 -
		Manual 2	8 []		•			• • •	•	•	•	- X		÷ .	1169.3	170.0 17	•	01- 9.102	
ACTIVATED A R. R.OCCULA		Variable Theorem 1 and 1	HC/N 6.3 49	ис/м 1.6 м	1/130 M	HG/LIT 20.7 58	NG/LIT 0.3 31	MEALT 11.9 44	MANIT	IIV	· ·	NGUT 20.0 - 25	KAIT 3.2	* E	Jane/cn 1169.3 9	M2/LIT 170.0 17	MAALT 122.7	NG/Lit 231.4 -10	M- 1.t 11/24

•

RECLAMATION PLANT INFLUENT CHARACTERISTICS AVERAGE MONTHLY VALUES

(

Same and the second sec

1000

						TOTAL	VIABLE	TOTAL MALOCARONS	-VINDAA	AUDULA
		· 11 // m · · · · ·	The, MC/LIT	SUGPENDED SOLIDS, MC/LIT				V0/LIT		ILUI I
NUN	111/W 100			346	25.6				21.2	
EL. ANTIMO	12.3								24.7	20.4
FERRIARY	10.2		23.2	10.6	11.6					
	•	9	24.0	19.3	13.9			1046.0	2.2	
	1.61	t	9	1 1	21.6			528.0	27.1	24.3
MIL	9.7		n.					563.0	24.6	23.9
Y M 1	12.3			17.0	27.7	n.		8	27.6	
3000	16.4			19.4						
2	12.5			61						•
					10.6	11.5		452.8	2.1	1.1
AUGUST	12		4.21	;				420.9	25.4	20.02
SEPTEMBER	12		16.7	91	c.21	7.71			9716	
	1			n						:
OC TUBER	1		2	16	23.9	10.4	3.7	301.5	33.6	27.7
NOVENBER	2		••••	•				1.1	31.0	21.2
DECENDER	20		19.3	15	6.11					1.02
		8	18.1	15.1	15.2	5.5	3.4			
	1 :		20.1	5	11.9	8.2	5.8	470.0	13.6	21.7
FEBRUARY	2	; :		15	19.4	8.8	3.8	730.5	25.4	22.0
MARCH	02	;		: :	0.01	911.0	3.5	312.5		20.6
APRIL	17.2	1	14.1	0.31				455.2		24.2
	21	8	16.7	9	21.7				2	316
	91	R	12.2	10	25.8	5.4	1.3	24.4		
	, <u>a</u>	n	11.9	*	20.7	5.3	1.6	•	24.5	24.0
JUL 7	2			MATORY HEASURENEN	ITS FROM 24 H	DUK COMPOSITI	SAMPLES.			

PALO ALTO REGIONAL MATER QUALITY CONTIOL FACILITY LABORATORY REASURERENTS FROM 24 HUDE UNFUSIVE SOU

i

B-7

ч.

SUMMARY	lo
PER.FORMANCE	.Y VALUES ±
PLANT	MONTHL
RECLAMATION	AVERAGE

ier." a

ŧ

		800, MG	/LIT +	COD, MG	i/LIT +	TOC, MG	1111	TOTAL HA MG	LOCARBONS /LIT
MONTH	FLON, NGD	EFFLUENT	X REMOVED	EFFLUENT	X REMOVED	EFFLUENT	X REMOVED	EFFLUENT	X REMOVED
91. YANUARU				7.0	87	31.4	55 ± 12		
FEBRUARY	0.4					26.4			
MARCH	0.4	2.8	89	10.3	83			295	92
APR1_	0.6			14.0	69	19.1	36 ± 16	211	79
MAY	0.6			15.8	61			149	69
JUNE	0.6								
JULY	0.6								
AUGUST	0.6					6.0	54 ± 11	149.3	67 ± 96
SEPTEMBER	0.2					6.7	60 ± 12	121.1	71 ± 29
OCTOBER	0								
NOVEMBER	0.4				·	10.0	61 ± 11		
DECEMBER	0.44	5.4	73	5.5		5.6	71 ± 5	40.7	95 ± 9
97. YANUARY '79	0.42	1.1	67	10.5	73	6.5	64 ± 7	94.7	89 ± 9
FEBRUARY	0.45	8.8	12	24	35	9.2	55 - 19	89.2	81 i 18
MARCH	9.68	4.6	80	11.4	74	1.8	64 ± 15	164.4	<i>71</i> ± 23
APRIL	1.0	4.1	76	5.3	86	3.4	76 ± 20	59.4	81 ± 19
HAY	1.0	8.6	59	5.7	83	2.2	87 ± 10	105.5	77 ± 17
JUNE	1.0	5.6	69	3.8	88	2.0	84 ± 7	92.6	83 ± 37
JULY	1.0	2.6	86	ı	·	.1.6	87 ± 8	ı	ı

* PALO ALTO REGIONAL MATER QUALITY CONTROL FACILITY LABORATORY MEASUREMENTS FROM 24 MOUR COMPOSITE SAMPLES.

RECLAMATION PLANT PERFORMANCE SUMMARY AVERAGE MONTHLY VALUES ± 10

(

1

ŗ

ł

									MCS. RC/M	- VINDAN		NIA NIA
	PLON. NGD	TURID.	ITY, KTU* <u>5 RENOVED</u>	TURNIDIT EFFLUENT	A NEVLIT		E NENOYED	LE LE LE	S REMOVED	HALIT.	INNI	S NOVED
EZ. ADVINIV		1.1	8	3.9	95 T 58						7 71	N - K
				•	64 + 43							
FEBRUMRY	9 . 9									20.2	14.9	22 = 16
MACH	0.4	1.1	3	0,4	21 = 1/	•		0		1.12	19.0	1 = 1
APRIL	0.6	1.0	2	4.2	• = 18				M ± 27	20.4	20.4	15 ± 7
YWA	0.6			9 .1	71 ± 16							
JUNE	0.6											
JULY	0.6						1	1.7	94 = 98		14.8	21 = 22
AUGUST	0.6			2.4					90 F 50		8.0	60 ± 17
SEPTENBER	0.2			2.7	78 ± 6	1.1	R					
OCTOBER	0				:	•	5	1.0	6 = 06		18.4	19 ± 6
NOVEMBER	0.4			7.6	27 = 5 2	: :		1.1	66 = 33		19.5	6 ± 13
DECEMBER	0.44			4.6	34 ± 8				0	27.0	15.5	23 ± 16
97' YANUMAL	0 12	0. 88	58	3.4	78 ± 6					23.9	35.6	28 ± 103
FEBRUARY	0.45	0.9	8	3.0	75 ± 18	1.2				24.7	19.0	14 ± 15
MARCH	0.68	0.74	26	2.5	87 1 7	0.4					17.7	14 ± 15
APRIL	1.0	0.5	26	3.1	8 = 9						15.5	36 ± 11
Y MI	1.0	0.25	8	2.6	- - 	.	• • • • •	0.2	11 = 88	21.0	16.6	21 ± 15
JUNE	1.0	0.26	2	3.7	[7 90				86 ± 52	14.2	14.3	40 ± 11
JULY	C.I	0.26	8	3.3	11 = 10		CT 2 00	;				

PALC ALTO REGIONAL WATER QUALITY CONTROL FACILITY LABORATORY NEASUREMENTS FROM 24 MOUR COMPOSITE SAMPLES.

ORIGINAL PAGE IS Of Poor Quality

15050

.

APPENDIX C

MATH MODEL

0F

SOLIDS & NON-VOLATILE ORGANICS

IN EFFLUENT FROM

ACTIVATED SLUDGE PROCESS

ł

であるというであるというという

ŀ

and a state of the second

Ĺ

....

C-1

.

EQUATIONS FOR CALCULATING SOLIDS AND ORGANICS CONCENTRATIONS IN EFFLUENT FROM ACTIVATED SLUDGE PROCESS

HOURLY CHANGE IN RETURN SOLIDS

Section Section

$$X_{\rm R} = \frac{T_{\rm s} - X_{\rm a} V_{\rm a}}{Q_{\rm R/24}}$$

HOURLY CHANGE IN AERATOR SOLIDS WITH HOURLY FLOW VARIATION

$$\overline{X}_{a} = \overline{X}_{a} + \left[\frac{YQ(S_{i}-S_{c}) + Q_{R}\overline{X}_{R}}{Q + Q_{R}} - \overline{X}_{a}\right] \left[1 - e^{-\left(\frac{Q+Q_{R}}{V_{a}}\right)}\right]$$

SOLIDS IN CLARIFIER EFFLUENT $X_{c} = \overline{X}_{a} Ke^{-\frac{\Delta t_{c}}{\gamma}}$ SOLIDS IN FINAL EFFLUENT $X_{e} = X_{c} Ke^{-\frac{\Delta t_{e}}{\gamma}}$ SOLIDS IN FINAL EFFLUENT

WHERE, DETENTION TIME, Δt_{c} FOR PLUG FLOW

$$\Delta t_{c} = \frac{V_{c}}{\int_{0}^{V_{c}} \frac{d}{dt} (Q - Q_{w})}$$

FOR MIXED FLOW

$$\overline{\Delta t}_{c} = \overline{\Delta t}_{c} + \left[\frac{V_{c}}{(Q - Q_{w})} - \overline{\Delta t}_{c} \right] \left[1 - e^{\left(\frac{V_{c}}{V_{c}} \right)} \right]$$

10 - 0

FOR Δt_e REPLACE V_c WITH V_e IN ABOVE EQUATION HOURLY CHANGE IN EFFLUENT TOC WITH HOURLY LOAD VARIATION

$$S_{c} = \overline{S_{i}} \left[\frac{\overline{\Delta t_{a}}}{\overline{\Delta t_{a}}} - b \right]$$

$$\overline{S_{i}} = \overline{S_{i}} + \left[S_{i} - \overline{S_{i}} \right] \left[1 - e^{-\left(\frac{Q + Q_{R}}{V_{a}} \right)} \right]$$

$$\overline{\Delta t_{a}} = \overline{\Delta t_{a}} + \left[\frac{V_{a}}{Q + Q_{R}} - \overline{\Delta t_{a}} \right] \left[1 - e^{-\left(\frac{Q + Q_{R}}{V_{a}} \right)} \right]$$

WHERE THE FOLLOWING VALUES APPLY TO THE PALO ALTO REGIONAL WATER QUALITY CONTROL PLANT

していたいできたとうというという

\$

l

$$V_a = 7.2 \text{ MGAL}$$

 $V_c = 4.3 \text{ MGAL}$
 $V_E = 0.738 \text{ MGAL}$
 $Q_R = 15 \text{ MGD}$
 $Q_w = 1.64 \text{ MGD}$
 $T_s = 45,700 \times 10^6 \text{ MG}$
 $S_i-S_c = 50 \text{ TO 100 mg/LIT, TOC}$
 $Q = 15 \text{ TO 50 MGD}$
 $Y = 0.6 \text{ MG/MG BOD (REFERENCE 17) $\simeq 0.6 \text{ MG/MG TOC}$$

C-3

APPENDIX D STATISTICAL ANALYSIS COEFFICIENTS

Ę

N

FOR TEST PART II

1.12

APPENDIX D

STATISTICAL ANALYSIS COEFFICIENTS

FOR TEST PART II

State and the state of the stat

This section contains the results of statistical analyses of the WMS data. Included are (1) the slope, intercept, and chi square for the lognormal data distribution model, and (2) slope, intercept, and correlation coefficients for process output as a function of input for linear, parabolic, and logarithmic regression models.

	PAGE	
Test Period A		
GC Data	D-2	
Other Data	. D-13	;
Test Period H		
GC Data	D-24	ł
Other Data	. D-34	•
Test Period A		
Plant Parameters	. D-44	•

LOG-NORM	AL DISTRIBU	TION: SEP	3, 1980 TO	SEP 30, 1980		
SAMPLE Source	MONTHLY Average	ONE SIGMA	LOG Slope	(Y)=F(Z) Intercept	CHI Square	SAMPLE SIZE
TETRACHL	ORGETHYLENE					
1	3,5	2.0	0.2879E	0 0,49248 0	27.0000	18
2	3.2	2.2	0.3207E	0 0,4405E 0	8,1429	14
3	4,9	0,8	0.7044E -	1 0,6884E 0	2.3333	6
4	3,8	2.0	0.2918E	0 0,52658 0	9.5714	14
5	3.7	2,0	0.2837E	0 0.5082E 0	5.2857	14
6	3,3	2,1	0,29468	0 0,4625E 0	6,2353	17
METHYLEN	E CHLORIDE					
1	21.8	17.6	0.32398	0 0.1224E i	2,5556	18
2	10.7	6.3	0.2 498E	0 0.9629E 0	1.0000	14
3	18,5	8,6	0.2639E	0 0,1211E 1	4.0000	6
•	14.7	6.5	0.2335E	0 0,1116E 1	4,5714	14
5	12,6	8.6	3205E	0 0.1001E 1	- 1,0000	14
6	11.7	6,3	0,2718E	0 0,9995E 0	0,9412	17
CHLOROFO	RM					
1	12.0	3.6	0.1239E	0 0.106ZE 1	0.8889	18
2	22,5	18.2	0.2626E	0 0,1263E 1	8,1429	14
3	13,3	4.2	0,1183E	0 0,1110E 1	5,6667	6
4	16.2	11.1	0,2413E	0 0,1137E 1	8,1429	14
5	21.6	6.6	0.1364E	0 0.1303F 1	6,7143	14
6	24,2	7.5	0.1345E	0 0,1364E 1	2,7059	17
1,1,1-TR	ICHLOROETHA	NE				
1	1.6	0.9	9.2030E	0 0.1774E 0	8.1111	18
2	5,0	0,3	0,5686E -	1 0,2541E -1	24,5714	14
3	0,5	0.0	0,0000E	0 30000,0 C	24,0000	6
4	0.4	0.1	0,0000E	0 30000 0	56,0000	14
5	3.2	1.0	0,1684E	0 0,4833E 0	15,2857	14
6	3,5	9.9	0.1206E	0 0,5298E 0	15,6471	17
BROMODIC	HLOROHETHAN	E				
1	15.3	6.8	9.2251E	0 0.1137E 1	5.8889	18
2	24,4	14.2	0,2335E	0 0,1328E 1	8,8571	14
2	19.4	6,3	0,1334E	0,1269E 1	0.6667	٠.
4	21.1	9.0	0,1644E	0 0.1294E 1	3.8571	14
5	20.2	5,3	0.1505E	0 0,1285E 1	3,1429	14
• ·	20,1	7.0	0,2367E	0,1260E 1	17,4118	17
					-	-

EOF ...

\$

1

10 AN

Provent and the

Ŀ.

			<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
SAMPLE	MONTHLY	ONE SIGMA	LOG()	/)=F(Z) Intercept	CNI Square	SAMPLE
TRICHLO	ROETHYLENE					
1	1,7	0.9	0.1930E 0	0.1A33E 0	3,1111	18
2	1.0	0,3	0.7301E -1	0,49558 -1	6.0000	14
3	0.9	0,3	0.6559E -1	0,3128E -1	4,0000	6
4	0.7	0,2	0.1534E -1	0,6028E -2	38.4571	14
5	1.7	0.3	0.7605E -1	0.35226E 0	2,4286	14
6	1.8	0.3	0,6430E -1	0,2621E 0	1,5294	17
DIBROMO	CHLOROMETHAN	E				
1	8.9	5,3	0,2952F 0	0.Aù86E 0	1.4444	18
2	13.4	7.6	0.2366E 0	0.1067E 1	6,7143	14
3	10,3	5,5	0,2121E 0	0.9662E 0	0,6667	6
4	13.7	7.3	0.2413E 0	0,1078E 1	0.2857	14
5	9.3	2,3	0,1063E 0	0,9550E 0	4,5714	14
6	13.4	3.9	0.1348E 0	0,1109E 1	4,4706	17
BRONOFO	RM					
4	0.1	0,3	0,1521E -1	0,4065E -2	46.7143	- 14
TRIHALO	METHANES			•		
1	36.3	14.9	0.1880E 0	0.1524E 1	8.1111	18
2	60.4	37.7	0.2171E 0	0.1722E 1	8,8571	14
3	43.0	15.7	0,14256 0	0,1612E 1	0.6667	6
4	51,1	25,4	0,1912E 0	0,1667E 1	0,2857	14
5	50.4	11.1	0.9698E -1	0,1693E 1	4.5714	14
6	57.8	9,8	0,7596E -1	0.1756E 1	3,2941	17
TOTAL H	ALOCARBONS					
1	64.8	18.9	0.1326E 0	0.1793E 1	1,4444	18
2	76,1	34,3	0,1625E 0	0,1850E 1	3,1429	14
3	67,9	18.1	0,116AE 0	0.1819E 1	2,3333	6
4	70.7	23,8	0.1335E 0	0.1529E 1	1.7143	14
5	71.6	9.7	0.594AE -1	0,1851E 1	0,2857	14
6	78.2	11.3	0.6472E -1	0,1889E 1	1.5294	17
EOF						

Sandard State

D-3

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR SEP 3, 1988 TO SEP 38, 1988

FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 2

LINEAR CURVE FIT RESULTS (Y-A8 + A1+X)

1---

(

CAL NO.	COMPOUND	A0	AI	STANDARD ERROR	CORR. COEFF.	SAMPLE
1.	TETRACHLOROETHYLENE	-8.8853	1.8276	8.7142	8.9211	14
2.	METHYLENE CHLORIDE	7.3039	0.1985	5.5127	8.3492	16
3.	CARSON TETRACHLORIDE	8.0000	8.0000	8.0000	8.8000	
4.	1.2-DICHLOROETHYLENE	8.8869	6.0000	8.0008	8.0000	
5.	CHLOROFORM	-10.5012	2.5546	14,2211	8.5685	16
Ē.	1.1.1-TRICHLOROETHANE	0.5719	8.1755	0.2802	0.5256	16
7.	BROMODICHLOROMETHANE	11.8713	8.7395	12.1173	8.4427	16
	TRICHLOROETHYLENE	0.5403	0.3087	6.1931	8.8228	16
9.	DIBROMOCHLOROMETHANE	8.8894	8.5119	6.4290	0.4864	16
18.	BROMDFORM	8.8472	-0.1046	0.0649	0.9733	6
11.	TR IHALONE THANES	24.5235	0.8770	32.3869	8.4482	16
12.	TOTAL HALOCARBONS	64.1689	0.1626	31.4483	0.3309	16

PARABOLIC CURVE FIT RESULTS (Y=A8 + A1=0(+ A2=00=2)

CAL NO.	COMPOUND	A8	Al	R2	Standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-0.2633	1.3493	-8.8575	8.7826	8.9237
2.	METHYLENE CHLORIDE	4.1567	0.6159	-6.0098	5.3975	0.3970
3.	CARBON TETRACHLORIDE	8.0000	0.0000 ·	0.0000	0.0000	8.0000
4.	1.2-DICHLOROETHYLENE	6.0000	8.0000	0.0000	6.0000	0.0000
5.	CHLOROFORM	35.3777	-4.4686	8.2424	13.7551	8.6857
6.	1,1,1-TRICHLOROETHANE	8.0084	8.9866	-8.2117	0.2582	0.6503
7.	BROMDD I CHLOROMETHANE	48.5544	-4.8778	0,1379	11.4388	0.5326
8.	TRICHLOROETHYLENE	0.3153	8.5797	-0.0636	0.1877	0.8327
<u>9.</u>	DIBROMOCHLOROMETHANE	23.8442	-2.4789	8.1191	6.8244	0.5742
10.	BROMDFORM	8.8494	-8.2153	8.4531	8.8648	0.9733
11.	TRINALOMETHANES	284.9743	-8.4732	8.1088	29.6396	8.5751
12.	TOTAL HALOCARBONS	107.1273	-4.3741	0.0383	30.6693	8.3912

LOGARITHMIC CURVE FIT RESULTS (LOGEYJ-A0 +AI#LOGEXJ)

CAL NO.	COMPOUND	AB	A1	standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-0.1553	1.2278	8.2923	8.8595
2.	METHYLENE CHLORIDE	8.4414	8.4626	8.2813	8.5637
3.	CARBON TETRACHLORIDE	8.2000	0.2000	8.0008	8.0000
4.	1.2-DICHLORDETHYLENE	8.0000	0.0000	8.8988	6.0000
S.	CHLOROFORM	-8.1944	1.3386	8,1928	8.7549
6.	1.1.1-TRICHLORDETHANE	-0.1508	8.3881	6.1234	8.6645
7.	BRONDD I CHLORDME THANE	8.5598	9.6483	8,1858	8.6556
8.	TRICHLORUETHYLENE	-8.8852	0.5217	8.8759	8.8328
<u> </u>	DIBROMOCHLOROMETHANE	8.6165	8.4728	8.1934	8.6376
18.	BRONDFORM	-1.5453	8.2502	8.7448	6.8975
11 .	TRIHALONETHANES	8.7312	8.6284	0.1765	0.6663
12.	TOTAL HALOCARBONS	1.4753	9.2064	8.1493	0.5297

ł

GAS CHROMRTOGRAPH REGRESSION ANALYSIS FOR SEP 3. 1988 TO SEP 38. 1988

FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 3

LINEAR CURVE FIT RESULTS (Y-A0 + A1+0)

CAL NO.	COMPOUND	M	Al	STANDARD ERROR	CORR. COEFF.	SAPPLE SIZE
1.	TETRACHLOROETHYLENE	1.7101	8.7899	8.3969	8.7844	
2.	METHYLENE CHLORIDE	25.6407	-0.2044	11.8371	0.2916	
3.	CARBON TETRACHLORIDE	8.0000	9.0000	8.8000	8.0000	
4.	1.2-DICHLOROETHYLENE	8.8860	8.0000	8.0006	8.0008	
S.	CHLOROFORM	5.8548	8.6638	3, 1839	1.3667	<u> </u>
Ğ.	1.1.1-TRICHLORDETHINE	8.3173	0.1845	8.1847	0.6325	Ē
7.	BRONDD ICHLOROMETHINE	8.2896	1.8344	4.1727	8.7544	7
	TRICHLOROETHYLENE	0.3762	8.2651	8.8930	8.9340	Í.
ġ.	DISCONDCHI OROMETHONE	5.4982	8.6647	4.9273	8.5133	- Ē
10.	BROMDEORM	8.0000	8.0008	8.0000	6.0000	Ĭ
ū.	TRINGLONETHINES	2.7811	1.8101	8.2680	8.7788	Ē
12.	TUTAL HALOCARBONS	63.5411	8.0687	16.4995	9.8656	Ŭ

PARABOLIC CURVE FIT RESULTS (Y-A8 + A1+X + A2+XX+2)

ĊAL. HO.	COMPOUND	AE	A1	A2	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	2.5636	8.3195	8.8435	0.3360	8.7855
2.	METHYLENE CHLORIDE	27.8611	-0.4777	8.8844	11.8178	8.2978
3.	CARBON TETRACHLORIDE	0.0000	9.8000	0.0000	8.8866	8.0000
4.	1.2-DICHLOROETHYLENE	9.0000	8.0000	8.0000	8.0006	8.9000
5.	CHLOROFORM	59.8691	-8.9989	8.4298	2.5451	8.5894
Ē.	1.1.1-TRICHLORGETHANE	0.2854	8.1444	-8.8097	8.1845	8.6336
7.	BROHDD I CHLOROMETHANE	33.2003	-3.2855	0.1279	3.5858	0.8257
8.	TRICHLORIETHYLENE	6.4329	8.2856	0.8129	8.8934	8.9347
Ĵ.	DIBROMOCHLOROMETHANE	17.6994	-1.6868	6.8891	4.7274	8.5675
10.	BROMDFORM	8.0006	6.0000	8.8006	6.0000	8.0009
11.	TRIHALOHETHANES	89.4835	-3.6854	0.6572	5.2451	8.9174
12.	TOTAL HALOCARBONS	66.2818	-0.0416	8.0009	16.4986	0.8664

LOGARITHMIC CURVE FIT RESULTS (LOGEY3-A8 +A1+LOGEX3)

CAL. ND.	COMPOUND	NO	A1	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	8.2778	0.6314	. 8.8368	8.7712
2.	METHYLENE CHLORIDE	1.4821	-6.1446	0.2639	8.3258
Ĵ.	CARBON TETRACHLORIDE	8.0008	8.0006	6.6606	8.0006
4.	1.2-DICHLORDETHYLENE	8.0000	8.0000	0.8028	8.0000
5.	CHLOROFORM	0.6590	8.4123	8.8988	8.3347
6.	1.1.1-TRICHLORDETHONE	-8.3872	8.3917	8.8769	8.7534
Ť.	BROMOD ICHLOROMETHONE	8.2784	8.7852	8.8961	0.7867
	TRICHLORDETHYLENE	-8.2846	8.5664	8.8419	8.9376
<u>.</u>	DI BRONDCHLORONE THRME	8.5221	8.5383	8.1875	8.4768
11.	BROMOFORM	8.0000	8.0000		8.6666
11.	TRINGLOPETHONES	8.5661	8.6995	8.0005	8.5852
12.	TUTAL HALOCARBONS	1.7290	0.8484	0.1876	8.1368

5

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR SEP 3, 1900 TO SEP 30, 1900 FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 4

LINEAR CURVE FIT RESULTS (Y-A8 + A1+00)

ことであるとないというという

CAL. HO.	COMPOUND	AO	A1	STANDARD	CORR. COEFF.	SAIPLE SIZE
1.	TETRACHLOROETHYLENE	8.7240	0.9178	0.6816	8.9261	13
2.	METHYLENE CHLORIDE	11.9398	8.1974	5.9786	8.3436	15
3.	CARBON TETRACHLORIDE	8.0000	8.8666	8.8886	9.0000	
4.	1.2-DICHLOROETHYLENE	0.0000	8.0000	6.0008	8.0006	. Í
5.	CHLOROFORM	-7.5738	1.9074	8.2067	8.6259	15
Š.	1.1.1-TRICHLORDETHRNE	8.3885	8.8283	8.1117	8.3281	15
7.	BRONDD I CHILOROPETHANE	17.8459	0.1741	8.7111	0.1217	16
8.	TRICHLOROETHYLENE	8.4244	0.1789	0.8959	8.8578	16
9.	DIBROHOCHLOROMETHANE	11.9686	8.1834	6.9163	6.0725	16
10.	SRONDFORM	8.3068	~1.3522	8.3995	8.3658	6
11.	TRIHALOMETHANES	17.5288	8.2688	24.5619	8.1416	16
iź.	TOTAL HALOCARBONS	71.3516	-0.0905	25.1785	0.0601	16

•

PARABOLIC CURVE FIT RESULTS (Y-AB + A1#X + A2#XX##2)

CAL NO.	COMPOUND	AB	AI	A2	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	8.2498	1.4184	-6.8653	8.5781	0.5335
2.	METHYLEHE CHLORIDE	9.6272	8.4925	-0.0068	5.9273	8.3649
3.	CARBON TETRACHLORIDE	8.8000	8.0006	8.0003	8.0008	8.0008
4,	1.2-DICHLOROETHYLENE	0.0000	0.0000	8.8688	8.8886	0.0000
5.	CHLOROFORM	22.6449	-2.5968	8.1541	7.8788	0.6638
6.	1, 1, 1-TRICHLOROETHANE	8.3453	8.8788	-0.0131	8.1115	8.3346
7.	BRONDD I CHLOROMETHANE	52.4396	-4.4738	6.1331	7.8854	8.4563
8.	TRICHLOROETHYLENE	8.4664	8.2006	-0.0051	8,8959	8.9608
9.	DIBRCHOCHLOROPETHANE	15.2089	-8.5428	8.6258	6.8991	8.1008
18.	BROMUFORM	8.3447	-3.8151	6.9416	8.3986	8.3718
İÍ.	TRIHALONETHANES	176.6369	-6.9424	0.8832	22.4688	8.4293
12.	TOTAL HALOCARBONS	214.1011	-5.3332	0.8443	23.8599	8.3244

LOGARITHMIC CURVE FIT RESULTS (LOGEY]-A0 +A1+LOGEX])

CAL ND.	COMPOUND	AO	Al	STANDARI Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-0.1828	1.2365	8.1118	0.9677
2.	METHYLENE CHLORIDE	8.8666	8.2885	8.2891	8.3683
3.	CARSON TETRACHLORIDE	8.0000	8.8686	6.0000	8.8000
4.	1.2-DICHLOROETHYLENE	8.0000	8.0000	0.0000	0.0000
5.	CHLOROFORM	-8.2637	1.2961	6.1887	8.6314
6.	1.1.1-TRICHLOROETHANE	-8.4047	8.1418	8.1071	0.3432
7.	BRONDD I CHILORUMETHANE	1.1932	0.0592	0.1693	8.2129
	TRICHLORDETHYLENE	-1.2246	8.4196	6.0681	0.8337
9.	DIBROMOCHLOROMETHANE	8.9629	8.8548	8.2318	0.2666
10.	BRONDFORM	-1.9066	-8.2345	# 8.8281	8.5193
11.	TR I HAL ONE THANES	1.5922	8.8228	8.2892	8.2489
12.	TOTAL HALOCARBONS	2.8972	-8.1756	0.1886	8.2286

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR SEP 3, 1980 TO SEP 38, 1980 FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 5

LINEAR CURVE FIT RESULTS (Y=A0 + A1=>)

5

F

and the second second

COMPOUND	A0	A1	STANDARD ERROR	CORR.	SAMPLE SIZE
TETRACHLOROETHYLENE	1.2896	8.7442	0.9736	8.7748	13
METHYLENE CHLORIDE	7.5962	0.3025	7.3864	8.3847	16
CARSON TETRACHLORIDE	6.0000	8.0000	8.0000	8.8888	
1.2-DICHLURDETHYLENE	8.0009	8.0000	0.0000	8.0000	. 8
CHLOROFORM	6.8647	1.2288	4,9828	8.6575	15
1.1.1-TRICHLORDETHANE	3.1592	8.0713	0.8724	8.1465	16
BROHODICHLOROMETHANE	13.8779	8.3989	4.1870	8.5421	16
TRICHL STETHYLENE	1.5819	8.1037	8.2708	8,4839	16
DIBRONOCIOROLETHANE	8.5901	8,0849	2.8740	8.4345	16
BROMOFILE	0.0029	8.1614	0.2008	1.8020	2
TRINALOMETHANES	29.6752	8.5283	9.1079	8.6843	16
TOTAL HALOCARBONS	57.6578	0.2163	8.8952	8.5449	16
	COMPOUND TETRACHLOROETHYLENE METHYLENE CHLORIDE CARBON TETRACHLORIDE 1.2-DICHLOROETHYLENE CHLOROFORM 1.1.2-TRICHLOROETHANE BRONDDICHLOROETHANE TRICHLOROETHANE DIBRONDCHOROUSTHANE BRONDFOLLOROUSTHANE BRONDFOLLOROUSTHANE TRIHRLOMETHANE3 TOTAL HALOCARBONS	COMPOUND A8 TETERCHLOROETHYLENE 1.2896 METHYLENE 1.2896 METHYLENE 1.2896 METHYLENE 1.2960 CARBON TETRACHLORIDE 6.0600 1.2-DICHLOROETHYLENE 6.0600 CHLOROFORM 6.0647 1.1.1-TRICHLOROETHANE 3.1592 BRONDDICHLOROETHANE 13.8779 TRICHLOROETHANE 1.3019 DIBRONDICHLOROETHANE 8.5901 BRONDDICHLOROETHANE 8.5901 BRONDDICHLOROETHANE 8.5901 TRIHALOMETHANE 8.5901 BRONDENCIOROUSTHANE 8.5901 BRONDENCIOROUSTHANE 29.6752 TOTAL HALOUARBONS 57.6578	COMPOUND A8 A1 TETRACHLOROETHYLENE 1.2996 8.7442 METHYLENE CHLORIDE 7.5962 6.3825 CARRON TETRACHLORIDE 6.0606 6.0606 1.2-DICHLOROETHYLENE 6.0606 6.0606 1.2-DICHLOROETHYLENE 6.0607 1.2268 1.1.1-TRICHLOROETHANE 3.1592 8.0713 BRONDDICHLOROETHANE 13.8779 8.3969 TRICHLOROETHANE 1.5019 6.1037 DIBRONDICHLOROETHANE 8.5961 8.0648 BRONDDICHLOROETHANE 8.5991 8.0848 BRONDERCHORIS 29.6752 6.5283 TRIHALUMETNANES 29.6752 6.5283 TOTAL HALOCARBONS 57.6578 6.2163	COMPOUND A8 A1 STRNDARD ERROR TETRACHLOROETHYLENE 1.2096 8.7442 9.9736 METHYLENE CHLORIDE 7.5962 8.3825 7.3864 CARSON TETRACHLORIDE 6.0000 8.0000 0.0008 1.2-DICHLOROETHYLENE 6.0000 8.0000 0.0008 LALOROFORM 6.0647 1.2286 4.9028 1.1.1-TRICHLOROETHANE 3.1592 8.0713 6.8724 BRONDDICHLOROETHANE 13.8779 8.3969 4.1876 TRICHLOROETHANE 1.5819 8.1876 2.2788 DIBRONDICHLOROETHANE 8.5991 8.0848 2.8740 BRONDENCLOROETHANE 8.5991 8.0848 2.8740 DIBRONOCORETHANE 8.5991 8.0848 2.8740 BRONDENCE 29.6752 9.5283 9.1079 TRIHALUMETNANES 29.6752 9.5283 9.1079 TOTAL HALOCARBONS 57.6578 6.2163 8.8952	COMPOUND A8 A1 STANDARD ERROR CORR. COEFF. TETRACHLOROETHYLENE 1.2896 8.7442 0.9736 8.7748 METHYLENE CHLORIDE 7.5962 0.3025 7.3864 0.3847 CARRON TETRACHLORIDE 6.0000 0.0000 0.0000 0.8088 1.2-DICHLUROETHYLENE 6.0000 0.0000 0.0000 0.0000 CHLOROETHYLENE 6.0000 0.0000 0.0000 0.0000 0.0000 CHLOROETHYLENE 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CHLOROETHYLENE 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000 CHLOROETHANE 3.1592 8.0713 0.8724 0.14653 BROHODICHLOROETHANE 13.8779 8.3909 4.1870 0.5421 TRICHLOROETHANE 1.5819 8.1037 0.2708 0.4039 DIBROHOCHLOROUTHANE 8.5961 8.0848 2.9746 4.4345 BROHODICHLOROUTHANE 8.5961 8.0848 2.8746 <t< td=""></t<>

٠

PARABOLIC CURVE FIT RESULTS (Y-A8 + A1+0(+ A2+00++2)

CAL NO.	COMPOUND	88	AI	A2	Standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	1.2695	8.7623	-0.0030	0.9736	8.7748
2.	METHYLENE CHLORIDE	18.3133	-0.8578	6.0084	7.3227	8.4833
3.	CARBON TETRACHLORIDE	8.8888	9.0000	0.0000	0.0000	8.0000
4.	1.2-DICHLORDETHYLENE	6.0000	0.0000	8.8088	8.0000	8.8888
5.	CHLOROFORM	10.1866	8.6272	8.8287	4.8918	6.6593
Ğ.	1, 1, 1-TRICHLORDETHANE	3.8727	-8.9415	8.2643	0.8591	8.2310
7.	BROMODICHLOROMETHRNE	12.6160	8.5646	-0.8847	4.1855	8.5428
	TRICHLOROETHYLENE	1.3138	6.3313	-8.8534	8.2673	0.4993
9.	DIBROMOCHLOROMETHANE	11.1539	-8.4266	8.8284	2.0380	8.4655
18.	BRONDFORM	8.0008	8.0009	0.0000	0.0130	1.0111
11.	TRIHALDMETHANES	29,7285	0.5255	9.0096	9.1879	0.6843
12.	TOTAL HALOCARBONS	-6.5184	2.5848	-0.0200	8.1206	8.6435

LOGARITHMIC CURVE FIT RESULTS (LOGEYJ-A8 +A1*LOGEXJ)

CAL NO.	COMPOUND	ÂB	A1	Standard Error	CORR. COEFF.
1. 2. 3. 4. 5.	TETRACHLOROETHYLENE METHYLENE CHLORIDE CARBON TETRACHLORIDE 1.2-DICHLOROETHYLENE CHLOROFORM 1.1.1-TRICHLOROETHANE	8.1692 8.6898 8.0000 8.0000 8.5675 8.4830	8.7616 0.3480 0.0000 0.0000 0.6867 8.0662	0.1136 0.2836 0.0000 0.0008 0.1097 0.1534	0.8693 0.3980 8.0000 0.5918 0.2539
7.	BROMODICHLOROMETHANE	8.8227	0.3969	8.1212	8.5390
9. 10. 11. 12.	TR INALONE THANES TO TAL HALOCARBONS	6.8907 -1.8483 1.8151 1.5857	0.0870 0.6896 0.4383 0.1928	0.0972 0.0972 0.0800 0.8843 0.0547	0.4849 1.0000 8.6901 0.5871

- **1**

GAS CHROMRTOGRAPH REGRESSION ANALYSIS FOR SEP 3, 1900 TO SEP 30, 1930

FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 6

192.00

ł

LINEAR CURVE FIT RESULTS (Y+R8 + A1+0)

CAL NO.	COMPOUND	AB	A1	Standard Error	CORR. COEFF.	SAMPLE
1.	TETRACHLORGETHYLENE	-8.8676	0.9757	0.2872	8.8722	14
2.	METHYLENE CHLORIDE	18.6397	8.8513	6.2819	8.8849	16
3.	CARBON TETRACHLORIDE	8.0000	8.0000	8.0000	8.0000	
4.	1.2-DICHLOROETHYLENE	0.0000	0003.0	0.0000	8.8600	- E
5.	CHLOROFORM	12.3911	0.7540	5.4856	8.5837	16
6.	1.1.1-TRICHLORDETHANE	3.5738	-0.1115	8.8223	8.1673	16
7.	BROHDDICHLOROMETHRME	19.9281	8.1178	4.8332	8.4466	16
8.	TRICHLOROETHYLENE	1.3647	-0.8581	8.2925	6.1527	16
ġ.	DIBROHOCHLOROMETHANE	12.3885	8.8223	4.0081	8.1298	16
10.	BROMOFORM	8.2428	-2.6727	8.0619	8.9866	3
11.	TRINALOMETHANES	51.8378	0.1126	18.8929	8.1438	16
12.	TOTAL HALOCARBONS	85.2653	-0.1588	12.2909	0.2142	16

•

PARABOLIC CURVE FIT RESULTS (Y-A6 + A140(+ A2400H12)

CAL NO.	COMPOUND	AB	A1	A2	Standard Irror	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-0.2184	1.2385	-0.8478	8.9811	8.8741
2.	NETHYLENE CHLORIDE	11.6885	-8.8675	8.0033	6.2787	0.1835
3.	CARBON TETRACHLORIDE	8.8008	8.0000	9.0000	8.8868	9.0000
4.	1.2-DICHLOROETHYLENE	8.0006	8.0000	8.8866	8.6666	9.0000
5.	CHLOROFORM	21.8838	-0.5482	0.8458	5.3639	8.5150
6.	1.1.1-TRICHLOROETHANE	5.3978	-2.7864	8.6756	0.7178	0.5100
7.	BROMODICHLOROMETHANE	17.6954	8.4118	-6.0034	4.8258	8.4499
	TRICHLOROETHYLENE	1.8414	8.8263	-0.8175	0.2923	8.1586
9.	DIBROMOCHLOROMETHANE	8.3565	0.8107	-0.0315	3.9639	0.1954
10.	BROMOFORM	8.6686	-30.5329	256.1277	8.8008	1.8000
11.	TRENALOMETHANES	55.5942	-0.0021	0.0022	18.8895	0.1451
12.	TOTAL HALOCARBONS	139.5964	-2.1575	0.0170	11.8995	0.3251

LOGARITHMIC CURVE FIT RESULTS (LOGEY)-A0 +A1+LOGEX3)

CAL NO.	CONFOUND	AB	A1	STRNDARD ERROR	CORR. COEFF.
1.	TETRACHLORDETHYLENE	-8.1527	1.1982	0.1788	8.9429
2.	METHYLENE CHLORIDE	8.8137	0.1541	8.2648	8.3263
3.	CARBON TETRACHLORIDE	8.5566	8.0000	6.0000	8.0000
4.	1.2-DICHLOROETHYLENE	8.0000	8.8098	8.8088	8.8860
5.	CHLOROFORM	8.8768	0.4117	0.1141	8.5147
6.	1.1.1-TRICHLORDETHANE	0.5309	-8.1866	8.1135	0.3071
7.	BRONDD I CHLOROME THANE	1.2178	8.8972	8.8796	8.4053
8.	TRICHLOROETHYLENE	8.2638	-8.8589	8.6711	0.1712
9.	DIBROHOCHLOROMETHANE	1.6242	0.6532	8.1446	8.2785
18.	BROHDFORH	-4.2528	-1.9939	8.8165	8.9997
11.	TRIHALOMETHANES	1.6898	8.0838	8.2879	0.1900
12.	TOTAL HALDCARBONS	2.1821	-0.1287	8.8723	0,2664

.. .

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR SEP 3, 1988 TO SEP 38, 1988 FROM SAMPLE SOURCE 2 TO SAMPLE SOURCE 3

and the second second

e entre symmetric entre entre :

Â

たい こうでんざい しいとう しまうちょう ちょうちょう ないのできます

Į

LINEAR CURVE FIT RESULTS (Y-A8 + A1*X)

CAL NO.	Compound	AØ	A1	Standard Error	CORR. COEFF.	SAMPLE SIZE
1.	TETRACHLOROETHYLENE	2.3183	8.5244	8.4747	0.5784	8
2.	METHYLENE CHLORIDE	28.8685	-0.0196	11.5376	. 0.0114	8
3.	CARBON TETRACHLORIDE	8.2000	8.0000	8.0098	8.8888	. 8
4.	1.2-DICHLOROETHYLENE	8.0000	0.0000	0.0000	8.8888	
5.	CHLOROFORM.	4.1122	8.5622	1.4243	0.9893	8
Ğ.	1.1.1-TRICHLOROETHANE	8.2188	8.3847	0.0978	8.7386	ē
7.	BROMODICHLOROMETHANE	2.3498	8.7279	3.2584	8.8594	7
8.	TRICHLOROETHYLENE	8.8126	0.8822	0.0650	8.9681	8
9.	DIBROMOCHLOROMETHANE	1.5738	9.8480	2.3854	8.9096	8
18.	BROMOFORM	0.0000	0.0000	8.0006	8.8888	Ō
11.	TRIHALOMETHANES	6.7533	0.7098	5.7966	8.8981	8
12.	TOTAL HALOCARBONS	29.5924	0.5786	13.5811	8.5784	8

.

MARABOLIC CURVE FIT RESULTS (Y=A0 + A1+X + A2+XX+A2

CAL Mg.	COMPOUND	A0	A1	AZ	Standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	16.3789	-5.2388	8.5741	0.3419	8.8453
2.	METHYLENE CHLORIDE	34.9632	-2.4557	0.0800	18.6766	8.3792
3.	CARSON TETRACHLORIDE	8.9999	0.0000	0.0000	0.0008	0.0000
4.	1,2-DICHLOROETHYLENE	0.000	8.0000	8.0008	8.8688	8.0000
5.	CHLOROFORM	19.5421	-1.1476	0.0411	1.0515	8.9516
6.	1, 1, 1-TRICHLOROETHANE	8.2754	0.2385	0.0743	8.8976	0.7398
7.	BROMODICHLOROMETHANE	26.0396	-1.4305	0.0449	2.8117	8.8968
8.	TRICHLOROETHYLENE	0.2056	8.4651	0.1361	9.8642	8.9697
9.	DIBROMOCHLOROMETHANF.	1.1091	0.9298	-0.0028	2.3838	8.9897
18.	BRUMDFORM	8.0000	8.0000	0.0000	8.8888	8.8899
11.	TR IHALOMETHANES	48.6906	-0.5597	8.8104	5.2003	8.9199
12.	TOTAL HALOCARBUNS	113.4089	-1.6003	0.0157	12.7843	0.6342

LOGARITHMIC CURVE FIT RESULTS (LOGEY]-A8 +A1*LOGEX])

CAL NO.	COMPOUND	A0	A1	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	8.3604	0.4745	0.8464	8.5961
2.	METHYLENE CHLORIDE	1.2299	0.0089	0.2686	0.2711
3.	CARBON TETRACHLORIDE	8.0000	8.8888	0.0000	8.8888
4.	1.2-DICHLOROETHYLENE	0.0009	0.0000	0.0000	8.0000
5.	CHLOROFORM	8.3395	8.6469	0.0521	0.8413
6.	1, 1, 1-TRICHLOROETHANE	-8.2278	0.6480	0.0808	0.7348
7.	BROMODICHLOROMETHANE	0.1891	8.7979	0.0797	8,8096
8.	TRICHLOROETHYLENE	-8.0890	0.9665	8.0346	0.9578
9.	DIBROMOCHLOROMETHANE	0.1805	0.8185	0.1090	0.8595
10.	BROMOFORM	8.8888	0.0000	0.0000	0.0008
11.	TRIHALOMETHANES	0.2901	0.7844	0.8660	8.8396
12.	TOTAL HALOCARBONS	0.8633	0.5263	0.0941	8.4986

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR SEP 3. 1988 TO SEP 38. 1988

FROM SAMPLE SOURCE 3 TO SAMPLE SOURCE 4

LINEAR CURVE FIT RESULTS (Y-A8 + A1=0)

ļ

CAL NO.	COMPOUND	A0	A 1	STANDARD ERROR	CORR.	SAMPLE SIZE
1.	TETRACHLOROETHYLENE	-1.8734	1.2218	8.1189	8.9959	8
2.	METHYLENE CHLORIDE	12.1293	8.2895	4.5235	8.7518	8
- Ī.	CARBON TETRACHLORIDE	8.8000	6.8000	0.0000	8.0000	Ú.
4.	1.2-DICHLORDETHYLENE	8.0008	0.0000	8.8000	8.0008	Ū
S.	CHLOROFORH	-0.6456	8.9898	1.2466	8.9597	Ť.
Ğ.	1.1.1-TRICHLORDETHANE	8.2282	8.3732	8.8473	8.7781	ě
7.	BRONDD I CHLOROMETHANE	1.8832	0.8527	0.9636	8.9872	7
÷.	TRICHLORGETHYLENE	8.1541	8.6981	0.1187	8.8455	
Ĵ.	DIBRONDCHLOROMETHANE	-1.6398	1.2013	1.1834	8.9658	Ú.
18.	BROMOFORM	0.0000	8.0008	0.3598	8.4139	1
11.	TRIHALDHETHANES	7.3518	8.8442	9.5283	8.8007	Ŭ.
12.	TOTAL HALOCARSONS	26.1681	0.5862	11.5445	0.6446	Ŭ

PARABOLIC CURVE FIT RESULTS (Y-A0 + A140(+ A242542)

CAL ND.	COMPOUND	A8	AI	A2	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	2.8961		8.1343	8.1814	8.3977
Ż.	METHYLENE CHLORIDE	6.4783	8.9024	-0.8125	4.1224	0.7993
3.	CARSON TETRACHLORIDE	8.0006	8.0000	8.8888	8.8808	8.0000
4.	1.2-DICHLOROETHYLENE	8.0008	8.0000	0.0000	8.8666	8.8000
5.	CHLOROFORM	-19.8453	3.4731	-8.8766	1.8667	8.9786
Ĕ.	1.1.1-TRICHLOROETHANE	8.5524	-0.8738	1.8926	8.8395	8.8515
7.	BROMOD I CHLOROMETHANE	5.7154	8.3696	0.0114	8,8758	8.9895
	TRICHLOROETHYLENE	-8.3566	1.7885	-0.5362	8.1:22	8.8632
9.	PISCHOCHLORONETHANE	2.8014	8.3876	8.8298	0.9967	8.3833
10.	BROMDFORM	8,0606	8.8006	0 0000	6.3598	0.4139
11.	TRIHALOMETHANES	28.2384	8.2762	0.8856	5.4888	8.8826
12.	TOTAL HALOCARBONS	151.0085	-3.2522	0.6278	9.8766	0.7568

LOGARITHMIC CURVE FIT RESULTS (LOGEY]-A0 +A1+LOGEX])

CAL NO.	COMPOUND	AB	Al	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLORGETHYLENE	-8.1378	1.1991	8.8112	0.9978
2.	METHYLENE CHLORIDE	8.7818	8.3638	0,1235	8.7167
3.	CARBON TETRACHLORIDE	8.0006	6.0008	8.0000	8.0000
4.	1.2-DICHLORDETHYLENE	8.0868	0.0000	8.8886	8.0020
S.	CHLOROFORM	-8,1568	1.1885	6.8459	0.9536
Ğ.	1.1.1-TRICHLORDETHANE	-8.2655	8.4875	8.6573	8.6635
7.	BROMON ICHLOROME THANE	8.8892	8.8968	8.8293	8.9814
	TRICHLOROETHYLENE	-8.8738	0.8695	0.0612	8.9574
9.	DIBROMOCHLOROMETHONE	-8.1818	1.1897	8.8488	8.9818
10.	BROMOFORM	8.0000	8.0000	. 0. 4439	1.8321
11.	TRIHOLONE THONES	8.1946	8.8918	8.8957	8.8178
12.	TOTAL HALDCARBONS	8.8451	0.5297	0.0768	8.6168

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR SEP 3, 1988 TO SEP 38, 1988 FROM SAMPLE SOURCE 4 TO SAMPLE SOURCE 5

LINEAR CURVE FIT RESULTS (Y-A0 + A1+X)

1

CAL. ND.	COMPOUND	Â G	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1.	TETRACHLOROETHYLENE	-0.1953	1.8854	8.6883	8.8954	13
2.	METHYLENE CHLORIDE	2.8341	8.7084	6.6711	8.5665	15
3.	CREEDIN TETRACHLORIDE	8.8006	8.0000	8.0008	9608.9	
4.	1.2-DICHLOROETHYLENE	8.0005	8.0000	0.0000	8.0008	· · · · •
5.	CHLOROFORM	15.4012	8.3426	5.2079	8.5853	14
Ĕ.	1.1.1-TRICHLORDETHANE	1.8723	3.2297	8.8178	8.4361	15
7.	BRONDDICHLOROHETHANE	17.8238	0.1293	4.7155	0.3235	16
8.	TRICHLOROETHYLENE	1.1923	0.6671	0.2568	8.5541	16
Ĵ.	DIBRONCCHLOROMETHANE	7.9381	8,1146	1.9595	8.5253	16
18.	BROHDFORM	-0.8935	14.1360	8.0000	1.0000	2
11.	TRINGLONETHONES	42.6913	8.1543	18.9653	8.4875	16
12.	TOTAL HALOCARSONS	70.7884	8.8008	9.6317	0.4191	16

.

PARABOLIC CURVE FIT RESULTS (Y-A8 + A1+X + A2+X+A2)

CAL NO.	COMPOUND	A0	RI	A2	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLEHE	-8.8746	8.5246	0.0112	8.6878	0.8956
2.	HETHYLENE CHLORIDE	4.4064	0.3342	0.0122	6.6421	8.5717
3.	CARBON TETRACHLORIDE	8.0000	8.0000	8.8888	6.0000	8.8988
4.	1.2-DICHLOROETHYLENE	9.8669	8.8868	8.8866	8.0005	8.8008
5.	CHLOROFORM	12.9985	6.6359	-0.0060	5.1814	6.5910
6.	1.1.1-TRICHLOROETHANE	2.2583	1.4598	1.8854	0.8165	0.4373
7.	BRONDD / CHLOROMETHANE	21.6782	-0.2386	0.8878	4.6769	8.3453
÷.	TRICHLUROETHYLENE	-1.3898	7.3799	-4.2218	8.2874	6.7403
9.	DIBROHOCHLOROMETHANS	6.3314	8.3965	-0.8896	1.9238	8.5496
18.	BRONDFORM	E.0000	8.0000	0.8008	8.8138	1.0111
ii.	TRIMALONETHANES	47.5377	-0.8416	0.0016	16.8551	8.4947
12.	TOTAL HALOCARBONS	71.5861	-0.8250	8.8682	9.6385	0.4194

LOGARITHMIC CURVE FIT RESULTS (LOGEY3-A0 +A1+LOGEX3)

CAL NO.	COMPOUND	. 🖊	A1	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-8.1447	1.1844	8.8744	8.9581
2.	NETHYLENE CHLORIDE	0.2631	8.7158	8.2558	0.5537
3.	CARBON TETRACHLORIDE	8.0000	6.6066	8.0000	8.9000
4.	1.2-DICHLOROETHYLENE	8.0008	8.0000	8.8888	8.8008
5.	CHLOROFORM	0.9563	8.3846	8.1107	0.5855
6.	1,1,1-TRICHLOROETHANE	0.7125	0.5033	0.1437	0.4791
7.	BROHODICHLORDHETHANE	1.1581	0.1123	8.1365	8.3164
	TRICHLOROETHYLENE	0.2825	0.4353	8.8776	0.6115
9.	\$18ROHDCHLOROME THANE	0.7973	8.1669	8.8986	0.5785
10.	BROHDFORM	19.4776	18.0968	8.0000	1.0000
11.	TRIHALOMETHANES	1.4633	8.1377	8.1864	0.5866
12.	TOTAL HALOCARBONS	1.8592	-8.0875	0.0682	8.4538

GRE CHROMATOGRAPH REGRESSION ANALYSIS FOR SEP 3. 1988 TO SEP 38. 1988 FROM SAMPLE SOURCE 5 TO SAMPLE SOURCE 6

LINEAR CURVE FIT RESULTS (Y-A8 + A1+00)

17.9

an in die Charle

and the second second

4

(

CAL NO.	CONFOUND	A0	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1.	TETRACHLORGETHYLENE	0.2370	8.8472	1.1274	0.7763	15
2.	METHYLENE CHLORIDE	5.4775	8.5876	4.5263	0.6729	17
3.	CARBON TETRACHLORIDE	0.0000	8.0006	8.0000	8.0008	
4.	1.2-DICHLOROETHYLENE	8.8888	8.0000	8.0000	8.0000	8
5.	CHLOROFORM	5.4638	8.7478	3.0206	0.9131	16
- Ś.	1.1.1-TRICHLOROE THANE	1.3872	6.6241	8.5688	8.7248	17
7.	BROMODICHLOROMETHANE	23.8625	-0.8986	5.3662	0.2114	17
	TRICHLOROETHYLENE	1.6281	0.1094	ð.2814	8.2845	17
9.	DIBROMOCHLOROMETHANE	7.8567	0.5541	3.2826	0.5793	17
18.	BROMOFORM	0.8866	6.0061	8.8696	1.8888	2
11.	TRINALOMETHANES	46.2144	0.1989	9.9447	0.3857	17
12.	TOTAL HALOCARBONS	56.4100	0.1345	12.8324	0.2286	17

PARABOLIC CURVE FIT RESULTS (Y-A8 + A1+0(+ A2+00++2)

CAL NO.	COMPOUND	AØ	A1	A2	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-8.4863	1.4125	-8.8829	1.8935	8.7913
2.	METHYLENE CHLORIDE	4,5482	8.6896	-8.8859	4.5189	0.6757
3.	CARBON TETRACHLORIDE	0.0000	8.0000	8.8868	8.0008	8.0000
4.	1.2-DICHLOROETHYLENE	8.0000	8.0000	8.0000	8.8008	8.0000
5.	CHLOROFORM	-0.3762	1.2198	-8.8083	2.0788	8.9214
- Ĝ.	1.1.1-TRICHLOROETHANE	2.2323	-8.8567	6.1115	8.5516	8.7432
7.	BROHODICHLOROHETHANE	1.8264	1.9546	-8.8438	3.8824	8.7871
8.	TRICHLOROETHYLENE	0.8713	8.8342	-6.1553	8.2669	6.3715
9.	DIBROMOCHLOROMETHANE	-7.8511	2.8899	-0.8740	2.6185	8.7598
10.	BRONDFORM	8.0000	6.0000	8.8000	8.1862	8.4816
11.	TR IHAL OHETHANES	21.6770	0.9379	-8.6647	9.2447	8.5142
12.	TOTAL HALOCARBONS	62.3975	0.2240	-0.0004	12.8291	0.2219

LOGARITHMIC CURVE FIT RESULTS (LOGEY)-A0 +A1+LOGEX3)

CAL NO.	COMPOUND	AC	A1	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-8.4479	1.5966	8.1766	8.9362
2.	METHYLENE CHLORIDE	8.4735	0.5388	8.1982	8.7143
3.	CARBON TETRACHLORIDE	8.0000	8.0006	8.0000	8.0000
4,	1.2-DICHLOROETHYLENE	8.0000	8.0008	8.0000	8.0008
5.	CHLOROFORM	8.2428	8.8177	8.8547	0.9255
6.	1.1.1-TRICHLOPOETHANE	8.2956	0.4433	0.8916	8.6229
7.	BROHODICHLOROMETHANE	1.4539	-0.1171	6.1471	8.1282
8.	TRICHLOROETHYLENE	8.2187	8.1873	0.0662	8.3277
9.	DIBROHOCHLOROMETHANE	8.4216	8.6696	0.1108	8.6658
10.	BROHDFORM	-1.3839	8.4498	8.8866	1.0000
11.	TRINALOMETHANES	1.2743	8.2743	8.8778	8.4598
12.	TOTAL HALOCARBONS	1.5448	0.1797	0.8718	8.2546

•

ĩ ____

LOG-NOR	AL DISTRIBU	TIONE SEP	3, 1980 1	TO FEB 28, 190	31	
SAMPLE	AVERAGE	ONE Sigma	LO Slope	G(Y)=F(Z) INTERCEPT	CHI Square	SAMPLE SIZE
TOTAL B	LOMASS				,	
1 2 3 4 5	2.0 0.2 0.7 0.3 0.3	1.1 0.1 0.3 0.2 0.4	0.3113E 0.2601E 0.3149E 0.2845E 0.2731E 0.2975E	0 0.2206E 0 -0.8346E 0 -0.2938E 0 -0.5782E 0 -0.6544E 0 -0.6705E	$\begin{array}{c} 0 & 11.8144 \\ 0 & 1.1379 \\ 0 & 3.5663 \\ 0 & 0.5556 \\ 0 & 6.3158 \\ 0 & 6.0870 \end{array}$	97 58 83 90 95 115
VTARI F	TOMASS	•••			• •••••	•••
	0,6 0,0 0,2 0,1 0,1 0,1	0,5 J.0 0,2 0,1 0,1 0,4	0,4343E 0,3448E 0,4553E 0,4671E 0,4719E 0,4335E	0 -0,3701E 0 -0,1698E 0 -0,8758E 0 -0,1127E 0 -0,1238E 0 -0,1167E	0 32.6667 1 5.2759 0 6.4762 1 3.4505 1 1.4624 1 6.0690	99 58 84 91 93 116
1 2 3 4 5	4.0 1.5 1.2 0.9 0.3 2.0	1.9 1.0 1.1 0.8 0.5 1.2	0.2464E 0.3388E 0.3129E 0.3433E 0.3356E 0.3085E	0 0,5473E 0 0.4781E 0 -0,3173E 0 -0,1495E 0 -0,7382E 0 0,2194E	0 5.5385 -1 0.6377 -1 7.1282 0 1.9080 0 61.3627 0 11.8654	91 69 78 87 91 104
TURBIDI	TY-8102	- .				
1 2 3 4 5	13.9 11.4 6.2 9.3 5.7 4.7	5.2 10.0 3.9 3.5 4.0 1.8	0,1746E 0,2234E 0,2149E 0,1776E 0,1805E 0,1480E	0 0,1109E 0 0,9805E 0 0,7294E 0 0,9353E 0 0,7077E 0 0,6437E	 5.9123 9.1795 20.0612 7.6364 22.1982 6.2029 	114 78 98 110 111 538
DIS DXY	GEN			ł		
1 2 3 4 5	6.2 6,7 6,6 6,9 6,3 6,2	1.8 1.3 1.6 1.6 1.4 1.4	0.1578E 0.8404E 0.1079E 0.9945E 0.9677E 0.1213E	0 0,7657E -1 0.8208E 0 0.8089E -1 0.8301E -1 0,7897E 0 0,7760E	0 38,5439 0 7,7692 0 8,0202 0 3,9091 0 10,7679 0 18,5217	114 78 99 110 112 138

EOF..

l

P

D-13

٠...

LOG-NOR	MAL DISTRIBU	TION: SEP	3, 1940 TO FEB 28, 1981		
SAMPLE	AVERAGE	ONE Sigma	LNG(Y)#F(Z) SLNPE INTERCEPT	CHI Square	SAMPLE SIZE
AMMONIA					
1	5.1	10.2	0,4780E 0 0,3761E 0	12,1136	88
2	5.9	12.7	0.5348E 0 0.3245E 0	9.2281	57
3	5.1	12.1	0,5726E 0 0,2350E 0	9.1316	76
ŝ	4.3	12.6		10.2666	01 72
ě	4,2	12.8	0.51632 0 0.12832 0	23,5670	97
PH					
1	5.6	0.5	0.3182E -1 0.7471E 0	14.0000	115
2	7.4	1.0	0.58538 -1 0.86568 0	0,4615	78
3	6.0	0,7	0,468AE -1 0,7768E 0	18,5000	100
4	4,3	0.8	0,4913E -1 0,7959E 0	5.5455	110
5	5.6	0.6	0,4117E -1 0,7936E 0	6,9558	113
•	0,1	0.2	0.34252 +1 0./8252 0	0,3478	134
TOT ORG	CARBON				
1	9.7	2.4	0,1106E 0 0,9753E 0	10.7708	96
2	6.8	2.1	0.1377E 0 0.8107E 0	12.0024	68
3	7.2	3.0	0,15365 0 0,82435 0	13.7531	81
	0.0 A.2	₹ •0	0,12/7C 0 0,7145C 0	13.6666	90
	3.7	1.4	0.1306E 0 0.5524E 0	8.8113	106
CONDUCT	IVITY				
1	1234.4	62.6	0.21455 -1 0.30916 1	2.4348	115
ž	1287.1	85.3	0.2715E -1 0.3109E 1	12.3846	78
3	1296.1	53,2	0,1837E -1 0,3112E 1	2.5000	100
4	1303.8	60.4	0.2045E -1 0.3115E 1	3,9091	110
5	1316.9	64.9	0.21568 -1 0.31198 1	5.6283	113
0	13[3.3	\$2*2	0.2200E -1 0.3118E 1	11,3478	139
HARONES	5				
1	327.2	338,3	0.2237E 0 0.2430E 1	11.8750	80
2	253,5	102.3	0,14158 0 0,23798 1	1.2647	68
3	280.4	254.1	0.1772E 0 0,2396E 1	5.2791	86
4	249.8	70.7	0,1259E 0 0,2380E 1	5.2563	95
5	230.9	69.2 306.5	0,1315E 0 0,2355E 1 0,2368E 0 0,2514F 1	3,5306	97 89
SODIUM					
				.	
1	158.7	12.6	0,3403E -1 0,2199E 1	3,4815	108
2	134.8	13.7	0.377/2 41 0.2148E 1	4.3947	76
4	155.8	12.1	0.8364F =1 0.2191F 1	**13777 6.8544	103
3	154.1	11.2	0.3112F -1 0.2187E 1	1.0962	104
ě	153.7	13.4	0.3650E -1 0.2185E 1	5.0000	130

EOF..

The second s

	FRO		CE 1 TO SAM	PLE SOURCE 2				
	LIN	EAR CURVE FIT	RESULTS (Y	=A0 + A1+X)				
	CHA NO.	SENSOR	UNITS	λđ	A1	ERROP	CORR.	SIZE
			·····					
	ź.	VIARLE BIOMA	SSMIL C/ML	0.0325	-0,0041	0,0343	0.0344	57
	<u></u> ,	RES CHLORINE	MG/L	0.8776	0.1345	0.9348	0.2636	64
	7.	TUWHIDITY-SI Dis Oxycfn	WEYL MEYL	-2,2082	1.0337	5.3174	Q.4368	73
	10.	AMMONIA	HELL	-0,8445	1.0049	3.1423	0,9700	Ś
	<u> </u>	NITRATE		9:0000	0.0000	0,0000	0,0000	0
	12.	TOT OPE CARE	PH 01 MG/1	0,3376	0,1744	0.7733	0.1181	73
		CONDUCTIVITY	HMMH07CH	356.2761				73
	15.	TEMPERATURES	1 DEG #	33,7940	0,5293	1.0404	0.7552	73
	<u></u>	HARDNESS		240.1208	0.050Z	117.4959	0,1869	49
	20.	AMBIENT TEMP		15.9998	0.7821	4.9391	0.8237	
	PAR	ABOLIC CURVE	FIT RESULTS	(7=10 + 11=1	+ 12=X==2)		
		464444						
	- CMA	354804	UNITS	AV	A1 .	43	JTANGANO Teros	CORR.
					· · · · · · · · · · · · · · · · · · ·	·····	5	
	1.	TOTAL BIOMAS	S MIL C/ML	0,0739	0,0979	-0,0170	9,1117	0.335
		VIABLE BIOMA	SSHIL C/NL	0.0169		-0.0521	0,9354	0,191
		TURBIDITY-SI	0246/L	12.4143	-1.4597	0.0919	4.4211	0.748
	<u> </u>	DIS OXYGEN	MG/L	4.6442	-0.7201	0,1113	0.6432	0.867
	10.	AMMINIA	HO7L	-0,2301	0.8452	0,0034	3.1105	0.970
	11.	RITRATE PM	957L	₹,000€ =1€.417#	0,0000	0,000,0	7,0000	0.000
	-13.	TOT ONG CANE	UN HETL	3,4134		0.0047	1.7582	
	14.	CONDUCTIVITY	MANHO/CH	2399.9630	-2,5323	0.0013	71.1629	0.445
	15.	TEMPERATURES	1 DEG F	-262,8664	8,3916	-0.0519	0.5652	0,942
	17.	ANDIUNESS MUTORESS	NG/L	233,393/	5.4264	-0.0000	9.5244	0,100
	20.	AMOIENT TEMP	DEGF	196.9927	-4,1842	0.0340	0,9283	0,828
	COC	ANTHHIC CURV	E PIT RESUL	T3 (LOG (T] #40	+AT+LOG (X)	7		
	CHA	SENSOR	UNITS	40	A1	STANDARD	CORR.	
-	NO.					ERROR	COEFF.	
	1.		5 M TI C /M	-8 8347	4 4797	4 2417		
		VIANLE BIOMA	SSH (1-C7M-					
	5,	RES CHLORINE	4G/L	-0.1701	0.3457	0.3172	0,4284	
	٠.	TURBIDITY-SI	024671	0,1226	0.7926	0.1491	9,7400	
	- 1	ANNONTA	MG/L MG/L	0,3537 #0,1611	0.5761	0.0573	0.7694	
						~	/ • •	•••
			H#.71					
	12.	PN	PH	0.7242	. 1847	0,0423	7.1365	
	- i3.	TOT ORS CARRI	ON MG/L	0,1804	0.6448	0,1122	0,4043	
	_1.,	CONDUCTIVITY	HPHHO/CH	0,9678	0,6427	0.0221	0,4920	
	15.	TEMPERATURES	1 DEG F	0,7944	0,5714	0.0043	0.7774	
	4 = 9			£.9033	V.IZIV	4,1344	V, 2330	
	17-	100 I UP	#G/L	8,4144	8.7419	8.0713	8.7844	

ί

OF FOOR QUALITY

FRO	N SAMPLE SOUR	CE 1 TO SAM	PLE SOURCE 3				
 						<u>.</u>	
 LIN	EAR CURVE FIT	RESULTS (Y	#40 + A1+X3				
 CHA NO,	SENSOR-	UNITS		A1	STANDARD ERROR	CORR. COEFF.	1718 1718
 1.	YOTAL RIOMAS	STATE COME	0,1074	0.3042	0.4513	0,5157	
 \$.	RES CHLORINE	HGAL	0,3448	0.4371	0,7693	0.2447	7
 	TURBIDITY-SI	0246/L	5,7514	0,0331	3,9211	0.0431	
10.	ANMONTA	HGIL	-0,5640	1,0432	4,2264	0,9374	7
11.	WITHATE	- 4875	0.0000	0,0000			•
i3,	TOT ORG CARR	ON 467L	0,4026	0.6978	2,3440	0.6034	7
14.	CONDUCTIVITY		846,3134 37 4848	0.5103	43.0356	0.5933	
 10.	HARONESS_	MG/L	255,5194	0.0720	282.4054	0.0918	
<u>.</u>	SODIUM	-467	13.301	0.7076	6.6444	0,7815	
 6 7 ,	HUDICH! ISAM	UKU P	£ , 7964	4.4413	7 .000 4	4.4501 ·	144
 PAR	ABOLIC CURVE		(THAO + A1+X	+ 42+X+=21	1	•	
 C MA							
NO.	357404	04114			~€	ERROR	COEFF
			A				
2.	VIABLE SIOMA	\$5#1L C/NL	0,1020	0,1478	0.0768	0.2229	0.294
 	HES CHLONINE	HOT	1,0480	-0,2136	0.0467	0.7436	0.434
7.	DIS CYYCEN	92457L MG/L	1.1041	9.6/88 0.9605	•0.0203 0.0512	3,4447	0.138
 10.	AMMONIA	TKS7L	1.5410	0.1108	0.0195	3.5492	7, 933
11.	NITRATE PN	46/L 21	0,0000 -0.4293	0.0000 4.7594	8,0000 -0 3447		
	TOT ORG CARE	ON HETE	7.1000	-0.5074	0.0574	-2.2103-	-0.56
14,	CONDUCTIVITY	HPHHQ/CH	2246.8800	-2.0911	0,0011	42.3331	0.410
 · · · ·	HANDRESS	HEIL	201.0144	-0.0331	0.0000	202.0105	- 0.102
17.	SUOIUM	#4/L	-119,2061	2.7285	-0.0062	6,5421	0,791
 •••	W.OTENI IEmb		-114,3003	4,36/3		0.8646	4,424
							•
 ंतर	ANTO DIMMYIA	F FIT WESUL	TS (LOG [Y] =40	+41+LOG [X]	7		
СНА	SENSOR	UNITS	40	41	STANDARD		
. DA					ERROR	COEFF.	
1.	TOTAL RICHAS	S HIL C/ML	-0.4000	8-8181	6.2432	8.4550	
2.	VIABLE BIOPA	SSALL CTAL	-0.6220	0,5946	0.3591	0.6495	
5.	TUPSIONTY-ST	MG/L 0246/1	-9.3201	0,4408	0,2700	0,5462	
 	DIS OXYGEN			0.5755			
10.	AMMONIA	#G/L	-4,4567	8,3690	•.3451	•	
11.	NITRATE	H6/L	0.1600				
12.	- PH . Tot ore class		0.4911	0,3022	0.0454	6,2681	
 14.	CONDUCTIVITY	NMMH0/CH	1.7026	0.4561	0.0144	4,5573	
15.	TEMPERATURE	1 DEG 7	0.6302	0.6553		- 0.0117	
. 17.	3001UM	46/L	0,5417	0.7318	V,1814 0,0182	0,4054 0,7841	
20.	AMAIENT TEMP	DEC F	0.0917	- 0.4513 -	- 0.0039	0. 0201	

D-16

REGRESSION ANALYSIS FOR SEP 3, 1980 TO FEB 28, 1981										
FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 4										
 LINEAR CURVE FIT RESULTS (YEAO + A1+X)										
 AHS	SENSOR	- UNITS			STANDARD	CORM.	SAMPL			
NQ.					ERROR	CREFF.	. \$128			
1.	YOTAL BIOMAS	SHIC C/MC		0,0955		0,2326				
2.	VIABLE BIONA	SSMIL C/ML	0,0413	0,1169	0,1411	0,2364	21			
 ;	TURGIDITY-SI	0246/1								
7.	DIS OXYGEN	HG/L	2.4516	0,6935	1,0570	0,7501	107			
 	NITRATE				7.4774	4.4341				
12.	PH	PH	2.7040	0.4380	0.7844	0.3870	108			
 	TOT ORE CARE	ON MG/L	1.7679	0.9133		A.6404				
15.	TEMPERATURES	1 DEG F	25.5023	0.6406	1.2035	0.7914	106			
 10.	HARONESS	HG/L	215.3553	0.0902	63,4912	0.4557	69			
 17.	SODIUM TEMP		34,4676	0,7655	8,2540	0.7453	101			
	MENTERIA I CHIE									
 PAR	ABOLIC CURVE	FIT RESULTS	(7840 + 41+2	+ 12+X+21						
 CHA	SENSOR	UNITS	Ae	A1	42	STANDARD	CORR.			
 NO.			-		·	ERROR	COEFF.			
1.	TOTAL PIOMAS	S HIL CAME	0.0917	0.1866	-4.0253	0.2581	0.3003			
 2.	VIABLE BIOMA	SSMIL C/HL	0,0444	0.1052	-4.0534	0,1407	0.2412			
	RES CHUDNIRE		-0,2026	6,3444	-0,0256	0,3544	0,5069			
7.	DIS OXYGEN	HG/L	4.9294	-0.1494	0.0714	1.0188	0.7705			
14.	THE OWLY	MGTL	3.2414	-0.7323	0.0383	3,9875				
11.	PM	#6/L #4	0,9000 -0.2027	0,000 1,5443	8,0008 -4,2261	0.4910	6.1276			
	TOT ONG CANE		4.5195	-0.0156	0.0258	1,4682	0.000			
14.	CONDUCTIVITY	MMMHO/CM	1424,3480	-0.0975	0.0005	51.0433	0.5194			
 12.	HADDAF 53	1 026 P	-1/0./3/0	0.2057						
17.	\$001U#	HE/L	-134,2143	2,8452	-4,0045	4,1327	0,7544			
 . 20.	AMBIENT TEMP	DEG F	18,3300	0.6944		0, 4403	0,8464			
 (06	THITHHIC CUNA	E PIT RESUC	TS (LOS (Y) BAS	+A1+LOG (XI	7					
CHA	SENSOR	UNITS	A0	A1	STANDARD	CORR.				
 NO,					ENKOR	COEFF.				
1.	TOTAL BIOMAS	5 HIL C/ML	-0.4539	8,3462	0.2011	0.4935				
 2.	VIABLE PIONA	SSATL C74	-9,4366	0.3324	0.4105	0.6100				
5.	RES CHLORINE	46/L	-0.5263	0.6540	0.2941	0,5732				
 	DIS OXYGEN									
10,	A I NDMMA	HE/L	-4,0554	0,7347	4,3444	9,4317				
•	 '			• •			•			
11.	HITRATE	H6/L								
17.	TOT OPS CANS	ON MG/L	9,3794	0,0352 6,7446	0.0484 8.0488	0,4272 0,4711				
 14,	CONDUCTIVITY		1.7444	0,4267	0.0171					
15.	TEMPERATURES	1 OES F	0.6126	0,1698	0.0071	0.7901				
10,	74707735 2001um	HG/L	1.7447	4.2345 8.7844	V.1134 0.0721	9 .4086 0.7444				
 20,	AMBIENT TEMP		0.3091			- 0.0293				

D-17

REGRESSION ANALYSIS FOR SEP 3, 1980 TO FEB 20, 1981

FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE S

LINEAR CURVE FIT RESULTS (YHAG + A1+E)

СНА Н 0 ,	SENSOR	UNITS	20	. 41	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
	TOTAL STONASS	HIL CON	0,1675	0.0533	8,1941	6,2962	90
2.	VIAGLE SIGMASS	MIL C/ML	0.0222	0.1532	0,1317	9,3301	+•
<u> </u>	RES CHLORINE	46/L	0,3441	-0,0201	1.3844	2951.4	
	TURSIDITY-SIJZ	ME/L	3,3916	0,1374	2,3541	0,3244	107
7.	DIS OXYSEN	M6/L	3.8686	0,5335	1.0376	1,6664	107
10,	AMMONTA	-6/	-1.2794	0,9014	6.2969	F. 8668	
12.	PN	PN	2,2465			0,3595	107
13.	TOT ORG CARBON	46/L	1.1331	0,2999	1,4431	+,4343	87
14,	CONDUCTIVITY	MMMMO/CM	721,9695	0.4855		1.4951	107_
10.	MARONESS	46/6	217,0330	0,0445	45,1014	0.3495	70
17.	NUIGOL	H6/L	43.7548	8.7865	7.2635	0.7609	101

PARABOLIC CURVE FIT RESULTS (Y=A0 + A1+X + A2+X++2)

СНА 110,	SENSOR	UNITS	A0	A1	42	STANDARD ERROR	CORR. COEFF.
1.	TOTAL BIOMASS	-	1.0034	0.1387	-4.0165	0.1912	0.3347
2.	VIANLE BIUMAS	SHIL C/ML	1.1212	0.1449	1.045	0.1317	9.3302
3.	NE'S CHUCHING	HETL	0.6911	-4.1386	0.0169	0.3698	0.2944
•••	TURGIDITY-SIC	246/1	2.3453	0.2942	-0.0053	2.3922	0.3311
7.	DIS GIVEEN	HG/L	4,4187	0.0274	0.0430	1.0236	0.4778
TD.	ANNOWIA	HETL	2.7493	-0.0075	0.0352	4.7852	0.7254
12.	PH	PH	-5.3227	3.1345	-0.1916	0.4716	0.5934
13.	TOT ORG CARBO	N ME/L	8.0260	-0.9603	0.0540	1.2990	0.5877
14.	CONDUCTIVITY	MMMM07CH	1841.6540	-1.3530	0.0444	53.8423	0.5027
10.	HARONESS	#6/L	200.0233	0.1410	-0.0000	64.4771	0.3490
17.	SODIUM	46/L	-207.1806	3.8175	-0.0076	4.9521	0.7838
	CHA NO ₃ 1. 2. 5. 6. 7. 10. 12. 13. 14. 15. 14. 17.	CHA SENSOR NG_ 1. TOTAL BIGMASS 2. YIAALE GIUMAS 5. MES CHLONINE 6. TURGIDITY-SIG 7. DIS 0XY3EM 18. IMHONIA 12. PM 13. TOT OFG CARBO 14. COMDUCTIVITY 16. MARONESS 17. SODIUM	CHA SENSOR UNITS 10 TOTAL SIGMASS MIL C/ML 2. VIABLE SIGMASS MIL C/ML 3. VIABLE SIGMASS MIL C/ML 5. MES CHLONINE MES/L 6. TURGIDITY-SIE2MG/L MES/L SIGMASS MES/L 18. JUNONIA MES/L MES/L SIGMASS MES/L 13. TOT OFG CARBON ME/L FM FM SIGMASS MES/L 14. CDMDUCTIVITY MMMMO/CH ME/L SIGMASS ME/L 14. SODIUM ME/L SIGMASS ME/L SIGMASS	CHA SENSOR UNITS A0 NG_	CHA SENSOR UNITS A0 A1 10 TOTAL BIOMASS MIL C/ML 0.0034 0.1307 2. VIABLE 010MASS MIL C/ML 0.0034 0.1307 3. WES CHUCNING H8/L 0.0011 -0.1886 6. TUR0IDITY-SIC2M6/L 2.3453 0.2942 7. DIS 02Y32M MG/L 2.7483 -0.4375 12. PM PM -5.3227 3.1365 13. TOT DMG CARBON MG/L 8.0266 -0.4663 14. CDMDUCTIVITY MAMMHD/CM 1641.6546 -1.3536 15. MAROMESS MG/L 206.0233 0.4175	CHA SENSOR UNITS A0 A1 A2 NO	CHA SENSOR UNITS A0 A1 A2 STANDARD NO

LOGARITHMIC CURVE FIT RESULTS (LOG (Y) =46 +41+LOG (X))

CHA	SENSOR	UNITS		A1	STANDARD	CORR.	
- NO.,					ERADR	COEFF.	
1.	TOTAL PIONAS	SHIL C/H	-4,7185	0.3331	0.2373	0,4927	
	VYAGLE BIOMA	STHIL CTHL	-1,0431		1,1211	0,6052	
5.	RES CHLORINE	HG/L	-4.6731	-0,2696	0,2970	0.6136	
	TURBEDITY-SE	1246/1	0,3123 .	0,3427	.1426	0.5195	
······································	DIS OXYCEN	METL	6,4465	0,4497	0.0727	0,0051	
10.	THHOM I T	H6/L	-4,2108	0.7826	0,4439	1,8275	Ę
	PH	PH	0,2705	0.6966	0.0310_	0,5951	•
	TOT ORG CARE	ON HETL	0,1944	i,3969	0,1345	1,3345	
14.	CONDUCTIVITY	HAMMO/CH	1.8547	0,4075	0,0179	0,4521	
10.	MARONESS		1.9335	0,1754	1.1241	0.3200	
17.	1001UM		0.57+6		0,0147	0.7739	

	REGRESSION ANALYSIS FOR REP 3, 1940 TO FEB 28, 1941 FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 6 LINEAR CURVE FIT RESULTS (Y=40 + 41+X)								
1	CHA SENSOR UNEYS	48	Aİ	STANDARD	CORR. COEFF.	SAMPLE SIZE			
	1. TOTAL BIOMASS IL C/ML 2. VIABLE BIOMASSMIL C/ML 5. RES CHLORINE MS/L	0,2141 0,1577 1,7591	0,0408 -0,0348 0,0312	0, 6035 0, 3441 1, 0364	0.1124 0.0291 0.1002	92 93 87			
9	6. TURBIDITY-SIG2HG/L 7. DIS GXYGEN HG/L 10. AHMONIA HG/L	8,4161 8,6872 -1,9724	0,0015 0,5467 1,0158	1,8845 1,1081 4,6476	0.1627 0.6637 9.8964	[e¥ 109 75			

F

ĺ

	1.	TOTAL SIGMASS	-16 6/46	0.2141	8,8498	8,4855	*. 1124	72
	2.	VIABLE BIOMAS	SHIL C/ML	0,1577	-0,0348	0.3941	0.0271	•3
	5	RES CHLORINE	MG/L	1,7591		1,0346	5041,0	
		TURBIDITY-SIO	2#6/L	4,4101		1,4845	0,1627	1.4
	7.	DIS CXYGEN	46/L	2,6872	0,5447	1,1081	0,6637	109
	10.	AMMONTA	H6/L	+1,0724	1,0158	4,6476	9,8964	75
		NTTRATE	467	Ţ,]+(i)	8,0000			
	12.	PH	PH	4,8657	4,3535	8,4493	0,3327	110
	13.	TOT OPS CARBO	N 46/L	1,5039	0.2310	1,3211		87
		CONDUCTIVITY	THE MAN TO TON	351,0430		34,2394	0,5751	
	15.	TEMPERATURF #1	OEG /	30,3830	8,5749	1,1896	8,7684	199
	10.	HARDNESS	<u> 467L</u>	175,3407	0,6246	230.5027	0,7185	54
		SCOTUM	PEZL -		0,6430	0,4451	0,ä+13	
	20.	ANGIENT TEMP	DEG F	20,7091	0,7181	1.0044	7.7813	119
_								
	PAHA	BOLIC CURVE P	IT RESULTS	(Y=A8 + A1+#	+ A2+1++2)		والمراجع المراجع
	CHA	SENSOR	UNITE	Aŧ	A1	42	STANDARD	CORR.
	NG.						ERROR	COEFF
	1.	TOTAL BIOMASS	MIL C/ML	0.1003	1.1523	-8-8216	4.4432	A. 1841
	2.	VIANLE BIPMAS	SHIL C/ML	0.1501	-4.6222	-0.0113	4. 1941	
		RES CHLORINE	HG7L	1.8779	0.2494	. 62 62	1.025	
		TURAIDITY-SID.	2HG/L	2.1270	0.3504	44.8117	1.4497	0.2921
	· .	DIS OXYGEN	HG/L	8.2649	-0.0540	0.0517	1.0877	8.478
		THANGALA	HGIL	-4.2678	0.6455	1.00A8	1.Ya31	8.496
	11.	NITRATE	46/1	0.0000	0.0000	0.0000	0.0000	
	12.	PH	PH	-8.5666	4.4506	-0.3735	0.4266	0.5144
	<u> </u>	TOT ONE CARGO	N NG7L	7.3316	-0.8341	0.0456	1.7102	- 6. 9. 97
	14.	COMOUCTIVITY	HPMH0/CH	-3142.5410	6.6745	-0.0025	53.3054	0.4314
	15.	TEMPERATURE#1	DEG F	-129,0141	4,9116	-4.0244	1.0343	0.4310
	10.	HIRONESS	H67L	-37,9160	1.3048		208.3962	6.794
	17.	\$00 IU4	H6/L	+279,7527	4.7522	-4.0126	8.0104	0.7291
	20.	ANGIENT TEMP	DEGF	151.2425	+2.4754	4.0247	1.0012	0.7837
							· • · · •	

TRASTTWATE	CURVE FTT	AFGIN YG	71 06 791 848	AAL OL OR TVILL
Pages 4 to the			(204(1)-44	

	CHA	SENSOR	UNETS	40	A1	STANDARD	COPR.
	NO.					CAROR	COEFF.
•	1.	TOTAL ATOMASS	HTL C/HL	-0,6996	0,2620	.2500	0,4833
	<u> </u>	VITOLE DIOMAS	BALL CTHL	-1.0044	0.3456	0.3497	0,6575
	3.	TURBICITY-SIG	-6/L 246/L	0.4948	8,1155	9,2036	0,3 794 0,3 49 7
<u></u>	7.	DIS OXYGEN AMMONIA	HG7[H67L	0,2(08 -0,1638	0.8665 9.8847	0.00A0 0.3558	0,6431 0,8643
	11.	NTTRATE	46/L				
	12.	TOT OPS CAPRO	₽₩ ₩ ₩6./1	0,4867 0.2524	0,3927	0.030A	0.3030
	į4,	CHNOUCTIVITY		1,3144	0.5434	0.0100	0.3459
	15.	TEMPERATURES	DEG P			.0071	0.7642
	10.	100 IUM	MG/L	0,4132	V.4520	0,1950 5,0234	0,6922 A.7A%A
		AMBIENT TEMP	DEG F			·	

		• • • • • • • • • • • • •						
_	FRQ	* SAMPLE SOURC	E Z TO SAP	PLE SOURCE 3				
	LIN	TAR CURVE FIT	RESULTS (Y	=40 + A1+1)				
	NO.	364304	A4714		-1	ERROR	COEFF.	SIZE
	2.	VIARLE BIOMAS	SHIL C/ML	0.1743	4.9792	0.2624	0.1437	46
		RES CHLORINE	H6/L	0,247A	0,5855		0.6591	55
		TURAIDITY-SIG	244/L	5,3510		3.6318		
	1.	AMPONTA	1467L	4.330-	8.9618	L. 4715	0.8750	
_		NITRATE	- M675					
	12.	PH	PH	3,4599	0.2072	0.4542	1.4454	63
	<u> </u>	TOT ORG CARBO		2. 1437			····· 7888	
	15.	TEMPERATUREAL	DEGF	2.7844	0.9414	4.5338	0.9575	63
	16,	HARDNESS	HG/L	-260,1863	2.3370	170,4198	0,4351	55
	17.	MU1008	4675	13.3043	0,0017	3445	0,9159	
	29.	THRIENT LEND	DEC P	7,6624	6.8445	0 ,4972	0,8376	71
		ADLIC CURVE F		(YEAR + Alex		1		
								• • • •
	CHA	SENSOR	UNITS	10	41	42	STANDARD	CORR.
	1.	TOTAL RIOMASS	HIL C/HL	0.1139	2,1929	0.6771	.2468	0.7421
		VIABLE BIOPAS TRACTORIANS			3,2314	-27,1047		• • 2271
	6 .	TURBIDITY-SIG	246/L	4.2327	0.2798	-0.0029	3.6186	0.3070
	7.	DIS OXYGEN	H6/L	+1.5239	1.4003	-0,8376	1,0223	0,7791
		INNUM IN		-0,7158	1,7595	-0.0152		
	12.	PH	-6/L PH	15.7422	-2.9827	0.2186	0.4241	6.4492
		TOT ONE CARDO	N WETC	-0.0102	1,1642	-1,2165		1,5002
	14,	CONDUCTIVITY	MMMHO/CN	-+444,1210	11.3550	-9,0041	29,2025	0.8414
		TEPPERATURE	DEG P	-44,4141	2.240/			
	i7.	1001UM	HEIL	-93.8915	2,2998	-0.0044	4,3402	4.9178
	20,	APRIENT TENP	DEGF	-429,6624	12,8040	-0,0818	0,4435	0,8771
_					·			
	Lae	NATINALC CONA	PIT HESUL	TS (LD617)220	+#1+L06(X1	,		
	CHA	SENJOR	UNITS	40	A1	STANDARD	CORT.	
	NG,					TRACK	COEFF.	
	1.			4.2942	2.8442	8.2881	4.7557	
		VIANCE ATCHAS	SHIL CTH			-0,4050-	-0.60%-	
	5,	RES CHLORINE	HG/L	-0.1106		0.1657	0.8629	
	•.	TUROIDITY-SIC	124676	0.5240	0,2491		-0.2371	
	1.	ANNONIA	MEZL	4. 4754	4.9101	0.2357	0.9293	
	•••	- · · · · · · ·	•••					••
	11.	NETRATE	H6/L	+,0000	0.0000			
	12.	PH	PH	0,4704	0,334*	0.0314	0.0353	
	13.	TUT UNG CARRO Concuctivity	NWWH0/64	0,2448 8.4483	0,7412 6,8474	8.011304	T.A461 A.7984	
	i s :	TEMPERATURE	026 7				0, 9540	
	10.	HARDNESS	H6/L	0.1441	0,9413	0.1254	4.7642	
	17.	500 1 114	M6/1	0.2142	0.9024	1510,0	8.9166	
		ANG 1 6 M	N#0 +			* 6 6aC3 **		

Ľ

D-20

	REG	RESSION ANALY	TA FOR SEP	3, 1980 10	FEB 28, 194	11		
	FRG	H SAMPLE SOUR	CE 3 TO SAM	PLE SOURCE 4				
	LIN	EAR CURVE FIT	RESULTS (Y	=40 + A1+X}			<u>.</u>	
	CHA NO.	SENSOR	ÜNITS	10	A1	STANDARD ERROR	CORR. COEFF.	SIZE
	1.	TOTAL BIOPAS	NIL COML	0,1401	0,2944	0,2301	0.5595	
	2.	VTABLE RIGMAS	SHIL C/ML	0.6789	0.2250	0.1402	0.3549	58
		TUPSIONINE TUPSIOTY-SI	1246/L			3.2310		
	7,	DIS OXYGEN	HGIL	1,2560	0.8444	0.8901	0,8447	96
		THHUN IT	MG/L	-0,5591	1.0620	5.4978	0.9199	74
	11.	PH I I MAIL	PH	0.0000	0.0000	8.3204	0.8981	48
	13,	TOT ORG CARGO		3,0664	0.5192	1.3800	0,7449	78
	14,	COMPUCTIVITY		131.9837	0,9020	15.6254	0.9506	
	15,	TEMPERATURES	1 OEG F MC/1	0,1711 234,7647	0,7937 0.0348	0,6877 40,1733	0,7303	
		SOOTUP		18.6466	0.8765	4.6409	1.8986	
	20,	AMBIENT TEMP	DEG F	5.8445	0,9296	0.5308	0,9548	107
	PAR	BOLIC CURVE	TT RESULTS	(Y=A0 + A1=X	+ A2+X++2))		
	C MA	354808	110173			47	STANDARD	C 120
	NO,	JC44A4	44114				ERROR	COEFF.
	1.		1 HT1 C/M	ni . 8272	0.7485	-4.1387	8.2126	8 4419
	i.	VIABLE RIOMAS	SHIL C/ML	0.0396	0.5230	-0,2494	0,1341	0,4141
-	5.	RES CHLORINE	MG7L	-0,2546	1.4231	-0.1441	0.2329	0.9329
	• ,	TURBIDITY-SIC	72MG/L	10,4727	-0,3025	0,0195	3,2085	0.1899
		ANMONTA	-HETL	2,1283	-0.1897	4.0217		0,8004
	- ii,	NITRATE	H6/L	0,0000	0,0000	0.0004		
	12,	PH	PH	1,3449	0,7472	0.0112	0,3206	5864.0
	13,	TOT ORG CARNO	JN MG/L	Q,8953	1,0343	-9,0226	1.3072	0.7750
	is.	TEMPERATURES	DEG F	6.0165	0,4315	0.0012	0.6897	0.9363
		HARONESS	HG/L	18,6868	0.9675	-0.0004	35.7476	0,8596
	17.	SODIUM	46/L 050 F	171,4216	-1.0727	0.0062	4.6101	0,9013
	**.	PERICUL ICEN		-210,3401			9.3014	4,7643
	LOG	ATTHALC CURY	FTT RESUL	TS (LOG (1) =40	+A1+LOG (11	<u>,</u>		
	-					-		
		364304	UNITS	AQ		STANDARD	CORN.	
	1.	TOTAL BIOMASS	HIL C/HL	-0.3797	0.6713	0,1418	0,7768	
	<u></u>	VIANLE BIOMAS	534IL C/ML	-0,3408	0,4570	0.3427	0,7042	
	÷.	TURBIDITY-SI	24G/L	0.9073	0.0711	0.1480	0.1183	
	7.	DIS CIYCEN	HG/L	0.1361	0,8608	0,0475	0.8905	
	10,	AMMON [A	HG/L	-0,0048	0.8716	0,2734	0.9251	
•	11.	NITRATE	HG/L		8,0040			
	12.		PN	0,1149	0.4734	0,0215	0.8872	
	13.	CONDUCTIVITY	14 467L Hkyhojem	0.2008 8.1471	0,/300 0, 812 4	0.0715	0,8440	
	—-is.	TEMPERATURES	DEG F		6. 4875-		9248	
	14.	MAPDNESS	46/2	1.3404	0.4127	0.1022	0.5765	
	17.	3001U#	HE/L		0,8751	0.0134	0.8941	
L	٤",	HADTENE ISWA	UEV P	W.1/WW	4,4007	3 4 4 6 21	9.4373	
1								

「たい」のないとう

San State

l

GENERAL PAGE IS

-

		*						
	LIN	EAR CURVE FIT	RESULTS (Y	#40 + A1+X)				
	NO.	SENSOR	UNITS	<u> </u>		STINDARD" ERFOR	CORF.	SIZ
	1.	TOTAL ALOMASS	"HTE"C/HE"	0.0411	0,5343	0.1281	0.7498	14
	2.	VIAGLE ALOMAS: RES CHLURINE	SMIL C/ML MG/L	8,9369 8,2585	0.5051	0,1007	9.3727 9.0791	84 84
		T'IRBIDITY-SIO	246/1	2, 4321	-0,3472-			
		DIS OXYGEN	46/L	1.0374	0,7629	0.4553	8,8767	107
	-12.	PA	PH				6. 7782	
	13.	TOT ORG CARBO	N HG7L	0.7118	0.4972	1.2986	.5460	
		CONDUCTIVITY		136.3491	0,9077	32.7114	0.8583	107
	14.	HARONESS	HGIL	51.0987	0.7309	45.7176	0.7412	- 49
	17.	SODIUM	NG/L	21.4730	0.8504	4,2222	0,9264	101
	29.	THUIENT TENN	DEG F	5-2151 -	-0,9687	0.4370	0,969[-114
	PAR	ABOLIC CURVE P	IT RESULTS	(Y=AQ + A1=X	+ A2+X+2)			
	CHA NO.	SENSON	UNITS	40	AI	¥5	STANDAND ERRON	CONN.
	2.	VIABLE RICHAS	SHIL C/ML	0.0010	1.0348	-0.4410	0.1100	9,822
	5.	RES CHLOWINE	MG/L	0.2660	-3.0147	0,0077	0.3482	0,079
		TOBEIOITA-RID	2267	1.2510	0.4284	-0.0144	3.7476	0.293
	19.	AMPONTA	14671_ Hg/L	-1,70 7 3 0,1697	1,3424	•9.0524 •0.0614	0,8275 8.8107	0.834
	-12.	PH	79	2.9068		0.0046	-0.3712-	
	13.	TOI UNG CARBO	N MG/L	9.0500	0.6602	-0.0045	1.2966	0,587
		CONDUCTIVITY	DEC P	1232.0410	-0.7/30	00	36,5063	0.000
	10.	HARONESS	4676	101,8118	0,3301	0.0008	45,4899	0,744
	<u> </u>	SODIUM	46/1	-141.4827	3,1419	-0,0071	3.9950	0,934
	29,	V-HIEVE LEAD	DEG P	-124*7158	3,2343	•9,024)	0,4140	0.471
<u></u>	- L06		FIT RESUL	TS (LOG (Y) = A^	+A1+LOR (X))	<u></u>	
	CHA NO.	SEASON	UNITS	40	. 11	STANDAND ERROR	CORN. COEFF.	
	<u> </u>							
	ź,	VIABLE RICHAS	SHIL C/HL	-4.4260	0.7177	0.3087	0.8082	
	5.	RES CHLORINE	HGIL	-0,7404	0.0840	0.3033	0.5715	
	7 .	TURBICITY-SIC	2MG/L	0,2450	- Q,4910-	0,1543	0,5502	
	10.	AMMONIA	HEIL	-0,1882	0,4704	0.3584	0,8427	
	12.	PW	PH	0.3071	0.6091	0.0246	0.7764	
	13.	TOT ONG CANNO	N MG/L	-0,0300	0.7636	0.1168	0.5453	• •
	14.	CONDUCTIVITY		0.3201	0.8969	6.0110	0.4587	
	15.	TEMPERATUREAL	DEG F	4,2204	0,0114	0,0044	0.8281	
	14.	MARONESS	46/6	0.5401	4,7401	0.0907	1.7226	
	<u> </u>	900/0=		0.2754	0.4714			

A REAL PROPERTY AND A REAL

D-22
REGRESSION ANALYSIS FOR SEP 3, 1980 TO FEB 28, 1981

FROM SAMPLE SOURCE 5 TO SAMPLE SOURCE &

CHA NG.	SENSOR	UNITS		A1	ERROR	CORR. COEFF.	8171
1. 1	OTAL PIOMAS			0.4320	0,3934	0.2264	94
- 2. V	TABLE STOWAS	SHIL C/ML	0,1074	1.2506	0.3941	1.1890	45
5. *	ES CHLORINE	HE/L	1.9532	.0259	1.0713	9.9577	
.	URBINTTY-SI	0246/L	3.4335	0.1791	1.3696	0.4424	110
7.0	IS OXYGEN	H6/L	0.1704	0.9252	0,7030	1.4774	111
10. A	MIGNTA	HE/L	-4.329A	1.4023	2.4784	9,9740	- 47
11. 4	TTRATE	METL	8.0860	0.0000	0.0000	0.0000	
12. P	Ŵ	PH	1.4046	9.7479	0.2750	0.8554	112
13. 7	OT OPS CARRI	NN HEZL	1.7470	6.5023	1.1844	0.5448	88
14. 6	ONDUCT IVITY	MMMMQ/EN	143.0043	0.8400	38.1038	0.3230	112
16. N	APONESS	HE/L	-220.7514	2.4320	262.0339	9.5477	
17. 5	ODIUM	NG/L	29.1280	8.3481	4.5149	0.8301	194

PARABOLIC CURVE FIT RESULTS (YEAD + AINX + AZ+X++Z)

CHA	SENSOR	UNITS	40	At	48	STANDARD	CURR.
NG.			-			ERAOR	COEFF.
1,	TOTAL REOMASS	1 41L C/ML	0,0757	1.0230	-0,5001	0,3920	0.2405
2.	ntect-states	ISAIL CTHE	8,8659	1.0403	-1.3746	0.3423	0.1296
5.	RES CHLORINE	H6/L	2.0543	-9.6497	0.3354	1,0694	. 0823 -
	TURBIDITY-SIC	1/345	2,6222	0,3713	-4,0459	1,3364	0.5195
·····	DIS GIYCEN	467L	0,0000	A. 9763	-0.0034	0.7029	0.8770
10.	AMMONTA	H6/L	-4.5175	1.5220	-0.0029	2.4423	0.9743
ii.	NITRATE	46/L	0.0000	0.0000	0.0040	0.0008	1.0000
12.	PH	PH	4.8220	-0.2802	0.0763	0.2719	0.1549
13.	TOT ORE CARRO	HE/L	1.2146	0.7123	-0.0170	1.1793	0.5722
14. (CONDUCTIVITY	HHMHO/CH	3305.6240	-3.9109	0.0018	34.4431	0.8444
10.	HARDNESS	NGIL	784.9370	-4.1214	0.0175	233.4415	0.4798
17. 3	3001U#	46/1	27,5108	0,7481	4.0494	4.5144	0,4301
	•••••						

LOGARITHMIC CURVE FIT RESULTS (LOGIVI =A0 +A1+LOGINI)

	CHA NO,	82N80R	UN178	40	A1	STANCARD ERROR	CORR.	
	1.		HIL CAL	-9,2682	0.6149 0.5750	1.2082	0.7095	
		RES CHLORINE TURBIDITY-SIG	467L 2467L	0,1410 0,3059	-0.1023	0.2456 0.1045	0.31A4 0.6498	
		DIS OXYGEN AMMONIA NITRATE		-0,0126 0,0757	0.7944 0.7944	0.0541 0.3201 0.0000	0,8544 0,8872 0,0889	
	-13:-	00 107 000 701	PH N 467L	0,1022	0,755	0,1053	0.0532	•
-	14,	CONDUCTIVITY		0.375•	4,8743	8,9149	0,/946	
	- 10.	MARDNESS	H6/L	0.3415	0.9248		0.5875	
	17.	360 LUM	H6/L	0,2430	0,4703	0,0167	*, *2*4	

7_7

LOF ..

ł

D-23

1.00 .

SAMPLE Source	MONTHLY Average	ONE SIGNA	LOGI SLOPE	Y)#F(Z) Intercept	CHI Square	SAMPLE SIZE
TETRACH	LORDETHYLENE	:				
0	156.7	111.9	0.4879E	0.2010E 1	9,0000	20
1	68.8	60.1	0,4057E 0	0,1713E 1	12,5000	20
3	31,9	18,5	0.3781E 0	0,13898 1	8,8000	25
4	17.0	10,9	0.3791E (0.1108E 1	4,8182	22
5	4,2	7.0	0,3913E (0,6049E 0	1,1429	21
6	6.7	۹,3	0.45366 (0,5601E 0	4,0000	50
METHYLE	NE CHLORIDE					
0	228.7	199.9	0.4197E (1 30052.0	1.5000	20
1	25,5	41.7	0,5803E (0,10208 1	2,5000	20
3	14.0	21,6	0.5787E 0	0,8409E 0	1.6000	25
4	13.7	19,9	0.5703E 0	0.7921E 0	0.7273	22
5	22,2	7.0	0,1608E (0.1322E 1	4,4762	21
٠	21.7	6.3	0.1344E (0,1318E 1	2,0769	56
1,2-010	HLOROETHYLEN	3				
0	24.2	78.2	0.72868 0	0.2363E 0	62.0000	20
1	41.6	144.2	0,6531E (0,1460E 0	70,5060	20
4	10,1	47,3	0.5002E 0	0,1066E 0	78,4546	22
5	0.1	0,3	0,14588 -1	0,3182E -2	74,4762	21
CHLOROF	ORN					
0	31.4	14,9	0,23448	0,14478 1	2.3000	20
1	25,1	5.5	0,9458E -1	0,13898 1	4.5000	20
3	18.6	5.1	0.1174E 0	0.1255E 1	4,0000	25
4	17.4	3.7	0.9395E -1	0.1232E 1	3,4545	55
5	5,6	4.8	0,3020E 0	0.63998 0	4,9524	21
8	5.8	3.8	0.2426E C	0.0345 0	5.5385	59
1,1,1-7	RICHLOROSTH	INE				
0	175.9	197,8	0,10566 1	0.1618E 1	3,0000	20
1	51,0	43,6	0,7834E C	0,1338E 1	10,0000	20
3	10.6	10,6	0,6103E 0	0.72958 0	9.2000	25
4	4.3	215	0.45558 0	0.6383E 0	4.8182	22
5	0.8	0.7	0,1049E 0	0,7844E -1	21.6191	21
0	٤,٤	/ • /	0.31386 0	0.100/E 0	20+2792	20
BROMODI	CHLOROMETHAN	E				
0	2.9	0.9	0.1321E	0.4501E 0	5,0000	20
<u>1</u>	4.0	1.2	0.1599E	0.57338 0	12.5000	20
3	3.1	1.2	0.15338	0.4542E 0	5.2000	25
-	5,5	0.0	0,10138 0	0,4377E 0	0,7273	52
7	U, /	U.0	V.7310C 41	A GIEAE	JV.1403	21 24
Q	1.3	1+3	V. 1070E (A*41345 -1	14+2303	€9

--

EOF..

Å

1 200

Provident State

(

LOG-NORMAL DISTRIBUTION. ASR 1, 1979 TO APR 30, 1979

SAMPLE	MONTHLY	ONE	LOG(Y)=F(Z)	CHI	SAMPLE
200465	AVENAGE	31044	SCUPE	INTERCEPT	300446	9165
TRICHL	ORDETHYLENE					
0	74.6	40.3	0.2461E 0	0.1795E 1	6.5000	20
1	26.5	20.3	0,3141E 0	0,1318E 1	4,0000	20
3	12.4	8.2	0.3053E 0	0,9986E Q	5.0000	25
4	8,2	5.2	0,2955E 0	0,8269E 0	11.6364	22
5	5,2	2,7	0.3204E 0	0.1968E 0	14,9524	21
6	5.3	3,3	0,3412F 0	0,1820E 0	29,7692	56
DIBROM	OCHLOROMETHAN	E				
0	0,2	0,3	0.8250F -2	0.1845E +2	70,5000	20
1	1.5	0.4	0.1091E 0	0.1728E 0	5,5000	20
3	1.4	0,5	0,1107E 0	0,1560E 0	n.4000	25
4	1.4	0.2	0.6690E -1	0,1565E 0	1.6364	22
5	0.7	0.2	0.1907E +1	0,5612E +2	65,9048	21
6	0.9	0.4	0,9349E -1	0,2422E -1	33.0154	26
BROMOF	ORM					
0	3,4	2.4	0.2745E 0	0.4494E 0	1.5000	20
1	1,7	0,6	0,1264E 0	0,2218E 0	2.0000	20
3	5.0	15.3	0.3494E 0	0.32428 0	29,6000	25
4	1.9	0,5	0,1114E 0	0.2695E 0	3.9091	55
5	1.1	0,4	0,7839E -1	0,8151E =1	3,0476	21
6	1,5	1.7	0.2061E 0	0.1161E 0	4,0000	26
TRIHAL	OMETHANES					
0	38.1	16.1	0.1801E 0	0.1546E 1	1,5000	20
1	32,2	6.1	0.8311E -1	0.1501E 1	3.5000	20
3	28.1	15.3	0,1610E 0	0,1409E 1	5.2000	25
4	23.6	4.1	0.7798E -1	0.1366E 1	0.2727	22
5	8.1	5,6	0,2318E 0	0,6410E 0	7.8095	21
6	9,5	6.5	0,2043E 0	0,91888 0	8,2308	56
TOTAL	HALOCARBONS					
0	698,2	490.1	0.3872E 0	0.2708E 1	2.5000	20
1	245.6	194.7	0.3296E 0	0.2281E 1	6.5000	20
3	99.0	49,6	0.5335E 0	0.1940E 1	4,4000	25
4	78,9	48.7	0,2329E 0	0.1836E 1	6,1818	22
5	39.5	12.8	0.1279E 0	0,1578E 1	1.6190	21
6	42.3	24.2	0.1741E 0	0,1584E 1	9,0000	26

EOF ..

....

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR APR 1. 1979 TO APR 38, 1979

FROM SAMPLE SOURCE 0 TO SAMPLE SOURCE 1

LINEAR CURVE FIT RESULTS (Y-AD + A140)

a service the state of the service of the service of the

CAL NO.	COMPOUND	AB	A1	Standard Error	CORR. COEFF.	SAMPLE SIZE
1.	TETRACHLOROETHYLENE	13.6005	8.3366	16.1634	8.9293	28
2.	METHYLENE CHLORIDE	6.5537	8.8666	27.7585	0.4299	18
3.	CARSON TETRACHLORIDE	0.0000	8.8868	6.8863	0.0000	8
4.	1.2-DICHLORDETHYLENE	8.0006	8.0008	8.0008	8.0000	8
5.	CHLOROFORM	22.7212	6.6381	5.6183	8.2126	20
6.	1, 1, 1-TRICHLOROETHANE	24.2778	0.1816	22.0835	8.8676	16
7.	BROHODICHLOROPETHANE	2.5789	8,4428	1.1396	0.4228	19
8.	TRICHLOROETHYLENE	-1.5588	8.3784	12.9699	8.7696	28
- <u>9</u> .	DIBROMDCHLOROMETHANE	1.6958	8.1818	0.3407	8.6398	10
10.	BRONDFORM	1.6768	-8,0001	0.6193	8.8972	28
11.	TRINALOMETHANES	29.8771	8.8478	6 4478	8.2298	28
12.	TOTAL HALOCARBONS	76.1989	8.1969	62.6918	8.7938	26

PARABOLIC CURVE FIT RESULTS (Y-A0 + A1+X + A2+XX+2)

CRL NO.	COMPOUND	AÐ	A1	A2	Standard Error	CORR. COEFF.
1.	TETRACHLORDETHYLENE	13.6590	0.3551	8.8886	16.1634	8.9293
2.	METHYLENE CHLORIDE	21.9851	-8.8545	0.0001	26.5809	0.5021
3.	CARBON TETRACHLORIDE	8.9086	8.8888	8.8688	6.8888	8.8668
4.	1.2-DICHLOROETHYLENE	8.0000	0.0000	3.8000	8.0008	8.8088
5.	CHLOROFORM	29.8387	-0.4586	0.8071	5.3893	6.3485
6.	1.1.1-TRICHLORDETHANE	16.3832	3.2868	-0.0002	21.1365	0.8796
7.	BROHDDICHLOROMETHANE	3.3421	6886.8	8.8643	1.1388	8.42.48
8.	TRICHLORDETHYLENE	11.6621	-6.1151	0.0033	12.8919	0.8835
9.	D IBROMOCHLOROMETHANE	8.1379	6.1002	-4.3886	8.2733	0.7874
18.	RROMOF ORM	1.5239	3.8892	-0.0087	8.6164	8.1369
11.	TRIHALOMETHANES	43.6637	-0.7292	0.0089	6.1011	8.3895
12.	TOTAL HALOCARBONS	37,9438	0.3453	-8.0008	63.2845	0.9168

LOGARITHMIC CURVE FIT RESULTS (LOGEY)=A8 +A1*LOGEX))

CAL NC.	COMPOUND	AB	Al	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	8.8942	0.8053	0.1531	6.9491
2.	METHYLENE CHLORIDE	-0.8254	0.8274	0.4444	0.7248
3.	CARBON TETRACHLORIDE	0.0000	6.0000	9.0000	8.8888
4.	1.2-DICHLOROETHYLENE	8.0000	8.0000	0.0000	8.0000
5.	CHLOROFORM	1.3809	-0.8895	8.1885	8.6878
6.	1.1.1-TRICHLORDETHANE	-0.8243	8.7934	0.1824	0.9124
7.	BROMODICHLOROMETHANE	8.3875	0.4167	8.1514	0.3475
8.	TRICHLOROETHYLENE	-0.3515	8.9312	0.1586	6.8783
9.	DIBROHOCHLOROPETHANE	8.2642	0.0858	8.0799	8.6638
18.	BROMOF ORM	8.1411	8.1128	0.1780	0.2021
11.	TRIHALOMETHANES	1.4463	8.8228	- 0.8921	8.1895
12.	TOTAL HALOCARBONS	0.3556	8.6978	8.1648	0.8560

10 C 10 C 10 C

1.0

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR APR 1. 1979 TO APR 38, 1979 FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 3

LINEAR CURVE FIT RESULTS (Y=A0 + A1*X)

Ì

1

11

.

and the second second second

ĺ

CAL NO.	COMPOUND	A 0	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1.	TETRACHLOROETHYLENE	7.3943	0.3142	11.5381	8.7684	23
2.	NETHYLENE CHLORIDE	4.9845	8.4017	14.7889	0.7533	19
3.	CARBON TETRACHLORIDE	8.8890	8.0000	8.0008	8.8068	
4.	1.2-DICHLOROETHYLENE	8.8688	8.0000	8.0000	8.8008	ě
5.	CHLOROFORM	7.4191	0.4587	4.2844	6.5433	23
6.	1, 1, 1-TRICHLOROETHANE	3.8890	6.1897	3.9397	8.8966	18
7.	BROMDDICHLOROHETHANE	0.6949	0.6354	8.9596	8.6817	22
ġ.	TRICHLOROETHYLENE	4.8121	8.2957	3.6229	8.8484	23
- Ÿ.	DIBROMOCHLOROMETHANE	1.3825	0.1721	0.4386	0.1984	23
18.	BPOHDFORM	25.4878	-11.5563	14.5494	0.4038	22
11.	TRINGLOMETHRNES	28.6890	-0.8125	18.7822	8.8252	23
12.	TOTAL HALOCARBONS	29.8749	0.3366	32.1783	0.7590	23

PARABOLIC CURVE FIT RESULTS (Y-A8 + A1=0(+ A2=00=2)

CAL NO.	COMPOUND	AB	A1	A2	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	3.1346	0.5008	-0.0013	11.2477	8.7741
2.	METHYLENE CHLORIDE	0.5157	0.0820	0.0023	14.2838	8.7723
3.	CARBON TETRACHLORIDE	0.0000	0.0000	8.0000	8.0000	8.8888
4.	1.2-DICHLOROETHYLENE	8.0000	0.0000	8.0000	0.0000	8.8888
5.	CHLOROFORM	28.1573	-0.6449	0.0225	4.1337	0.5645
6.	1.1.1-TRICHLOROETHANE	2.9632	0.2321	-0.0003	3.9882	0.8983
7.	BROMODICHLOROMETHANE	-0.1787	1.1084	-0.0594	6.9498	0.6107
8.	TRICHLOROETHYLENE	1.3669	8.4881	-0.0022	3,3210	0.8744
9.	DIBROMOCHLOROMETHANE	1.6485	-8.3114	0.1574	0.4378	8.2875
18.	SROHOFORM	75.3384	-71.0035	16.0699	12.3877	0.6271
11.	TRIHALOMETHANES	27.1836	8.8825	-0.8015	18.7020	8.8255
12.	TOTAL HALOCARBONS	45.2072	0.0991	0.0005	31.6906	0.7674

LOGARITHMIC CURVE FIT RESULTS (LOGEY]-A0 +A1+LOGEX])

CAL NO.	COMPOUND	AB	A1	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLORDETHYLENE	-0.1382	0.8599	0.1884	8.9282
2.	METHYLENE CHLORIDE	-8,1847	0.9239	0.3355	0.8547
3.	CARBON TETRACHLORIDE	8.0000	8.8008	8.0000	9.0000
4.	1.2-DICHLORDETHYLENE	8.0000	8.8890	0.0009	0.0000
5.	CHLOROFORM	8.4746	0.5674	0.0968	0.5537
6.	1.1.1-TRICHLOROETHANE	-0.8263	0.6873	0.1113	0.9338
7.	BROMOD I CHLOROME THANE	-0.0062	0.8438	0.0919	0.8134
8.	TRICHLOROETHYLENE	-0.0459	8.7898	0.1550	0.8789
9.	DIBROMOCHLOROME THANE	0.1625	0.1180	0.0951	0.1550
19.	BROMDFORM	8.5537	-6.9368	0.3257	8.7428
11.	TRIHALOMETHANES	8.9563	8.3842	-8.1639	0.2765
12.	TOTAL HALOCARBONS	8.5666	0.6129	0.1531	0.8894

.

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR APP 1. 1979 TO APR 30, 1979

FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 4

Ĩ

and a state of the

l

LINEAR CURVE FIT RESULTS (Y-A8 + A1+00)

CAL NO.	COMPOUND	Að	Al	STANDARD ERROR	CORR. COEFF.	Sample Size
	TTO THE ORDETHYLENE	2.1575	8.1896	4.9222	8.8537	22
	ME CHLORIDE	4.8291	0.3698	13.8972	8.7492	19
	LINRBON TETRACHLORIDE	8.8909	8.008	8.0000	8.8608	0
4.	1.2-DICHLOROETHYLENE	8.0000	8.3006	8.0608	8.0000	8
5.	CHLOROFORM	4.3469	8.5223	2.2221	8.7968	22
6.	1.1.1-TRICHLORDETHANE	3.0052	8.8843	2.1286	8.8776	18
7.	BROMODICHLOROMETHANE	1.2289	8.4262	0.2858	0.8815	21
	TRICHLORDETHYLENE	1.8771	8.2225	1.8685	8.9184	22
9.	DIBROMOCHLOROMETHANE	1.2644	8.1581	8.1412	0.5128	22
18.	BROMOFORM	1.3432	8.3886	0.2975	0.6800	21
11.	TRIHALOMETHANES	7.6276	8.4993	2.6491	0.7708	22
12.	TOTAL HALOCARBONS	40.4344	0.1804	44.4580	0.4024	22

PARABOLIC CURVE FIT RESULTS (Y-A0 + A1#X + A2#000#2)

CAL NG.	CONFOUND	AÐ	Al	A2	standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	8.1493	8.2784	-0.0006	4.7680	8.8648
2.	METHYLENE CHLORIDE	7.4123	0.1411	0.0016	13.6242	8,7685
3.	CARBON TETRACHLORIDE	8.8808	8.0000	0.0009	8.6200	8.9969
4.	1.2-DICHLORDETHYLENE	0.0000	8.0000	0.0000	8.0008	0.0000
5.	CHLOROFORM	-1.7291	1.0291	-0.0100	2.2856	8.7994
Š.	1.1.1-TRICHLORDETHANE	2.8724	0.1270	-0.0003	2.0606	8.8848
7.	BROMOD ICHLOROMETHANE	1.1149	8.4888	-0.0079	0.2853	8.8819
ġ.	TRICHLOROE THYLENE	8,8982	8.2911	-0.0008	1.7920	8.9245
9.	DIBROMOCHLOROMETHANE	1.4691	-0.1285	0.0933	8.1394	8.5381
18.	BROMDFORM	1.0697	8.7161	-8.0982	8.2945	0.6880
11.	TRIHALOMETHANES	1.2389	0.9186	-0.0066	2.6336	8.7739
12.	TOTAL HALOCARBONS	7.8110	0.6481	-0.0011	43.1337	0.4594

LOGARITHMIC CURVE FIT RESULTS (LOGEY)-A8 +A1*LOGEX))

COMPOUND	AB	Al	Standard Error	CORR. COEFF.
TETRACHLOROETHYLENE	-0.3489	8.8286	· 8.1434	8.9448
THYLENE CHLORIDE	-8.2261	8.9287	8.3523	0.8365
CARBON TETRACHLORIDE	8.8088	8.8888	0.0000	8.0000
1.2-DICHLOROETHYLENE	8.0000	8.0000	9.0000	0.0000
CHLOROFORM	8.1779	8.7593	8.8557	0.8078
1.1.1-TRICHLORDETHANE	-8.0749	0.5614	8.1850	8.9182
BRONDDICHLOROMETHANE	8.1619	0.5123	8.8425	0.8875
TRICHLOROETHYLENE	-8.3121	0.8484	0.1107	0.9315
DIBROMOCHLOROMETHANE	6.1534	6.1324	0.0420	0.4599
BROMDFORM	8.2383	0.3125	0.0653	0.6395
TRINGLOMETHONES	8.3428	8.6841	-8.8487	8.7878
TOTAL HALDCARBONS	0.5483	0.5721	0.1684	8.7441
	COMPOUND TETRACHLOROG THYLENE CARBON TETRACHLORIDE CARBON TETRACHLORIDE 1.2-DICHLOROETHYLENE CHLOROFORM 1.1.1-TRICHLOROETHANE BROMODICHLOROMETHANE DIBROMOCHLOROMETHANE BROMOFORM TRIHALOMETHANES TOTAL HALOCARBONS	COMPOUND A8 TETRACHLOROG THYLENE -0.3489 CARBON TETRACHLOR IDE -0.2261 CARBON TETRACHLOR IDE -0.2261 CARBON TETRACHLOR IDE 8.8088 1, 2-D ICHLOROE THYLENE 8.8088 CHLOROFORM 0.1779 J. 1.1-TRICHLOROE THANE -8.8749 BROMOD ICHLOROME THANE -8.1619 TRICHLOROFTHYLENE -0.3121 DIBROMOCHLOROME THANE -1.534 BROMOFORM 8.2383 TRIHALOMETHANES 6.3428 TOTAL HALOCARBONS 0.5483	COMPOUND A6 A1 TETRACHLOROE THYLENE -0.3489 8.8296 TETRACHLOROE THYLENE -0.2261 8.9287 CARBON TETRACHLOR IDE -0.2261 8.9287 CARBON TETRACHLOR IDE -0.6000 8.6000 1.2-D ICHLOROE THYLENE 8.6000 6.0000 CHLOROF ORM 0.1779 8.7593 J.1.1-TRICHLOROE THANE -0.0749 8.5614 BROMOD ICHLOROF THANE -0.3121 0.8484 DIBROMOCHLOROPE THANE -0.1534 6.1324 DIBROMOCHLOROPE THANE -0.1534 6.3125 TRICHLOROPE THANE -0.3428 8.6841 DIBROMOCHLOROPE THANE -0.3428 8.6841	COMPOUND A8 A1 STANDARD ERROR TETRACHLOROSTHYLENE -0.3489 8.8286 0.1434 CARBON TETRACHLOR IDE -0.2261 8.9287 0.3523 CARBON TETRACHLOR IDE 8.8000 0.0000 0.0000 1.2-DICHLOROETHYLENE 8.8000 0.0000 0.0000 1.2-DICHLOROETHYLENE 8.8000 0.0000 0.0000 CMLOROFORM 0.1779 8.7593 0.6557 1.1.1-TRICHLOROETHANE -8.8749 8.5614 8.1858 BROHODICHLOROETHANE -8.1619 6.5123 8.6425 TRICHLOROETHYLENE -8.3121 0.8484 0.1187 DIBROMOCHLOROTETHANE -1534 6.1324 8.426 BROHOFORM 8.2303 8.3125 8.06533 TRIHALOFETHANE 8.3428 8.6841 0.8487 DIGROMOCHLORORETHANE 8.3428 8.6841 0.8487

ORIGINAL PAGE IS OF POOR QUALITY

·· ·

. .

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR APR 1, 1979 TO APR 38, 1979 FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 5

LINEAR CURVE FIT RESULTS (Y-A0 + A1+X)

また事が見たいという時間に

CAL NO.	COMPOUND	AC	A1	Standard Error	CORR. COEFF.	Sample Size
ł.	TETRACHLOROETHYLENE	2.3298	0.8351	5.6711	0.3073	21
2.	NETHYLENE CHLORIDE	23,8529	-8.8415	5.4897	8.3254	19
3.	CARBON TETRACHLORIDE	8.0000	8.0000	0.0000	8.8888	0
4.	1.2-DICHLORDETHYLENE	6.0000	0.0000	0.0000	6.8000	· 🚺
5.	CHLOROFORM	5.2824	-0.0343	2.5184	8.3271	21
6.	1. 1. 1-TRICHLORDETHANE	1.2286	-6.0018	0.5854	8.4125	16
7.	BROMODICHLOROMETHANE	8.7839	8.8161	8.3117	0.2827	14
8.	TRICHLOROETHYLENE	1.2782	0.0146	1.8925	8.3268	21
9.	I IBROMOCHLOROMETHANE	0.6947	8.8846	0.1518	0.4891	21
10.	BROMDFORM	0.6033	0.3422	0.5950	0.5738	21
11.	TRIHALOMETHANES	7.5824	-8.0218	2.9221	8.4809	21
12.	TOTAL HALOCARBONS	38.6494	-0.8072	10.7663	0.2533	21

PARABOLIC CURVE FIT RESULTS (Y=A8 + A1#X + A2#00#2)

1. TETRACHLORDETHYLENE 0.6772 2. NETHYLENE CHLORIDE 25.4473 3. CARBON TETRACHLORIDE 0.0000 4. 1.2-DICHLOROETHYLENE 0.0000 5. CHLOROFORM -12.2740 6. 1.1.1-TRICHLOROETHANE 1.2961 7. EROMODICHLOROMETHANE 0.4756 8. TRICHLOROETHYLENE 0.7120 9. DIBROMOCHLOROMETHANE 0.5764 10. EROMOFORM 0.3359 11. TRIHALOMETHANES -16.5548 12. TICH LOROETHANES -272727	0.1365 -8.1906 0.0000 8.0000 1.4175 -0.0047 0.1456 0.0540 0.1573 0.6639 1.5343 0.15943	-0.0007 0.0011 0.0000 0.0000 -0.0206 0.0000 -0.0163 -0.0004 -0.0467 -0.0872 -0.0872 -0.0241	5.4863 5.8091 0.0000 0.0000 2.3879 0.5845 0.3090 1.8704 0.1515 0.5834 2.7424	8.3985 9.4569 9.0000 9.4383 0.4158 0.3089 0.3572 0.4916 0.5778 0.5683

LOGARITHMIC CURVE FIT RESULTS (LOGEY]-A8 +A1*LOGEX])

A. 1890

Sec. La

CAL NO.	COMPOLIND	AO .	A1	Standard Error	CORR. COEFF.
1. 2. 3. 4. 5. 6. 7. 8.	TETRACHLOROETHYLENE METHYLENE CHLORIDE CARBON TETRACHLORIDE 1.2-DICHLOROETHYLENE CHLOROFORM 1.1.1-TRICHLOROETHANE BROMODICHLORO"ETHANE TRICHLOROETHYLENE DIBROMOCHLOROFETHANE	-0.5488 1.4126 0.0008 0.0000 0.3107 0.1569 -0.1937 -0.2489 -0.1753	0.6233 -0.0685 0.0000 0.1958 -0.1316 0.0652 0.2660 0.0529	8.2449 0.1243 0.0000 0.2523 0.3670 0.2059 0.2435 0.1075	8.8468 9.3109 9.0000 9.4945 9.4945 9.4945 9.4833 8.7374 8.4987
10. 11. 12.	ELCHLEOCH TRINALOMETHANES TOTAL HALOCARBONS	-0.8823 0.5562 1.5969	8.4868 8.1662 -8.8187	0.2196	0.6509 0.5903 0.3833

D-29

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR APR 1, 1979 TO APR 30, 1979 FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 6

LINEAR CURVE FIT RESULTS (Y-A8 + A1#0)

and the second of the

CAL NO.	COMPOUND	AB	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1.	TETRACHLOROETHYLENE	2.4539	8.8128	3.3844	8.6793	23
2.	METHYLENE CHLORIDE	22.8559	-0.0254	4.2509	0.2716	28
3.	CARBON TETRACHLORIDE	8.8686	8.0008	8.0000	8.8808	8
4.	1.2-DICHLORDETHYLENE	8.0000	8.0005	0.0000	8.0000	
5.	CHLOROFORM	4.9694	-8.0212	1.8337	8.5448	23
Ğ.	1.1.1-TRICHLORDETHANE	1.8139	-6.0825	8.5193	8.9137	17
7.	BROMOD ICHLOROMETHANE	8,1986	6.1994	0.3613	0.6813	22
ġ.,	TRICHLOROETHYLENE	8.9877	8.8069	0.9264	8.7567	23
9.	DIBROMOCHLOROPETHANE	8.7289	8.8983	0.1647	8.3415	22
10.	BRONDFORM	8.2122	0.5198	8.3925	8.7123	22
11.	TRIHALOMETHANES	7.1661	0.0012	2.3468	0.6259	23
12.	TOTAL HALDCARBONS	35.8175	-0.0840	7.8541	0.6634	23

PARABOLIC CURVE FIT RESULTS (Y-A0 + A1+0(+ A2+0(++2))

CAL NO.	COMPOUND	A0	A1	A2	standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	1.8169	8.8487	-0.0002	3.3625	8.6844
2.	METHYLENE CHLORIDE	23.6000	-0.8964	8.0685	4.1643	6.3333
3.	CARBON TETRACHLORIDE	8.8886	0.8000	8.8688	9.8888	8.8868
4.	1.2-DICHLOROETHYLENE	8.0008	8.0000	0.9088	8.0000	8.8888
5.	CHLOROFORM	0.9557	8.3179	-0.0069	1.9185	8.5546
Ğ.	1.1.1-TRICHLORDETHANE	1.0638	-0.0846	8.8888	0.5187	8.9139
7.	DROMOD ICHLOROMETHANE	8.4087	0.0843	8.8145	6.3608	8.6841
8.	TRICHLORDETHYLENE	8.5796	0.0368	-0.0003	8.9827	8.7674
9.	DIBROMOCHLOROMETHANE	6.6786	8.1584	-8.0195	0.1546	8.3425
10.	BRONDFORM	8.7541	-0.1266	0.1747	0.3836	0.7276
11.	TRIHALOHETHANES	-1.8974	8.6851	-0.8096	2.3856	0.6423
12.	TOTAL HALOCARBONS	28.9468	0.0843	-0.0002	7.5746	0.6923

LOGARITHMIC CURVE FIT RESULTS (LUGEY]-A0 +A1*LOGEX3)

CAL NO.	COMPOUND	AÐ	A1	Standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-8.2768	8.3986 ·	8.2789	8.8554
2.	METHYLENE CHLORIDE	1.3518	-0.0141	0.0852	0.1008
3.	CARBON TETRACHLORIDE	8.0098	8.0008	8.0000	8.0000
4.	1.2-DICHLORDETHYLENE	8.8068	0.0000	8.8680	6.0000
5.	CHLOROFORM	8.6842	-8.8622	8.1958	0.5946
6.	1.1.1-TRICHLOROETHANE	0.0186	-0.1324	0.3869	8.7978
7.	BROMODICHLOROMETHANE	-0.4015	8.6254	0.1513	8.7348
	TRICHLORDETHYLENE	-0.2363	0.1689	8.1869	0.8896
9.	DIBRONOCHLORONETHANE	-0.8956	8.1328	0.0754	8.4286
10.	BROHOFORM	-6.1225	0.5909	8,1781	0.6805
11.	TRIHALOMETHANES	8.2215	8.4891	. 8. 1792	8.6893
12.	TOTAL HALOCARBONS	1.5376	-0.0061	0.8928	0.6988

7 _

et transformer

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR APR 1, 1979 TO APR 38, 1979

FROM SAMPLE SOURCE 3 TO SAMPLE SOURCE 4

びんできょうがくちょう しょうちょう ちょうかん ひかりました

LINEAR CURVE FIT RESULTS (Y-A0 + A1*X)

CAL NO.	COMPOUND	AÐ	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1.	TETRACHLOROETHYLENE	-0.1748	0.5781	2.5754	8.9718	24
2.	NETHYLENE CHLORIDE	8.8235	0.8289	6.9791	8.9369	21
3.	CARBON TETRACHLORIDE	8.8066	8.0000	0.0000	8.0000	
4.	1.2-DICHLOROETHYLENE	8.8000	0.0000	0.0990	0.0000	
5.	CHLORDFORM	10.0151	0.3791	3, 1964	8.5117	24
6.	1.1.1-TRICHLOROETHANE	1.1112	8.4550	0.8798	8.9868	19
7.	BROMODICHLOROMETHANE	6.7811	0.6911	0.3158	8,8645	23
8.	TRICHLOROETHYLENE	8.7834	0.5791	1.6494	8.9446	24
9.	DIBROMOCHLOROMETHANE	8.7761	8.4989	0.1690	0.6983	24
18.	BROMOFORM	1.9468	-6.8647	8.4524	0.2334	23
11.	TRIHALOMETHANES	23.1897	-0.0009	4.2578	0.0039	24
12.	TOTAL HALDCARBONS	48.4151	0.2921	44.4632	9.3176	24

.

PARABOLIC CURVE FIT RESULTS (Y-AB + A1+X + A2+X++2)

CAL. HØ.	COMPOUND	AÐ	A1	A2	STRNDARD ERROR	CORR. COEFF.
1.	TETRACHLORDETHYLENE	8.8226	8.4697	8.0016	2.5828	8.9726
2.	METHYLENE CHLORIDE	1.6947	0.6137	0.0028	6.7243	0.9416
3.	CARBON TETRACHLORIDE	8.0000	8.6008	8.0000	8.8888	0.0000
4.	1.2-DICHLORDETHYLENE	8.0000	0.0000	8.8888	8.0000	8.0000
5.	CHLOROFORM	-12.5998	2.7862	-0.8597	2.5766	0.7214
Ğ.	1.1.1-TRICHLOROETHANE	8.2686	8.5948	-8.0043	0.8311	0.9822
7.	BROMOD ICHLOROME THANE	8.9682	0.5585	8.8228	0.3151	8.8652
8.	TRICHLOROETHYLENE	8.2296	0.6608	-0.0025	1.6333	0.9457
Ĵ.	DIBROMOCHLOROMETHANE	8.8287	0.3636	0.8536	8.1686	8.6918
10.	BROMDFORM	8.5846	0.8131	-0.0102	0.3886	8.5752
11.	TRINAL OMETHANES	4.6842	8.9515	-0.0073	3.2083	8.6596
12.	TOTAL HALOCARBONS	48.9806	0.2800	0.0001	44.4628	0.3176

LOGARITHMIC CURVE FIT RESULTS (LOGEY]-A0 +A1*LOGEX])

CAL ND.	COMPOUND	Að	Al	STANDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-0.1852	8.9555	0.0497	8.9932
2.	METHYLENE CHLORIDE	-0.0137	0.9385	0.1369	8.9747
3.	CARSON TETRACHLORIDE	6.0000	8.0000	0.0000	6.0000
4.	1.2-DICHLOROETHYLENE	8.9999	8.0000	0.0000	8.0008
5.	CHLOROFORM	0.6163	8.4828	0.0774	5.5984
6.	1, 1, 1-TRICHLOROETHANE	-0.8592	8.8229	8.6442	0.9860
7.	BRONDDICHLORDMETHANE	8.1524	0.6344	0.0585	8.8168
	TRICHLORGETHYLENE	-8.8799	8.8955	0.0611	0.9793
÷.	DIBROMOCHLOROMETHANE	8.1198	8.2983	8.8592	8.6786
12.	BRONDFORM	0.2716	-0.0080	8.1189	0.0395
11.	TRIHALOMETHANES	1,2638	0.1084	- 0.0902	8.2298
12.	TOTAL HALOCARBONS	0.6542	6.6861	0.1801	0.6737

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR APR 1, 1979 TO APR 38, 1979 FROM SAMPLE SOURCE 4 TO SAMPLE SOURCE 5

LINEAR CURVE FIT RESULTS (Y-A0 + A1+0)

3

and marked

CAL NO.	COMPOUND	AÐ	A1	STANDARD ERROR	CORR. COEFF.	SAPPLE SIZE
1. 2.	TETRACHLOROETHYLENE METHYLENE CHLORIDE	-1.4173 23. 89 83	8.4476 -0.0917	4.7289	8.7879 8.2948	23 20
3.	CARBON TETRACHLORIDE	8.0000	8.0008	8.0000	8.0800	Ű
4.	1.2-DICHLOROETHYLENE	6.0000	8.0000	0.0000	8.8888	
	1.1.1-TRICHLORDETHANE	1.8962	0.0010	8.5894	0.3965	16
7.	BROMODICHLOROMETHENE	1.3650	-0.1534	0.4636	0.2442	16
	TRICHLOROETHYLENE	0.2846	8.2481	2.1981	8.4995	23
3.	DIERUHUCHLUKUTE THANE BROMDEDRM	1.1386	-0.2319	0.1686	0.4500	23
11.	TRIHALDHETHANES	5.4341	6.1171	5.1635	0.1185	23
12.	TOTAL HALOCARBONS	37.6778	0.0159	12.1117	0.1026	23

• • •

PARABOLIC CURVE FIT RESULTS (Y-A8 + A1+X + A2+XX+2)

CAL NO.	COMPOUND	AB	A1	R2	STRNDARD ERROR	CORR. COEFF.
1.	TETRACHLOROETHYLENE	0.4838	0.1513	6.0077	4.3678	8.7388
2.	METHYLENE CHLORIDE	25.8769	-0.5131	8.0859	5.3525	0.5568
3.	CARBON TETRACHLORIDE	8.000	8.0000	8.8888	0.0000	8.0000
4.	1.2-DICHLORDETHYLENE	8.0000	8.0000	8.8868	0.0000	8.0200
5.	CHLOROFORM	21.1113	-2.1865	0.0666	4.3677	0.2535
Ē.	1.1.1-TRICHLORDETHANE	1.8619	-0.2263	8.0134	8.5549	8.5045
7.	BROMOD I CHLOROMETHANE	2.8666	-0.6914	0.8964	8.4686	8.2682
	TRICHLOROETHYLENE	-0.1538	8.3343	-8.0844	2.1927	8.4924
9.	DIBRONDCHLOROMETHANE	2.9389	-3.1178	1.0725	0.1484	0.6243
10.	BROMDFORM	2.4070	-1.7719	0.5657	0.5762	8.5556
11.	TRINALONETHANES	14.4383	-0.6874	8.8174	5.1538	0.1333
12.	TOTAL HALOCARBONS	35.3212	0.0678	-8.8882	12.8943	8.1225

LOGARITHMIC CURVE FIT RESULTS (LOGEY]-A8 +A1#LOGEX])

CAL NO.	COMPOUND	AB	A1	Standard Error	CORF.
1.	TETRACHLOROETHYLENE	-8.38	0.8834	8.2894	8.8986
2.	METHYLENE CHLORIDE	1.4195	-8.1246	0.1359	0.4915
3.	CARBON TETRACHLORIDE	8.8688	8.8880	8.0000	0.0000
4.	1.2-DICHLORDETHYLENE	8.2000	0.0000	8.0000	8.8000
5.	CHLOROFORM	~0.8813	8.5213	8.2974	6.3233
6.	1.1.1-TRICHLORDETHANE	8.0817	-0.0789	0.3785	0.4797
7.	BROHODICHLOROMETHANE	0.8573	-8.3469	8.2361	8.2242
	TRICHLORDETHYLENE	-8.3192	8.5918	0.2694	8.6918
9.	DIBRONDCHLOROMETHANE	-8.8714	-8.4978	0.1098	0.4845
10.	BROMDFORM	-8.6464	8.2616	8.2294	8.5798
11.	TRIHALOMETHANES	8.3524	0.3668	.4.2157	8.3697
12.	TOTAL HALOCARBONS	1.5146	0.0316	8.1209	0.2391

. . .

GAS CHRONATOGRAPH REGRESSION ANALYSIS FOR APR 1, 1979 TO APR 38, 1979

FROM SAMPLE SOURCE 5 TO SAMPLE SOURCE 6

Ľ

The state of the second

- this - such that

*

ĺ

LINEAR CURVE FIT RESULTS (Y-A8 + A1+0)

CAL NO.	COMPOUND	AB	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1.	TETRACHLOROETHYLENE	1.7899	0.5418	5.6578	0.5618	24
2.	METHYLENE CHLORIDE	11.9355	8.4896	4.3869	0.6155	24
3.	CARBON TETRACHLORIDE	8.0000	8.8888	0.0000	8.8.700	
4.	1,2-DICHLOROETHYLENE	0.0000	8.8888	0.0000	8.0000	. Ó
S.	CHLOROFORM	3.1761	8.2719	2.4711	8.5199	23
Š.	1.1.1-TRICHLORDETHANE	-2.1733	2.7576	1.1714	8.9920	17
7.	BRONDDICHLOROMETHANE	-0.0094	1.2846	8.6843	8.8987	17
÷.	TRICHLOROETHYLENE	8.5514	0.5963	2.6578	1.5826	24
9.	DIBROHDCHLOROMETHANE	-8.8158	1.1684	0.2435	8.8287	23
18.	BRONDFORM	-0.0690	8.9478	0.5426	8.9583	23
11.	TRINALOMETHANES	3.6885	0.5823	5.9174	8.4695	24
12.	TOTAL HALDCARBONS	-2.7754	1.0922	18.9517	8.5985	24

PARABOLIC CURVE FIT RESULTS (Y-A8 + A1+X + A2+00+42)

CAL NO.	CC: POUND	AB	A1	A2	Standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-8.6687	1.3797	-0.0312	5.4255	8.6887
2.	METHYLENE CHLORIDE	25.1221	-8.8766	0.0321	3.9838	8.6845
3.	CARSON TETRACHLORIDE	8.8000	8.0008	8.8738	6.0000	8086.8
4.	1.2-DICHLOROETHYLENE	8.0008	8.0000	8.0000	8.0000	8.0000
5.	CHLOROFORM	-5.2619	1.3699	-0.0516	1.9371	8.7427
6.	1.1.1-TRICHLORDETHANE	8.8464	8.4996	0.1443	0.2612	8.9996
7.	BRONDD I CHLOROME THANE	1.2473	-8.6322	0.3489	8.4148	0.9614
8.	TRICHLOROETHYLENE	-2.3631	3.3168	-8.2744	2.1292	8.7211
Ĵ.	DIBROHOCHLOROMETHANE	1.2967	~1.4878	1.1115	0.1437	0.9439
18.	BROMDFORM	6.8597	0.8158	0.0968	8.3884	8.9759
11.	TRINGLOMETHANES	-5.6317	2.5382	-0.8724	5.1823	0.6341
12.	TOTAL HALOCARBONS	-36.6590	2.6338	-0.0159	18.6339	8.6886

LOGARITHMIC CURVE FIT RESULTS (LOGEY]+A8 +A1+LOGEX])

CAL NO.	COMPOUND	AB	Al	STANDARD ERROR	CORR. COEFT.
1.	TETRACHLOROETHYLENE	-8.8248	8.8387	0.2390	8.8939
2.	HETHYLENE "HLORIDE	0.8501	8.3746	8.8821	8.5646
3.	CARBON JE ACHLORIDE	8.0000	8.0000	8.8866	8.8000
4.	1.2-DIL ROETHYLENE	8.0000	0.0000	8.8888	0.0000
5.	CHLOROF	0.2946	8,4982	0.1641	8.7743
6.	1.1.1-TRICHLORDETHANE	-0.1230	1.1735	6.1877	0.9647
7.	BROMOD I CHLOROME THANE	0.0687	6.4966	3.2892	8.6863
	TRICHLORDETHYLENE	-0.0023	8.7722	8.2298	8.8537
9.	DIBROMDCHLOROMETHANE	8.8645	0.5633	0.8981	8.6424
10.	BRONDFORM	-8.8283	8.7449	8.1513	8.8521
11.	TRINALONETHANES	8.2755	8.6766	6.1885	8.6937
12.	TOTAL HALOCARBONS	0.1199	8.9141	0.1210	0.7196

LOG-NORMAL DISTRIBUTION: APR 1, 1979 TO APR 30, 1979

SAMPLE Source	MONTHLY Average	ONE SIGMA	LOG(Y)=F(Z) SLOPE INTERCEPT	CHI Square	SAMPLE SIZE
TOTAL B	[OMASS				
0 1 3 4 5 8	30.6 14.3 5.6 2.4 2.7 2.5	3.8 3.4 3.1 0.6 0.9 0.7	0.5677E -1 0.1482E 1 0.11AAE 0 0.1141E 1 0.1880F 0 0.6986E 0 0.9200E -1 0.3665E 0 0.98/382 -1 0.4171E 0 0.9035E -1 0.3877E 0	23.3750 2.0000 7.3793 23.6154 8.8000 23.9310	16 25 29 26 25 29
VIABLE	BIOMASS				
0 1 3 4 5	5.9 3.4 1.6 1.5 0.9 0.4	6.4 1.8 2.1 4.3 2.7 0.8	0,7849£ 0 0,4564E 0 0,2029E 0 0,4880E 0 0,5040E 0 -0,115E 0 0,8480E 0 -0,8321E 0 0,5299E 0 -0,6716E 0 0,4938E 0 -0,6624E 0	8.8333 3.6000 3.4286 4.3636 14.3333 3.3333	12 25 28 22 24 30
RES CHL	DRINE				
0 1 3 4 5 6	1.0 2.01 0.6 5.2 1.1 2.3	0.0 4.7 3.1 0.9 2.3 0.8	0.8264E -3 -0,1000E 1 0.1544E 0 0.9793E 0 0.4940E 0 0.6594E 0 0.8556E -1 0.7045E 0 0.4824E 0 -0.3690E 0 0.3725E 0 0.2819E 0	32.0000 9.5714 15.2857 2.1667 35.0769 16.6667	8 14 14 12 13 15
0 1 3 4 5	49,3 21,2 12,3 13,7 4,3 3,1	15.3 11.0 4.2 6.1 3.1 1.0	0,3475E 0 0,1632E 1 G,2263E 0 0,1274E 1 0,2505E 0 0,1044E 1 0,2960E 0 0,1065E 1 0,2128E 0 0,5766E 0 0,1423E 0 0,4670E 0	49.8261 2.0769 29.0000 19.8519 9.0000 3.3333	23 26 30 27 26 30
TOT ORG	CARBON				
0 1 3 4 5 6	54.) 14.6 13.2 11.9 5.1 5.1	17.1 5.9 7.0 6.4 4.9 5.1	U.1275E 0 0.1714E 1 0.1394E 0 0.1140E 1 0.1858E 0 0.1081E 1 0.1689E 0 0.1038E 1 0.4773E 0 0.5051E 0 0.4514E 0 0.5136E 0	11.5000 6.0000 2.8000 2.4348 0.5833 0.5385	20 24 25 23 24 26

EOF ...

21

D-34

LOG-NORMAL DISTRIBUTION: APR 1, 1979 TO APR 30, 1979

SAMPLE Source	MONTHLY Average	ONE SIGMA	LOG(" Slope	Y)=F(Z) Intercept	CHI Square	SAMPLE SIZE
AMMONIA.						
0 1 3 4 5 6	27,9 19.2 19,9 19,4 17,5 17,1	4,4 4,3 4,7 5,4 5,0 4,8	0.6925E -1 0.9988E -1 0.1104E 0 0.1340E 0 0.1346E 0 0.1295E 0	0.1440E 1 0.1273E 1 0.1285E 1 0.1269E 1 0.1225E 1 0.1214E 1	2.8696 7.4615 3.6667 8.0000 9.6000 3.6667	?3 26 30 25 25 30
PH			•			
0 1 3 4 5 6	7.2 7.0 7.3 7.6 7.4 7.2	0.3 0.3 0.2 0.3 0.2 0.3 0.2	0.1722F -1 0.1629F -1 0.1847E -1 0.1173E -1 0.1565E -1 0.1451E -1	0,8563E 0 0.8469E 0 0.8649E 0 0.8794E 0 0.8699E 0 0,8583E 0	6.3478 4.7692 3.6667 6.5185 4.7692 4.3333	23 26 30 27 26 30
CONDUCT	LVITY					
0 1 3 4 5 6	1471.4 1466.0 1525.4 1537.3 1541.8 1562.5	73.5 69.2 49.6 64.8 65.5 73.0	0,2215E -1 0,2035E -1 0,1445E -1 0,1820E -1 0,1845E +1 0,2019E -1	0.3167E 1 0.3166E 1 0.3183E 1 0.3186E 1 0.3188E 1 0.3188E 1 0.3193E 1	2.4348 5.9231 8.3333 3.5556 2.8462 6.3333	23 26 30 27 26 30
HARDNESS	5					
0 1 3 4 5 6	36.2 425.5 279.5 300.4 218.6 307.0	16.9 264.0 84.7 94.1 73.3 85.4	0.2186E 0 0.2301E 0 0.1231E 0 0.1317E 0 0.1251E 0 0.1182E 0	0.1512E 1 0.2565E 1 0.2429E 1 0.24582 1 0.2321E 1 0.2471E 1	0.8750 2.5000 0.1667 2.5714 2.0000 6.8333	16 20 24 21 20 24

EOF..

あるというでものであった

ð.

ŝ

ŧ

D-35

FROM SAMPLE SOURCE O TO SAMPLE SOURCE 1

ł

LINEAR CURVE FIT RESULTS (Y=A0 + A1=X)

CHA SENSOR UNITS	10	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1. TOTAL BIOMASS MIL C/M	6,5642	0,2642	3,8829	\$\$55.0	14
2. VIABLE BIOMASSHIL C/M	4,8504	-0,0833	2,1870	0.4379	10
5. RES CHLORINE NG/L	8,7411_	0,0000	9.7818		
6. TURBIDITY-SIO2MG/L	9,9550	0.2460	10,9109	0,3424	21
9. TOT ORG CARBONNG/L	10,7391	0,0842	5,9630	0,2527	20
IO. AMMONIA MG/L	4,0887	0.3458	4.2156	0.3723	21
12. PH PH	3,5481	0,4847	0,2403	0,4982	- 21
13. TOT ORG CARBON MG/L	0.0000	0,0000	0.0000	6,0000	0
14. CONDUCTIVITY HMMHO/C	4 1050.6140_	0.2880	47,9734	0.4256	. 21
16. HARONESS MG/L	77,2443	9,2559	228,1157	0,5490	14
17. SODIUM MG/L	25.0089	0.7623	9,7510	3,8765	21

PARABOLIC CURVE FIT RESULTS (YEAO + A1+X + A2+X++2)

CHA NO,	SENSOR	UNITS	10	A1	42	STANDARD ERROR	CORR. COEFF.	<u> </u>
1.	TOTAL BIOMASS	NTL C/ML	130.5209	-8.4044	0.1487	3.6378	0.4251	
2.	VIABLE BIOMAS	SMIL C/ML	4.2134	0.1220	-0.0078	2,1550	0,4639	
<u> </u>	RES CHLORINE	MGZL	8,7811	0.0000	0.0000	0,7518	0.4794	
	TURBIDITY-SIG	2MG/L	8,4333	0.3351	-0,0010	10,8997	0,3455	
•	TOT ORE CARRO	NMG/L	7,7837	0,1887	-0,0008	5,4543	0.2549	
10.	AMMONTA	MG/L	-0,2391	1,6550	-0.0227	4,1856	0,3884	
12.	PM	PH	-30,8204	10,0400	-0,6631	0,2261	0,5780	
13.	TOT ORG CARRO	IN MG/L	0,0000	0,000	0,0000	0,0000	0.0000	
14.	CONDUCTIVITY	MMMHO/CH	10767.4400	-13.2115	0.0047	39,7095	0,4425	
16.	HARONESS	MG/L	-62,0267	17,4877	-0,0994	225,9348	0,5801	
17.	300 I UM	MG/L	24,5229	0.7788	-0.0001	9,7503	0.8765	

LOGARITHMIC CURVE FT. RESULTS (LOGISTAN +41+LOGIST)

CHA	SENSOR	UNITS	A.0	A1.	STANDARD	CORR.	
NO.					ERROR	COEFF.	
1.	TOTAL BIOMASS	MIL C/ML	0.4991	0.4368	0,1384	0,1627	
٤.	VIABLE BIOMASS	MIL CTHE	0,5888	-0.0187	0,2187	0,2145	
5.	TURNIDITY-SID	*G/L 24G/L	0.6498	0.3921	0,1924	0.6007	
······································	TOT ORG CARBON	HG7L	0,4467	0,3918	0,1338	0,3444	
10.	AMMONIA	MG/L	0,5383	0.5184	0.0985	0,3331	
12.	PH	PH	0,4175	0,5013	0.0146	0,5083	
13 -	TOT ORG CARGO	1 46/L	0,0000	0,0000	0.0000	8,0000	
14.	CONDUCTIVITY	HHMH0/CM	2,3402	0,2615	0,0141	0,3987	
16.	HARDNESS	MG/L	1.6019	0.6234	0.1034	0.6405	
17.	SODIUM	MG 7L	0,9933	5+++ 0	0.0572	0.8911	

-

FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 3

I THEAD	CHEVE	FTT	RESHLES.	(YEAD	+ A1#X)
	50475	F & F	~639619		* *****

(

CHA SENSOR UNITS NG.	A0	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1. TOTAL BIOMASS MIL C/ML	3,3430	0.0874	1.4879	0,5586	25
2. VIABLE BIOMASSHIL C/ML	0.329A	0.1526	1,4017	0,4579	23
5. RES CHLORINE MG/L		0. 95.95		_0.7148	12_
6. TURBIDITY-SIO246/L	4,4513	0.2639	3,3534	0.6462	26
9. TOT ORG CARBONMG/L	-2,7798	1.0950	2,9308	0,9079	24
D. AMMONTA MG/L	1.3432	0.9323	2.1064	0.8852	26
2. PH PH	4,0190	0,4827	0.2050	0.5878	26
3. TOT ORG CARBON MG/L	0,0000	0.0000			
4. CONDUCTIVITY MMMHC/CM	781.2891	0.5063	38.8259	0.6634	26
LA. HARDNESS MG/L	184,0314	0.2607	42,1757	0,8545	20
7. 3001UM MG/L	5.5744	0.8723	6.5898	0.9544	26

PARABOLIC CURVE FIT RESULTS (Y=A0 + A1+X + A2+X++2)

CHA NO.	SENSOR	UNITS	40	A1	42	STANDARD ERROR	CORR. COEFF.
1.	TOTAL BIOMASS	MTL C/ML	4.5214	-0.0974	6.0069	1.4451	0.5609
2.	VIABLE ATOMAS	SMIL C/ML	-1.2665	0.9166	-0.0733	1.3779	0.4861
-3-	RES CHLORINE	MG/L	-9.5261	3.1930	-9,1616	0.5220	0.7440
- 4 .	TURBIDITY-SIS	24G/L	0.8445	0.7494	-0.0080	2.8445	0.7618
9.	TOT ORG CANADO	NHG/L	5.8906	0.1242	9.0223	2.6303	0.9266
10.	AMMONIA	MG/L	-7.9944	1.9241	-0.0251	2,0338	0.8935
12.	PH	PH	9.4816	-1.1183	0.1130	0.2047	0.5896
13.	TOT OFG CARBO	N MG/L	0.0000	0.0000	0.0000		
14.	CONDUCTIVITY	HMMHG/EN	-4240.3360	7.3229	-0.0023	35.3925	0.7312
16.	HARDNESS	MG/L	196.4859	0.2132	0.0000	42.1078	0.8550
17.	SODTUN	HG/L	13.9666	9.6963	0.0009	6.4879	0.9558

LOGARITHMIC CURVE FIT RESULTS (LOG (Y) #40 (A1=LOG (X))

CHA	SENSOR	UNITS	A	A1	STANDARD	CORR	
NO.			•		ERROR	COEFF.	
t.	TOTAL BIOMASS	WIL CANL	0.3067		0.1171	0.6740	
2.	VIABLE BIOMAS	SHIL CAME	-0.7506	0.9139	0.3430	4058.0	
5.	RES CHLORINE	MG/L	0.0499	0.7642	0.0439	0,7284	
6 .	TURBIDITY-SIO	2MG/L	-0,1160	0,9029	0,1703	0.7740	
	TOT ORG CARBO	NMJ7L	-0.1568	1,0834	0,1120	0,8087	
10.	AMMONTA	MG/L	0,0272	0.9774	0,0479	0,9006	
12.	PH	PH	0,4770	0.4638		0.5801	
13.	TOT ORG CARBO	N NG/L	.0.000	0,0000			
14.	CONDUCTIVITY	MMMHO/CM	1.6072	0.4976	0,0109	0,6751	
16.	MARONESS	MG/L	1,4465	0.3948	0.0598	0.8316	
17,	SODIUM	MG/L	0,1404	0,9130	0.0403	0,7446	

...

.

1000

100

C. D. Start

..............

FROM SAMPLE SUURCE 1 TO SAMPLE SOURCE 4

ł

æ

Ę,

ŀ

í

CHA SENSOR IQ,	UNITS	40	A1	STANDARO ERROR	CORR. COEFF.	SAMPLE
1. TOTAL BIOMAS	S HIL C/HL	1,6380	0,0265	0,3862	0,3859	24
S. AIVERTE BIONY	SSMIL C/ML	2,2026	~0.1636	4.3742	0,0704	20
S. RES CHLORINE	46/L	-0,4772	0.7158	9,5363	0.0032	12
4. TURBIDITY-SI	024676	6.7656	0.3402	4.2803	0.6551	25
4. TOT ORG CARS	GNMG/L	-1.3784	0.8975	3.3424	0.8444	23
O. AMMONIA	MG/L	1.1453	0.9215	2.7227	0.8338	23
2. PH	PH	5.0548	0.2435	0.1913	0.3151	25
	ON MC /1	0.0000	0.0000	0.0000	0.0000	
3. TOT GRG CARM						

PARABOLIC CURVE FIT RESULTS (YEAD + A1+X + A2+X++2)

	CHA NG,	SENSOR UNITS	40	A1_	A2	STANDARD ERROR	CORR. COEFF.
	1.	TOTAL MINHASS MIL C/HL	2.8246	-0,1273	0.0058	9,3784	0.4279
	_2.	VIARLE RIGHASSHIL C/HL	0.2988	0,7430	-0,0440	4,3628	0.1113
	-5.	RES CHLORINE VOIL	1,0455	0,2492	0.0279	0.5356	0.8038
•	÷.	TURBIDITY-SI02MG/L	-2.3901	1,1068	-0.0124	3.2801	0.8153
	9.	TOT ORG CARBONMG/L	13.0369	+0.7083	0.0348	2.5456	0.9151
	ъ.	ARMONIA MG/L	-10,4450	2.1577	-9.0312	2.6279	0.8462
	12.	PH PH	39,1935	-9,1771	0.6646	9.1779	0.4702
	13.	TOT ORG CARBON MG/L	0.0000	0,0000	0.0000	0.0000	0.0000
	77,	CONDUCTIVITY MMMHO/CN	-3137,0260	5.7205	-0.0017	36.2035	0.7446
	16.	HARONESS MG/L	169,9953	0.3246	-0.0000	48.3870	0.6718
	17.	SODIUM MG/L	44.7336	-0.1132	0.0058	4.8897	0.8442

LOGARITHMIC CURVE FIT RESULTS (LOG (Y) =AG +A1+LOG (X))

CHA	SENSOR	UNITS	A•	A1	STANDARD	CORR.	
NO.					ERROR	COEFF.	
1,	TOTAL RIOMASS	HTL C/ML	0.2077	0,1215	0.0414	0.4716	
	VIABLE AIGHAS	SHTL CZML	-1,0145	1555.0	0.8317	0.7968	ويتبالك مستسببين ويستعد
5.	RES CHLORINE	46/1	-0.3951	1.1925	0.0520	9.7748	
۰.	TURBIDITY-SIG	24676	-0,1939	1.0062	0.1724	0.7923	
,-	TOT ORG CARRO	NMG/L	0,1177	0.8040	0.1224	0.4907	
10,	AMMONTA	₩G/L	-0.0298	1.0127	0.6752	0.4194	
12,	PH.	PH	0,6929	0.2195	0.0111	0.3044	
13.	TOT ORG CARBO	N MG/L	0.0000	0.0000	0.0000	0.0.00	
14.	CONDUCTIVITY	NWMH0/CH	1.1618	0.6391	0.0105	0.75.4	
14.	MARDNESS	46/L	1,4945	0.3695	0.0961	0.4852	
17.	\$001U4	HGTL	0,1+41	0.8995	0.0440	0,8413	

對

10.00

FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 5

LINEAR CURVE FIT RESULTS (YHAO + A1+X)

the states of the

CHA NG.	SENSOR UN	0A 611	A1	STANDARD	CORR. COEFF.	SAMPLE SIZE
1.	TOTAL BIOMASS MIL	C/ML 2.2167	0,0216	0.2994	0,5217	23
2.	VIABLE BIOMASSHIL	C/ML 0.5772	0.0467	2.5703	0,0402	23
5.	RES CHLORINE MG/	L 0.3930	-0.0136_	0.0374	0.9989	
6.	TURBIDITY-SIO2MG/	L -0.7085	0,2324	1,8161	0,8141	24
•	TOT ORG CARBONMG/	L -C.7940	0.3658	2.8268	0.6224	22
10.	AMMONIA MG/	L 2.0925	0.7741	2.7142	9.7877	23
12.	PH PH	3.0646	0.6145	0.1909	0,6511	24
13.	TOT ORG CARBON MO	/L 0.0000	0.0000	0.0000	0,0000	0
14.	CONDUCTIVITY MMM	HO/CH 507.6621	0.7013	36.3547	9.7733	26
16.	HARDNESS MG/	L 155.7979	0,0961	27,6299	0,7601	18
17.	SODIUM MG/	10.9695	0.4009	10.7789	0.8154	24

PARABOLIC CURVE FIT RESULTS (YEAO + A1+X + AE+X++2)

CHA NO 3	SENSOR	UNITS	A0	A1 _	54	STANDARD ERROR	CORR.	
1.	TOTAL BIOMAS	5 MIL C/ML	3.1408	-0,1243	0.0054	0,2902	0.5626	
<u> </u>	RES CHLORINE TURBIDITY-SI	MG/L MG/L 02MG/L	1.5570	-0,2971	0.0170	0,0333 1,1584	0.9442	
10.	TOT ORG CARBO	MG/L	-0,3872	0,3204	0.0010	2,8261	0.6226	
12. 13.	TOT ORG CARBO	PH <u>IN MG/L</u> MMMHG/CN-	•.1•31 0.0000 •2753-1370		<u> </u>	<u> </u>	0.0000	
16. 17.	HARONESS 3001UM	MG/L MG/L	164.0051	0.0369	0.0090	27.4604 10.5266	0,7635	-

LOGARITHMIC CURVE FIT RESULTS (LOG(Y) #A0 +A1+LOG(X))

CHA	SENSOR	UNITS	10	41	STANDARD	CORR	
NQ.			· ·		ERROR	COEFF.	
	TOTAL BIOMASS	MIL C/HL	0.2744	0.1095	0.0492	0.5433	
2.	VIABLE BIOMAS	SMIL C/ML	-0,7399	0.0270	0,4541	0,8257	
5.	RES CHLORINE	4G/L	-0,1395	-0,4561	0.0419	0,9947	
	TURBIDITY-S10	2MG/L	-0,2507	0.6411	0.1500		
•	TOT ORG CARBO	NMG/L	=1.2575	1.5629	0.277#	0,7133	
10.	AMMONTA	46/L	-0,0111	0.9623	0.0743	0.7920	
12,	PH	PH	0,3715	0,5865	0,0113	0.6440	
13.	TOT ORG CARRO	N MG/L	0,0000	0.0000	0.0000	0.0000	
14,	CONDUCTIVITY	MMMH0/CM	1,0670	0,6695	0,0102	0,7793	
10.	HARONESS	MG/L	1,7095	0,2247	0,0643	0,7425	· · · · · · · · · · · · · · · · · · ·
17.	SODIUM	HG/L	0,0625	0,9481	0.0724	0,8353	

•

FROM SAMPLE SOURCE 1 TO SAMPLE SOURCE 6

LINEAR CURVE FIT RESULTS (YEAR + AL+X)

CHA SENS	OR UNITS	40	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1. TOTAL 9	OMASS MIL C/M	2.4284	0,0057	0,7544	0.0261	25
2. VIAALE I	TOMASSMIL C/M	6.5551	-0.0354	0,8045	0,0431	25
S. RES CHLO	WINE MOZL	1.0010	9.1747	0.5307	.4555	
A. TURAIDI	Y-510246/L	2.1193	0.0499	0.8998	0.5176	26
. TOT DRG	CARBONHS/L	-4.7105	0.3246	2.4291	0,6684	24
10. ANHONTA	ME/L	2.9179	0.7134	3.4269	0.6664	
12. PH	PH	4.4236	0.3916	0.1563	0.5744	26
13. TOT OFF	CARBON HE/L	0.0000	0.0000			
14. CONDUCT	VITY MMMMO/C	462.6919	0.7392	37.0176	9.8193	26
14. HARDNES	MG/L	213.9470	0.1758	64.7749	0.6015	20
17 8007114	M6./1	4.4733	0.8864	13.1874	0.4393	26

,

.

PARABOLIC CURVE FIT RESULTS (YEAD + A1+X + A2+X++2)

CHA NQ.	JENSOR	UNITS	·. A6	A1 _	54	STANDARD ERROR	CORR.	<u>.</u>
1.	TOTAL BLOWASS	HTL C/ML	2.3784	0.0136	-0.0043	0.7544	0.0266	
2.	VIANLE BIOMAS	SHIL C/ML	0.3801	0.0550	-0.0042	3 A076	0.0956	
	RES CHLORINE	MG/L	2.4574	-0.2253	0.0240	0.5301	0.4572	
	TURBIDITY-SID	2MG/L	1.8429	0.0731	-0.0004	0.8958	0,5238	
	TOT ORE CARBO	NMG/L	-3.4259	0.6286	-0.0970	2.3951	0.6803	
10.	AMMONIA	MG/L	-13.6726	2.4756	-0.0446	3,2848	0.6995	
12.	PH	PH	-15.3731	5.9846	-0,3454	0.1504	0.6155	
13.	TOT ORG CARADI	N MG/L	0.0000	0.0000	0.0000			_
14.	CONDUCTIVITY	MMMHO/CN	-1345.3860	3,1935	-0.0008	34,5685	0,8232	
16.	HARONESS	MG/L	235,4631	0.0775	0.0000	64,5876	0,4044	•
17.	500IU4	MG/L	-10,1003	1.1563	-9.0015		0.8435	

LOGARITHMIC CURVE FIT RESULTS (LOG(Y)=A0 +A1=LOG(X))

CHA	SENSOR	UNITS		A1	STANGARD_	CORR	
NG.					ERROR	COEFF.	
1.	TOTAL RIOMASS	HIL CAME	0.3594	0.0241	0.0450	2.1275	
2.	VIABLE ATOMAS	SHIL C/ML	-0.7432	0.1417	0.4289	0.5504	
5.	RES CHLORINE	HGIL	-0.1612	0.5910	0.1019	0.3440	
÷.	TURBIDITY-SIG	24676	0.0235	0.3571	9.1213	0.5506	
	TOT ONG CARBO	WHG/L	-1.7363	1.9194	0.3056	0.7697	
10.	AMMONTA	MG/L	0.0329	0.9194	0.0898	0.7250	
12.	PN	PH -	0.5235	0.3925	0,0195	0,5427	
13.	TOT ORG CARAC	H MG/L	0.0000	0.0000			
14.	CONDUCTIVITY	MMMH0/CM	0,9669	0.7019	0,0102	0,4232	
16.	HARONESS	MG/L	1.7220	0.2823	0.0893	0.6457	
17.	SCOTUM	MG/L	-1,6722	1,8126	0.1704	0.8042	

FROM SAMPLE SOURCE 3 TO SAMPLE SOURCE 4

CHA NO.	SENSOR	UNITS	A 0	A1	STANDARD ERROR	CORR. COEFF.	SAMPLE SIZE
1.	TOTAL BIOMASS	HIL CANL	1.4825	0,1814	0.4308	0.0074	26 -
2.	VIABLE BIOMAS	SMIL C/ML	2,1965	-0,3403	4,3139	51642	20
5.	RES CHLORINE	MG/L	-1,1501_	1,0997	2.3923	0.9001	12
۰,	TURBIOITŸ-SI	2-0/2	-0,0133	1,1865	3,0393	0.4547	27
۹.	TOT ORE CARBO	NMG/L	1.0420	0.8187	2,1441	0,9367	53
10,	AMMONTA	MGZL	-0.2101	1,0079		0,4094	
15.	PH	PH	4,5456	0,4101	0,1694	0,5302	27
13.	TOT ORG CARRO	DN MG/L	0,0000	0,0000			
14,	CONDUCTIVITY	TTVTTV MMMHO/CM -69,2025 53 MG/L 86.1121 MG/L -0.2174	1,0552		0.8527	27	
14,	HARONESS	MG/L	44.1121	0,7461	67,1114	4.4456	21
17.	SODIUM	MG/L	+0.2174	8.9954	6.6542	0.9288	27
<u>PAR4</u>	NOLIC CURVE P		(7240 + 41+)	<u>x + 42+x++2)</u>			
PARA CHA NO,	SENSOR	VIT RESULTS	<u>(7240 + 41+)</u> A0	<u>x + 42+x++2)</u> A1-	42.	STANDARO ERROR	CORR. COEFF.
PARA CHA NO	SENSOR		(Y2A0 + A1+) A0	<u>x + A2+x++2)</u> A1.		STANDARO ERROR	CORR. COEFF.
PARA CHA NO1 1.	SENSOR	UNITS UNITS	(Y2A0 + A1+) A0 1,9323 3,9323	<u>4 + 42+x++2)</u> A1. 0,0279	42' 0.0105 0.4431	STANDARD ERROR 0. 8264	CORR. COEFF.
PARA CHA NO, 1. 2.	SENSOR SENSOR TOTAL BIDMASS VIABLE BIDMAS DEC CHI OPTAM	UNITS UNITS B HTL C/ML BSHTL C/ML HC71	(Y#A0 + A1*) A0 1.9323 3.9031	A1- 0,0279 -3,5435	A2' 0.0105 0.4421 -0.024	STANDARO ERROR 0. 4264 4. 1490	CORR. CDEFF. 0.4071 0.3159
PARA CHA NO. 1. 2.	TOTAL BIOMASS VIABLE BIOMAS PUBBIOTITY	UNITS UNITS SMIL C/ML SSMIL C/ML MG/L JOHC/L	(Y#A0 + A1*) A0 1.9323 3.9831 -3.5628 1.1834	A1. 0.0279 -3.5435 1.9964	42' 0.0105 0.4421 -0.0824 4.0240	STANDARO ERMOR 0.4264 4.1490 0.3496 2.9437	CORR. CDEFP. 0.6971 0.3159 0.9016
CHA CHA NO 1. 2. 5.	TOTAL BIOMASS VIABLE BIOMASS VIABLE BIOMASS NES CHLOWINE TURBINITY-SIC TURBINITY-SIC	TIT RESULTS UNITS MIL C/ML BSMIL C/ML MG/L D2MG/L DMMC/L	(Y#A0 + A1+) A0 1,9323 3,9831 -3,5428 1,1836 5,4442	<u>x + A2+x++2)</u> A1- -3,5435 1,9464 0,6664 0,2713	42' 0.0105 0.4421 -0.0824 0.0260 0.0117	STANDARO ERROR 0.4264 4.1490 0.3896 2.9637 1.8998	CORR. CDEFF. 0.6071 0.3159 0.9016 0.8648 0.9826
PARA CHA NO, 1. 2. 5. 4. 9.	TOTAL BIOMASS VIABLE BIOMASS VIABLE BIOMASS NES CHLORINE TURBIOITY-SIG TOT ORG CARSO AMMONIA	VIT RESULTS UNITS MIL C/ML BSHL C/ML MG7L 22MG/L MMG7L MG7L	(Y#A0 + A1=) A0 1,9323 3,9831 -3,5428 1,1836 5,6462 -4,2357	A1. 0.0279 -3.5435 1.9964 0.6664 0.2713 1.4497	42 0.0105 0.4421 -0.0824 0.0260 0.0117 -0.0114	STANDARO ERROR 0.4264 4.1490 0.3896 2.9437 1.8998 2.1743	CORR. CDEFF. 0.6071 0.3159 0.9016 0.8648 0.9526 0.9104
CHA CHA 1. 2. 5. 4. 9.	TOTAL BIOMASS VIABLE BIOMASS VIABLE BIOMASS NES CHLORINE TURBIOITY-SIG TOT ORG CARGO AMMONIA PM	TIT RESULTS UNITS MIL C/ML BSMLL C/ML MG/L D2HG/L DMG/L PH	A0 1,9323 3,9831 -3,5428 1,1436 5,6462 -4,2357 -4,2322	A1. 0,0279 -3,5435 1,9964 0,2713 1,4964 0,2713 1,4974	A2' 0.0105 0.4621 -0.0824 0.0260 0.0117 -0.0114 1.7181	STANDARO ERROR 0.6264 4.1490 0.3496 2.9637 1.8998 2.1763 0.1040	CORR. CDEFF. 0.6071 0.3159 0.9016 0.8648 0.9526 0.9106 0.6538
CHA NO, 1. 2. 5. 4. 9. 10. 12.	TOTAL BIOMASS VIABLE BIOMASS VIABLE BIOMAS VIABLE BIOMAS VIABLE BIOMAS VIABLE BIOMAS VIABLE BIOMAS VIABLE BIOMAS VIABLE CARBO AMMONIA PM TOT ORG CARBO	YIT RESULTS UNITS SMIL C/ML MG/L DAMG/L MG/L PH NMG/L NMG/L	A4 1.9323 3.9831 -3.5628 1.1836 5.6462 -4.2357 96.3222 J.0009	A1- 0.0279 -3.5435 1.9964 0.6664 0.2713 1.4497 -24.7216 0.0000	A2' 0.0105 0.4621 -0.0824 0.0260 0.0117 -0.0114 1.7181 0.0000	STANDARO ERROR 0. 6264 4. 1490 0. 3896 2. 9637 1. 8998 2. 1763 0. 1040	CORR. COEFF. 0.3159 0.9016 0.8648 0.9526 0.9106 0.8538
CHA NO, 1. 2. 5. 4. 9. 10. 12. 13.	TOTAL BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMAS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE CONDUCTIVITY CONDUCTIVITY	YIT RESULTS UNITS SMIL C/ML MG/L MG/L MG/L PH DH MG/L MMH0/CH MMH0/CH	A4 1.9323 3.9831 -3.5428 1.1836 5.6462 -4.2357 94.3222 3.0007 -3360.8910	A1. 0.0279 -3.5435 1.9964 0.6664 0.2713 1.4497 -24.7216 0.0000 5.4029	A2' 0.0105 0.4421 -0.0824 0.024 0.017 -0.0114 1.7181 0.0006 -0.0014	STANDARO ERMOR 0.4264 4.1490 0.3496 2.49637 1.4998 2.1763 0.1040 34.7260	CORR. CDEFF. 0.4071 0.3159 0.9014 0.8648 0.922 0.9106 0.8538 0.8378
CHA NO, 1. 2. 5. 4. 9. 10. 12. 13. 14.	TOTAL BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE BIOMASS VIABLE VIEW VIABONESS	YIT RESULTS UNITS UNITS SMIL C/ML BSMIL C/ML D2MG/L MG/L MG/L MG/L MMH0/CH MG/L	A0 1.9323 3.9831 -3.5428 1.1836 5.4442 -4.2357 96.3222 3.0007 -3340.8910 351.8313	A1. 0.0279 -3.5435 1.9964 0.2713 1.4497 -24.7216 0.000 5.4029 -0.9942	42' 0.0105 0.4621 -0.0824 0.0260 0.0117 -0.0114 1.7181 0.0006 -0.0016	STANDARO ERROR 0.4264 4.1490 0.3496 2.9637 1.8998 2.1763 0.1040 34.7260 63.0509	CORR. CDEFF. 0.4071 0.3159 0.9016 0.9526 0.9104 0.6538 0.8378 0.8378 0.7271

LOGARITHPIC CURVE PIT AESULTS (LOG(Y) =AS +AI+LOG(X))

	CHA	SENSOR	UNITS	40	41	STANDARD	CORR.	
	NO.					ERAGR	COEFF.	
	1.	TOTAL BIOMASS	MTL CZWL	0.1043	0.3920	8.0449	0.4741	
		VIANLE BIOMAS	SMIL CZML	-4.8075	0.1437	0.8413	0.7604	
	5.	RES CHLORINE	MG/L	-0.2524	1.2684	0.0310	0.9264	
	- ÷.	TURBIDITY-SIC	24616	0.0402	0.9904	0.1346	0.8861	•
_	•••	TOT OFG CARAC	Nº4G/L	0.2258	0.7542	0.0432	0.8707	
	10.	AMMONIA	-61	-0.0668	1,0479	0.0545	0.8975	
	12.	PH	PK	0,5451	0,3848	0,0044	0.5135	
	- 13.	TOT ORG CARAC	IN NETL	0.0000	0,0000	-		
	14.	CONDUCTIVITY	NAMHO/CM	-0.2044	1.0448	0.0046	0.8542	
	10.	HARDNESS	4676	0,8481	0,6599	4,1022	0.4178	
	-17.	SODIUM	THEIL	-4,0941	1.0463	0,0362	0,9512	

D-41

10.00

GAS CHROMATOGRAPH REGRESSION ANALYSIS FOR APR 1, 1979 TO APR 30, 1979

FROM SAMPLE SOURCE 4 TO SAMPLE SOURCE 5

LINEAR CURVE FIT RESULTS (Y-A8 + A1***)

CAL NO.	COMPOUND	A8	A1	STANDARD ERROR	CORR. COEFF.	Sample Size
1.	TETRACHLORDETHYLENE	-1.4173	8.4476	4.7209	8.7879	23
2.	METHYLENE CHLORIDE	23.8903	-0.0917	6.1572	0.2948	20
3.	CARBON TETRACHLORIDE	8.0000	8.8266	8.8008	8.8888	6
4.	1.2-DICHLOROETHYLENE	0.0000	8.0008	0.0000	8.0000	
5.	CHLOROFORM	1.6938	8.2243	4.4288	8.1955	23
Ĕ.	1.1.1-TRICHLORDETHANE	1.8962	6.0010	8.5894	0.3985	16
7.	BROMODICHLOROMETHANE	1.3658	-0.1534	0.4636	0.2442	16
8.	TRICHLOROETHYLENE	0.2845	8.2461	2.1981	0.4885	23
9.	DIBROMOCHLOROMETHANE	1.1586	-0.2919	0.1686	8.4688	23
18.	BROMOFORM	8.6796	8.2798	0.5941	0.5148	22
11.	TRIHALOMETHANES	5.4341	0.1171	5.1635	0.1185	23
12.	TOTAL HALOCARBONS	37.6778	8.8159	12.1117	0.1026	23

.

PARABOLIC CURVE FIT RESULTS (Y=A8 + A1+X + A2+X++2)

CAL NO.	COMPOUND	A.	A1	A2	Standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	8.4838	8.1513	8.8877	4.5678	8.7388
2.	METHYLENE CHLORIDE	25.8769	-0.5131	0.0059	5.3525	0.5568
3.	CARBON TETRACHLORIDE	0.0000	8.0000	0.0000	0.0000	8.0000
4.	1.2-DICHLORDETHYLENE	0.0000	8.0000	8.8888	0.0000	0.0000
5.	CHLOROFORM	21.1113	~2.1865	9.9666	4.3677	8.2535
6.	1.1.1-TRICHLORDETHANE	1.8619	-8.2263	0.0134	8.5549	0.5045
7.	BROMODICHLOROMETHANS	2.0666	-8.6914	8.0964	0.4686	8.2682
8.	TRICHLOROETHYLENE	-8.1538	8.3343	-8,0844	2, 1927	0.4924
9.	DIBROMOCHLOROMETHANE	2.9389	-3,1178	1.0725	0.1484	0.6243
18.	BROMDFORM	2.4879	-1.7719	0.5657	0.5762	0.5556
11.	TRIHALDMETHANES	14.4383	-0.6874	0.0174	5.1538	0.1333
12.	TOTAL HALOCARBONS	35.3212	0.0678	-0.0002	12.8843	0.1225

LOGARITHMIC CURVE FIT F JULTS (LOGEY3+A0 +A1*LOGEX3)

cal No.	COMPOUND	A6	A1	standard Error	CORR. COEFF.
1.	TETRACHLOROETHYLENE	-8.3851	0.8834	8.2894	8.8906
2.	METHYLENE CHLORIDE	1.4199	-0.1246	0.1359	8.4915
3.	CARBON TETRACHLORIDE	8.0000	0.0000	8.8866	0.0000
4.	1.2-DICHLOROETHYLENE	0.0000	8.0000	0.0000	0.0000
5.	CHLOROFORM	-0.0013	0.5213	0.2974	0.3233
6.	1.1.1-TRICHLOROETHANE	0.0017	-0.0789	0.3785	8.4797
7.	BROMOD ICHLOROME THANE	0.8573	-0.3469	0.2361	8.2242
8.	TRICHLOROETHYLENE	-0.3192	0.5910	0.2694	8.6918
9.	DIBROMOCHLOROMETHANE	-0.0714	-0.4978	0.1098	8.4845
18.	BROMOFORM	-8.8484	8.2616	8.2294	0.5790
11.	TRIHALOMETHANES	8.3524	0.3660	0.2157	9.3697
12.	TOTAL HALOCARBONS	1.5146	0.0316	0.1209	0.2391

D-42

FROM SAMPLE SOURCE 5 TO SAMPLE SOURCE 6

LINEAR CURVE FIT RESULTS (YEAD + A1+X)

CHA SENSOR NO.	UNITS	- 10	A1	STANDARD ERROR	CORR. COEFF.	8400LE 812E
1. TOTAL BIOM	ASS HIL C/HL	2.3347	0,0635	0,7519	0.0734	25
2. VIABLE BIO	MASSHIL C/HL	0.4752	+0,0357	0,8203	0.1221	24
5. RES CHLORI	NE MG/L	2.0210	-0.1379	0.4649	9.0191	
6. TURRIDITY-	510246/L	2.2284	0.2031	0.8870	0.5488	26
9. TOT ORG CAL	RBONHG/L	0.2702	0.8203	2.9208	0.8031	23
10. AMMONIA	HGZL	2:8271	0.7911	2.6146	0.8298	25
12. PH	PH	2.8453	0.5844	0.1193	0.7927	26
13. TOT ORG CAN	REON NG/L	0.0000	0.0000			
14. CONDUCTIVI	TY HMMHO/CN	18.9414	0.9921	8.3018	0.9920	26
16. HARONESS	MG/L	88.3779	0.9419	49.6581	0.0124	20
17. 3001UM	HGIL	-14.2452	1.1733	5.0115	0.9735	26

PARABOLIC CURVE FIT RESULTS (Y=40 + A1+X + A2+X++2)

CH NO	A SENSOR	UNITS	A0	A1	54	STANDARD ERROR	CORR. COEFF.	
1	. TOTAL BIOMASS	HIL CAME	0,2835	1.2144	-0.1315	0.7384	0.2019	
2	. VIABLE BIOMAS	SMEL C/ML	0,4939	-0.1099	0.0060	0.8193	0.1314	
	RES CHLORINE		3.8472	-2.7053	0.5389	0.4349	0.6784	
•	. TURBIDITY-SIG	2MG/L	0.6361	0.7716	-0.0313	0.7454	0.7227	
•	. TOT ORG CARBO	NMG/L	2.1875	0.0606	0.0414	2.6564	0.8405	
10	AMMONIA	MG/L	1.3410	0.9711	-0.0051	2.0093	0.8304	
12	PN	PH	-53.7068	15.8589	-1.0298	0.0818	0.9085	
13	. TOT ORG CAREC	N MG/L	0.0000	0.0000	0.0000			
14	. CONDUCTIVITY	MMMHO/CM	-130.5771	1.1849	-0.0001	8.2946	9.9920	-
16	HARDNESS	HG/L	-215,3994	3.3954	-0.0043	39.5101	0.8859	
17	. 3001UM	467L	-28.2577	1.5076	-0.0022	4,7545	0.9761	

LOGARITHHIC CURVE FIT RESULTS (LOG (Y) =40 +A1+LOG (X))

CHA	SENSOR	UNITS		41	STANDARD	COPR.	
NO.					ERROR	COEFF,	
1.	TOTAL BIOMASS	HIL CAML	0.3074	0.1901	0.0430	0.2305	
	VIANCE BIOMAS	STIL CIML	-9.7790	-9.1038	0.4275	0.5606	
5.	RES CHLORINE	MG/L	0.3133	-0.1627	0.0805	0.6665	
6.	TURBIDITY-SI)2≈G/L	0,1936	0.4746	0.1119	0.6729	•
,	TOT ORE CARBO	144G7L	0.0599	0.7195	0.3391	0.7357	
10.	AMMONTA	46/1	9,1730	0.8417	0.0684	0.4547	
12.	PH	PH	0.3170	0.6205	0.0071	0.8454	
13.	TOT ONG CARAC	N HGTL	0.0000	0.000			
14.	CONDUCTIVITY	MMMHQ/CM	0.0072	4.9983	0.0023	1.4419	
10.	MARDNESS	MG/L	0.5872	0.8964	0.0627	0.8526	
17.	SODIUM	HGIL	-2,1592	2.1096	0.0767	0,9629	

LOG-NORMAL DISTRIBUTION: SEP 3, 1980 TO FEB 28, 1981

		ONE	LOG	(Y)=F(Z)		CHI	SAMPLE
	AVERAGE	SIGMA	SLOPE	INTERCEPT		SQUARE	SIZE
FLASH	MIX PH						
	10.8	0.9	0,4223E -	1 0,1032E	1	291,7720	149
PLANT	FLOW			•			
	1.4	0,3	0.1010E	0 0,1385E	0	189.0946	148
SLUDGE	DENSITY						
	0,9	0,9	0,3121E	0 -0,1451E	0	36,5369	149
SLUDGE	PUMP						
	738.4	139,7	36905.0	0 0,2849E	1	212.8979	147
LIME F	EED VL.						
EOF.,	73.1	237,2	0.5289E	0 0.1444E	1	63.7471	87

APPENDIX E

k

STANFORD/WMS DATA FOR ORGANIC REMOVAL BY GAC

This section contains data relative to the performance of activated carbon with age for removal of TOC and trace organics.

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF TOC

1- Influent Concentration, mg/l; 0- Effluent Concentration, mg/l; 0/1- fractional Concentration

			461	RECEN	ERATED	EXHA	USTED					MS DATA		
INEDVOLUMES		<u>ک</u>	RBOH	CAR	BON	CAF	RBON	AVE	KAGE		CAC		PLA	N
	-	0	1/0	0	1/0	0	1/0	0	1/0	1	0	1/0	•	0
	6.44	1.46	0.227	0.8	0. 143	5.56	0.863	2.65	.411	10.2	5.9	0.578		6.1
3	7.29	1.46	0.200	1.06	0.145	5.61	0.770	2.71	.372	10.6	5.4	0.509		4.9
ž	9.74	1.20	0.123	2.78	0.285	6.68	0.685	3.55	.365	9.3	4.7	0.505		4.7
1240	8.08	2.02	0.250	2.15	0.266	6.86	0.849	3.68	. 155	9.5	4.3	0.453		3.6
1580	10.80	3.31	0.306	2.45	0.227	6.15	0.569	3.97	.368	11.2	4.8	0.429		5.0
5001														
2090	6.52	2.81	0.431	2.50	0.383	8.98	1.377	4.76	.731					
2430	6.21	2.71	0.436	2.69	0.433	4.92	0.792	3,44	.554					
3235	9.87	5.67	0.574			8.20	0.831							
3660	9.25	4.67	0.505	5.12	0.554	6.52	0.705	5.44	.588					
4125	12.60	7.19	0.571	6.46	0.513	8.27	0.656	7.31	.580					
1165	11.90	7.06	0.595	6.61	0.555	10.50	0.882	8.06	.678					
87														
5225	7.92	6.46	0.816	5.32	0.672	7.33	0.926	6.37	804					
5525	8.61	5.38	0.741	7.18	0.834	7.24	0.841	6.93	808.					
6086	8.64	5.75	0.666	5.01	0.580	7.88	0.912	6.21	.:19	9.3	6.3	0.677	15.1	6.0
0009	8.02	4.84	0.603	5.82	0.726	7.00	0.8/3	5.89	.734	8.8	5.9	0.670	18.0	5.7
9633		4.27		5.02						7.4	7.1	0.959	12.5	5.1
696	6.77	7.15	1.056	5.83	0.861	6.82	1.007	6.6	.975	6.6	5.9	0.894	11.4	5.4
7100	9.15	5.54	0.605	5.28	0.577	7.41	0.810	6.08	.664	10.9	3.5	0.321	10.8	4.5
7820	8.93	5.05	0.566	5.44	0.609	5.69	0.637	5.39	1 09.	9.0	6.1	0.678	10.5	4.6
	8.24	4.33	0.525	5.07	0.615	6.17	0.749	5.19	.630	6.7	4.0	0.597	8.7	3.7
8820	6.73	4.11	0.611	4.22	0.627	4.97	0.738	4.43	.659	6.7	3.7	0.552	8.9	3.3
940	7.14	4.80	0.672	6.04	0.846	4.91	0.688	5.25	.735	6.8	3.6	0.529	9.8	3.8

-

ţ

•

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF CHLOROFORM

and the second and the second

ł

1- Influent Concentration, vg/1; 0- Effluent Concentration, vg/1; 0/1- fractional Concentration

			NEW	RECEN	IERATED	EXHA	NUSTED					MS DAT/	-	
NELWOLLNES		C	RBON	CAR	BON	S	RBON	AVE			CAC		2	INT
	-	0	1/0	0	1/0	0	1/0	0	VO	-	0	1/0	-	0
*	11.24	0.20	0.018	0.32	0.626	12.13	1.079	4.1	0.375					
3	12.06	0.82	0.068	0.26	0.022	12.88	1.068	4.7	0.386	15.8	9.2	0.582		
3	14.58	0.41	0.028	1.13	0.078	15.16	1.041	5.6	0.382	19.5	9.6	0.492		
1240	17.57	0.86	6.049	1.90	0.108	18.12	1:031	7.0	0.396					
1566	22.11	2.79	0.126	6.42	0.290	19.79	0.895	9.7	0.437	20.7	1.1	0.536		
1035	16.56	4.68	0.283	11.43	0.690	17.26	1.042	1.11	0.007					
2090	9.21	4.80	0.521	5.86	0.636	11.50	1.249	7.4	0.802					
2434	10.21	10.23	1.002	8.78	0.860	₩.9	0.915	9.5	0.926					
3235	11.69	8.13	0.695			13.85	1.185							
366	12.67	21.17	1.671	30.75	2.427	15.59	1.230	22.5	1.776	23.2	28.7	1.237		29.1
4125	4.98	16.02	3.217	14.18	2.847	7.93	1.592	12.71	2.552	16.9	28.2	1.669		27.5
1165	6.24	12.05	1.931	9.62	1.542	5.27	0.845	9.0	1.439	15.3	23.1	1.417		19.8
87	3.82	6.99	1.830	6.63	1.736					16.5	20.8	1.261		20.4
\$115	6,93	13.15	1.898	12.69	1.831					16.1	20.7	1.286	18.4	24.8
5525	4.42	15.60	3.529	15.49	3.505									
5825	10.33	15.54	1.504	14.28	1.382					12.0	17.6	1.467	14.0	16.3
619	8.85	15.26	1.724	14.88	1.681					21.0	26.4	1.257	19.6	22.8
89	4.88		1.730	7.79	1.596					18.2	19.9	1.093	22.7	20.0
590	7.45	10.45	1.403	10.54	1.415					16.8	17.3	1.030	21.0	20.1
7196	8.75	15.21	1.738	14.10	1.611									
7820														16.4
82										17.9	24.7	1.380	12.9	26.1
9030										10.1	19.3	116.1	10.6	22.0
9400														

-

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF TPICHLOROETHANE

÷

5

I- Influent Concentration, $\mu g/l$; O- Effluent Concentration, $\mu g/l$; O/I- fractional Concentration

			NEW	RECE	NERATED	EXH	AUSTED					TAR DAT		
MEDVOLUE	22	3	ARBON	5	RBON	ຽ 	RBON		KAGE					
	-	0	1/0	c	1/0	0	1/0	•	ŇÖ	-			₹.	
*	10.78	0.0	0.004	0.04	0.004	12.27	1.138	4.12	385			5	-	
3	25.02	0.19	0.009	0.0	0.002	19.44	0.883	6.56	3		•			
ž	24.32	0.0	0.000	0.07	0.003	22.73	0.935		2	10 6		0.195		
9121	61.15	0.03	0.000	0.22	0.004	38.55	0.630	12.93	212	2.2.		877.0		
1500	64.69	0.20	0.003	8 .1	0.030	42.21	0.652	14.78	220	26 4	•			
501	98.08	0.43	0.00	5.71	0.058	55.34	0.564	20.40		1.07		601.0		
K 07	15.79	0.47	0.030	1.93	0.122	21.74	1.3//		61. 1					
2430	15.31	3.62	0.236	3.64	0.238	15.09	0.986	7.45	TRA TRA					
3235	37.82	5.35	0.141			0.17	1.139							
3659	31.32	21.60	0.690	36.45	1.164	37.70	1.204	31 60	1 010	3 53				
1125	5.01	17.62	3.517	16.04	3.202	15.60	3.114	16.42	1 277	5.50	19.9	11.11		15.9
\$9 \$	9.9	14.28	169.1	12.76	1.279	7.54	0.75.6		1 166			664.		14.0
3	2.46	6.98	2.837	7.37	2.996				cc1 · 1	0.5	13.3	0.9/8		12.3
5225	9.23	15.67	68.130	15.38	66.370						9.0	1.765		9.4
5525	0.17	19.54	114.941	22.36	131.524					-		6.1	4.5	7.5
5825	1.01	15.68	15.525	15.06	116.01	T								
61 00	0 .98	15.66	15.980	16.22	16.551					8.0	5.6	7.0	5.2	4.8
6699	0.42	8.57	20.405	8.06	191	T				9.0	9.9	11.0	2.1	3.6
6969	0.48	8.11	16.8%	8.02	16.708						6.1	12.25	1.2	5.4
7100	5.54	15.59	2.814	13.85	2.530		ł			0.0		5.5	2.0	9 . P
7820											T			
34						T								5.1
										4.0	4.0	10.0	1.5	3.8
										0.4	2.7	6.75	1.9	3.2
									ſ	Ť			Ť	T

· · ·

the second second

Û

ERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF BROMODICHLOROMETHANE

1- Influent Concentration. $\mu g/1$; 0- Effluent Concentration. $\mu g/1$; 0/1- fractional Concentration

			JF W	DECEN	FRATED	EXHJ	VUSTED				3	MS DATA		
BEDVOLUMES		Ś	RBON	CAR	BON	CA	RBON	AVE	RAGE		CAC		PLA	NT
	-	0	1/0	0	1/0	0	9/1	0	1/0	-	0	0/1	-	0
OUE	15 0	0.00	0.000	0.00	0.000	1.70	0.637							
693	114	0.00	0.000	0.00	0.000	2.98	0.720			7.6	3.5	0.461		
006	J.51	0.00	0.000	0.01	0.002	3.93	0.713		Í	10.3	4.5	0.437		
1240	4.34	0.00	0.000	0.05	0.012	4.41	1.016							
1580	4.46	0.02	0.004	0.29	0.065	4.39	0.984	1.57	.351	6.1	4.0	0.656		
1835	3.45	0.30	0.087	0.71	0.206	3.70	1.072	1.57	.455					
2090	1.60	0.07	0.044	0.31	0.194	2.07	1.294	.82	.510					
2430	1.87	0.39	0.209	0.47	0.251	1.71	0.914	.86	.458					
3235	1.59	0.54	0.340			2.27	1.428							
3660	2.34	2.21	0.944	3.64	1.556	2.57	1.098	2.81	1.199	8.3	8.0	0.964		8.7
4125	1.82	1.77	0.973	1.57	0.863	1.51	0.830	1.62	.888	7.4	7.7	1.041		8.4
4465	2.06	1.65	0.801	1.51	G. 733	1.16	0.563	1.44	669.	7.5	7.1	0.47		6.9
1800	1.77	1.03	0.582	1.19	0.672			1.11	.627	8.8	8,3	0.943		8.3
5225	8,26	2.75	0.333	2.78	0.337			2.77	.335	9.4	8.8	0.936	11.2	9.0
5525	3.58	4.00	1.087	5.06	1.375			4.53	1.231					
6009	11.21	5.81	0.518	6.40	0.571			6.11	545	7.0	11.1	1.586	8.3	9.7
\$300	8.97	5.95	0.663	7.97	0.889			6.96	.176	20.4	12.8	0.627	14.3	14.2
6600	4.63	3.92	0.847	4.83	1.043			4.38	- 945	15.7	11.0	0.701	21.0	11.9
6900	6.04	3.82	0.632	4.61	0.763			4.22	.698	12.0	9.6	0.800	17.9	11.6
7100	5.80	8.81	1.519	8.12	1.400			8.46	1.459					
7620														13.7
8400										23.2	22.6	0.974	16.5	20.4
8420										15.7	21.5	1.369	12.7	19.5
9406														

ORIGINAL CONSIGNATION

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF TRICHLOROETHYLENE

2

A SURVEY AND A STATE

A STATE AND A STAT

•

i - Influent Concentration, $\nu\,g/l$; 0- Effluent Concentration, $\mu\,g/l$; 0/I- fractional Concentration

			IEW	REGEN	ERATED	EXH	VUSTED					MS DATA		
DEDWOLLMES		Ś	RBON	CAR	BON	CA	RBON	AVE	KAGE		CAC		PLA	NT
	-	0	1/0	0	1/0	0	1/0	0	1/0	-	٥	1/0	-	0
300	3.14	0.00	0.000	0.00	0.000	1.64	0.522							
3	23.24	0.04	0.002	0.00	0.000	4.85	0.209			18.8	2.1	0.112		
906	12.55	0.00	0.000	0.00	0.000	4.94	0.394			9.0	2.2	0.244		
1240	9.72	0.00	0.000	0.03	0.003	6.32	0.650				2.5			
1500	19.02	0.29	0.015	0.75	0.039	7.18	0.377	2.74	. 144	11.9	2.1	0.176		
1835	28.27	0.00	0.000	0.12	0.004	8.10	0.287							
2090	8.36	0.00	0.000	0.00	0.000	4.33	0.518							
2430	4.13	0.00	0.000	0.00	0.000	2.96	0.717							
3235	8.00	0.00	0.000			5.60	0.700							
366	5.93	0.00	0.000	0.00	0.000	4.90	0.826			10.7	2.6	0.243		2.1
1125	1.80	0.30	0.167	0.55	0.306	3.49	1.339	1.45	804	4.6	2.5	0.543		2.3
1165	3.8	0.26	0.086	0.55	0.182	1.61	0.533	18.	.267	6.6	2.3	0.348		1.8
9087	0.58	0.23	0.397	0.49	0.845			.36	.621	2.3	2.3	1.0		1.9
5225	0,0 3	0.67	7.444	1.03	11.444			.85	9.444	1.1	1.6	1.455	2.7	1.6
5575	0.10	1.22	12.200	2.40	24.000			1.81	18.1					
6008	0.00	1.54		1.95						1.1	1.6	1.455	2.3	1.4
6300	0.0 0	1.22		2.35						1.0	1.9	1.9	2.0	1.9
6690	0.00	0.73		1.35						0.9	1.7	1.889	1.8	1.6
6900	0.04	0.72	18.000	1.15	28.750		•	.935	23.375	1.0	1.5	1.5	1.8	1.4
7100	2.32	0.00	0.000	2.61	1.125									
7820														2.1
8100										0.7	1.9	2.714	1.5	2.0
8820										0.7	1.6	2.286	1.9	1.6
0046							-							

-

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR KEMOVAL OF DIBROMOCHLOROMETHANE

es.

1.1

ないたちからい

- Contraction

I- Influent Concentration, µg/l; 0- Effluent Concentration, µg/l; 0/l- Fractional Concentration

			IEW	RECEN	ERATED	EXHIA	VUSTED					MS DATA		
BEDWOLLMES		S	RBON	CAR	BON	CAI	RBON	AVE	KAGE		CAC		2	NT
•••••		0	1/0	•	1/0	0	1/0	0	1/0	-	0	1/0	-	٥
99	1.11	0.00	0.000	0.00	0.000	0.44	0.396							
999	3.37	0.00	0.000	0.00	0.000	0.16	0.344			5.5	1.8	0.327		
906	5.04	0.00	0.000	0.00	0.000	1.79	0.355			8.3	2.8	0.337		
1246	2.85	0.00	0.000	0.00	0.000	2.25	0.789							
1500	2.11	0.00	0.000	0.07	0, 033	2.09	166.0			4.2	2.1	0.5		
1835	1.46	0.00	0.000	0.19	0.130	1.85	1.267							
2090	0.63	0.00	0.000	0.13	0.206	1.47	2.333							
2430	0.86	0.08	0.093	0.19	0.221	0.72	0.837	.33	986.					
3235	0.79	0.10	0.127			1.01	1.278							
3660	1.28	0.43	0.336	0.91	0.711	1.09	0.852	.81	.633	3.3	2.0	0.606		9.8
1125	1.35	0.40	0.296	0.43	0.319	0.74	0.543	.52	.388	4.3	2.6	0.605		3.1
4165	1.21	0.42	0.347	0.48	0.397	0.60	0.496	.50	.413	4.9	3.5	0.714		1.7
48.00	1.27	0.32	0.252	0.54	0.425			.43	939	3.8	3.8	1.0		3.0
5225	7.33	1.03	0.141	1.08	0.147			1.06	.144	3.6	2.7	0.75	1.1	2.2
5525	2.95	1.80	0.610	2.22	0.753			2.01	189.					
6009	10.89	2.65	0.243	3.17	0.291			2.91	.267	2.4	5.5	2.292	3.9	3.3
6360	7.69	2.77	0.360	4.52	0.588			3.65	.474	11.7	3.5	0.299	7.2	5.1
6600	4.26	2.12	0.498	3.09	0.725			2.61	.612	6.3	2.6	0.382	9.8	3.7
6900	6.51	2.07	0.318	2.91	0.447			2.49	.382	4.3	2.5	0.581	8.7	3.4
7100	6.28	5.62	0.895	6.79	1.081			6.21	.988					
7820														8.4
0048										16.9	11.8	0.698	11.8	14.6
8820										8.1	8.8	1.086	5.8	11.4
0016														

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF TETRACHLOROETHYLENE 1- Influent Concentration, µg/l; 0- Effluent Concentration, µg/l; 0/l- fractional Concentration

			JEW	RECEN	ERATED	EXHA	VISTED					MS DATA		
DEDVOLUMES		S	RBON	CAR	BON	CAL	RBON	AVE	KAGE		CAC		PLA	NT
	-	0	1/0	0	1/0	0	1/0	0	10	-	0	1/0	-	0
300	6.03	0.02	0.003	0.03	0.005	1.32	0.219	.46	.076					
662	13.79	0.19	0.014	0.10	0.007	2.13	0.154	.81	.058	15.6	4.8	0.308		
906	20.19	0.13	0.006	0.07	0.003	2.42	0.120	.87	.043	17.0	4.5	0.265		
1246	37.42	0.0	100.0	0.06	0.002	3.75	0.100	1.28	P E0.		3.2			
1580	13.81	0.11	0.001	0.40	0.005	5.73	0.078	2.08	.028	47.4	6.4	0.135		
1835	103.85	0.29	0.003	0.17	0.002	10.69	0.103	3.72	.036					
2090	27.72	0.12	0.004	0.11	0.004	6.58	0.237	2.27	.082					
2430	14.13	0.39	0.028	0.23	0.016	4.33	0.306	1.65	.117					
3235	18.96	0.05	0.003			6.06	0.320							
3660	7.70	0.06	0.008	1: 0	0.035	4.85	0.630	1.73	.224	11.9	4.9	0.412		3.8
1125	1.65	0.24	0.145	0.32	0.194	4.20	2.545	1.59	.962	4.1	4.0	9/ 0		4.0
4465	2.66	0.05	0.019	0.15	0.056	1.38	0.519	.53	.198	9.5	4.2	0.442		3.3
1200	0.29	0.07	0.241	0.27	1c9.0					3.1	3.6	1.161		3.6
5225	0° 00	0.11		0.24						2.4	2.9	1.208	2.8	3.0
5525	0.09	0.33	3.667	0.54	6.000									
6000	0.23	0.28	1.217	0.51	2.217					2.6	3.0	1.154	4.4	3.0
6300	0.38	0.30	0.789	0.73	1.921					1.9	2.3	1.211	3.5	2.6
6600	0.39	0.22	0.564	0.46	1.179					1.2	1.7	1.417	1.6	1.9
6900	0.21	0.22	1.048	0.34	1.619					1.4	1.6	1.143	2.3	1.6
7100	2.08	0.89	0.428	1.40	0.673									
7820														1.3
9400										2.5	2.7	1.08	2.1	2.4
8820										4.5	4.2	0.933	4.5	4.0
9400										_				
		•												

: - PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF BROMOFORM

ĺ

ā
5
2
륲
ē
Ĕ
8
Ξ
1
ō
Ξ
2
Ξ.
_
••
5
5
-
2
-
2
Ę.
5
ž
ā
Ē
S.
-
Ċ.
<u> </u>
Ξ
-
_
÷
2
~
ŝ.
Ē
S
S.
ٽ
۲
ē
2
2
-
ŧ.

			NEW	RECEN	ERATED	EXH	VUSTED	AVE	3000		-	MS DATA		
DEDVOLUMES		K)	RBON	CAR	BON	CA	RBON				CAC		PLA	NT
	-	0	1/0	0	1/0	0	1/0	0	1/0	-	0	1/0	-	0
900	0.56	0.02	0.036	0.00	0.000	0.13	0.232							
680	1.99	0.00	0.000	0.00	0.000	0.32	0.161			12.8	10.0	0.781		
906	3.48	0.00	0.000	0.00	0.000	0.73	0.210			19.7	10.3	0.523		
0121	1.44	0.00	0.000	0.00	0.000	1.01	U.701							
1580	0.30	0.00	0.000	0.00	0.000	0.84	2.800			7.6	9.8	1.289		
1835	0.35	0.00	0.000	0.05	0.143	0.71	2.029							
2 090	0.14	0.00	0.000	0.03	0.214	0.36	2.571							
2430	0.17	0.74	4.353	0.64	3.765	0.43	2.529	0.60	3.549					
3235	0.39	0.00	0.000			0.46	1.179							
3660	0.55	0.07	0.127	0.22	0.400	0.36	0.655	0.22	0.394	8.5	9.6	1.129		9.8
4125	0.55	0.00	0.000	0.13	0.236	0.34	0.618	0.16	0.285	8.6	8.6	1.0		6.8
1465	0.00	0.00		0.08		0.14		0.07		_				4.0
1200	0.55	0.11	0.200	0.00	0.000									3.9
5225	2.98	0.22	0.074	0.12	0.040			0.17	0.057	2.9	3.5	1.207	3.0	1.9
5525	1.05	0.34	0.324	0.42	0.400			0.38	0.362					
6006	2.84	0.51	0.180	0.54	0.190			0.53	0.185	0.3	3.8	12.667	2.5	0.4
6300	2.13	0.46	0.216	0.94	0.441			0.70	0.329	1.2	0.0	0	0.6	0.2
6600	1.15	0.36	0.313	0.59	0.513			0.48	0.413	1.0	0.0	0	0.3	0.0
6906	1.77	0.39	0.220	0.55	0.311			0.47	0.266	0.1	0.1	1.0	0.2	0.0
7100	0.23	0.20	0.870	0.25	1.087			0.23	0.978					
7820														0.3
90 F 8										0.1	1.8	18.0	0.0	0.1
8820										0.0	0.0	0	0.1	0.0
9400														

• -

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF ETHYLBENZENE

....

.

BEDVOLUMES		C/	NEW RBON	REGEN CA	NERATED RBON	EXHA CAI	USTED RBON
	1	0	0/1	0	0/1	0	0/1
300	45	115	2.556	70	1.556	85	1.889
600	325	35	0.108	35	0.108	9 5	0.292
900	125	15	0.120	20	0.160	110	0.880
1240	240	105	0.438	25	0.104	130	0.542
1580	55	35	0.636	45	0.818	250	4.545
1835	90	120	1.333	45	0.500	150	1.667
2090	25	25	1.000	0	0.000	35	1.400
2430	135	25	0.185	0	0.000	20	0.148
3235	60	130	2.167			95	1.583
3660	35	0	0.000	30	0.857	30	0.857
4125	80 °	35	0.438	0	0.000	45	0.563
4465	75	50	0.667	30	0.400	25	0.333
4800	65	45	0.692	35	0.538		
5225	200	40	0.200	230	1.150		
5525	60			235	3.917		
6000	220	110	0.500	40	0.182		
6300	245	175	0.714	80	0.327		
6600	510	75	0.147	145	0.284		
6300	270	125	0.463	60	0.222		
7100	360	155	0.431	135	0.375		
9400	135	25	0.185	50	0.370		

I- Influent Concentration, ng/l; O- Effluent Concentration, ng/l; O/I- Fractional Concentration

E-9

Sec. 1

<u>.</u>

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF CHLOROBENZENE

Į

BEDVOLUMES		C/	NEW RBON	RECENCA	NERATED RBON	EXHA CAF	USTED RBON
	1	0	0/1	0	0/1	0	0/1
300	215	100	0.465	9	0.042	475	2.209
600	885	130	0.147	170	0.192	245	0.277
900	270	25	0.093	45	0.167	535	1.981
1240	1840	295	0.160	100	0.054	390	0.212
1580	1190	180	0.151	120	0.101	1015	0.853
1835	1005	390	0.388	105	0.104	560	0.557
2090	135	100	0.741	40	0.296	200	1.481
2430	730	120	0.164	45	0.062	160	0.219
3235	1550	345	0.223			480	0.310
3660	120	50	0.417	60	0.500	185	1.542
4125	300	125	0.417	125	0.417	270	0.900
4465	295	150	0,508	135	0.458	190	0.644
4800	190	165	0.868	80	0.421		
5225	260	120	0.462	220	0.846		
5525	195			255	1.308		
6000	345	235	0,681	60	0.174		
6300	315	345	1.095	245	0.778		
6600	890	510	0.573	135	0.152		
6900	525	575	1.095	295	0.562		
7100	9405	2050	0.218	580	0.062		
9400	445	230	0.517	385	0.865		

I- Influent Concentration, ng/1; 0- Effluent Concentration, ng/1; 0/1- Fractional Concentration

- -

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF 1, 3 DICHLOROBENZENE

2

. 3€ €

A

ĺ

BEDVOLUMES		СА	NEW RBON	REGEN	NERATED RBON	EXHA	USTED RBON
	1	0	0/1	0	0/1	0	0/1
300	1315	35	0.027	15	0.011	215	0.163
600	1610	50	0.031	20	0.012	190	0.118
900	4945	0	0.000	70	0.014	180	0.036
1240	4095	70	0.017	20	0.005	80	0.020
1580	4015	20	0.005	15	0.004	295	0.073
1835	5930	100	0.017	25	0.004	180	0.030
2090	135	0	0.000	25	0.185	110	0.815
2430	1965	25	0.013	0	0.000	250	0.127
3235	905	0	0.000			215	0.238
3660	445	20	0.045	20	0.045	145	0.326
4125	620	20	0.032	30	0.048	195	0.315
4465	275	15	0.055	50	0.182	160	0.582
4800	165	200	1.212	150	0.909		
5225	1575	75	0.048	250	0.159		
5525	1980			325	0.164		
6000	375	210	0.560	50	0.133		
6300	585	160	0.274	100	0.171		
6600	575	40	0.070	<u>95</u>	0.165		
6900	610	640	1.049	90	0.148		
7100	1183	195	0.165	30	0.025		
9400	130	60	J.462	95	0.731		

I- Influent Concentration, ng/l; 0- Effluent Concentration, ng/l; 0/I- Fractional Concentration

.

i

E-11

- . .

<u>_</u>

and the state of the second second second second second second second second second second second second second

PERFORMANCE O	= GRA	NUL	AR	ACTIVATED	CARBON
FOR REMOVA	LOF	1, 4	DI	CHLOROBENZ	ENE

BEDVOLUME		C/	NEW ARBON	RECEI	NERATED RBON	EXH. CA	AUSTED RBON
	1	Ó	0/1	0	0/1	0	0/1
300	2010	15	0.007	65	0.032	190	0.095
600	2815	345	0.123	70	0.025	190	0.067
900	5070	0	0	105	0.021	145	0.029
1240	4545	165	0.036	55	0.012	195	0.043
1580	4415	55	0.012	50	0.011	330	0.075
1835	6820	100	0.015	35	0.005	245	0.036
2090	200	40	0.200	30	0.150	205	1.025
2430	3760	30	0,008	40	0.011	470	0.125
3235	2075	15	0.007			365	0.176
3660	1280	0	0	20	0.016	230	0.180
4125	2195	20	0.010	50	0.024	310	0.148
4465	835	0	0	100	0.120	290	0.347
4800	490	199	0.406	340	0.694		
5225	820	210	0.256	175	0.213		
5525	750			320	0.427		
6000	2075	220	0.106	285	0.137		
6300	3025	135	0.045	210	0.069		
6608	3175	445	0.140	210	0.066		
6900	1525	490	0,321	95	0.062		
7100	6344	0	0	240	0.038		
9400	475	20	0.042	45	0.095		

I- Influent Concentration, ng/1; O- Effluent Concentration, ng/1; O/I- Fractional Concentration

••

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF 1, 2 DICHLOROBENZENE

ي بعديها مع

ľ

ĺ

BEDVOLUMES		c/	NEW RBON	REGE	NERATED RBON	EXHA	USTED RBON
	1	0	.0/1	0	0/1	0	0/1
300	2220	30	0.014	30	0.014	260	0.117
600	4800	45	.0.009	40.	0.008	230	0.048
900	7890	15	0.002	175	0.022	270	0.034
1240	6510	45	0.007	35	0.005	240	0.037
1580	4655	60	0.013	75	0.016	535	0.115
1835	6840	75	0.011	30	0.004	390	0.057
2090	230	25	0.109	60	0.261	225	0.978
2430	2420	45	0.019	50	0.021	480	0.198
3235	1410	25	0.018			410	0.291
3660	1170	15	0.013	55	0.047	270	0.231
4125	3140	55	0.018	100	0.032	365	0.116
4465	1325	25	0.019	125	0,094	330	0.249
4800	590	70	0.119	180	0.305		
5225	430	90	0.209	80	0.186		
5525	325			80	0.246		
6000	1520	40	0.026	95	0.063		
6300	2745	0	0	80	0.029		
5608	3030	155	0.051	70	0.023		
6900	210	235	1.119	50	0.238		
7100	3906	610	0.156	200	0.051		
9400	585	50	0.085	100	0.171		

1- Influent Concentration, ng/1; 0- Effluent Concentration, ng/1; 0/1- Fractional Concentration

E-13

State Street

~

. . .
PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF 1, 2, 4 TRICHLOROBENZENE

BEDVOLUMES		CA	NEW RBON	NERATED RBON	EXHA CAF	USTED	
	1	0	Ō/I	0	0/1	0	0/1
300	17290	625	0.036	610	0.035	1295	0.075
600	12590	85	0.007	50	0.004	655	0.052
900	12160	50	0.004	1010	0.083	550	0,045
1240	16180	95	0.006	50	0.003	365	0.023
1580	18190	105	0.006	70	0.00%	1060	0.058
1835	44345	105	0.002	60	0.001	705	0.016
2090	220	365	1.659	545	2.477	1080	4,909
2430	7495	60	0.008	195	0,026	1050	0.140
3235	4020	85	0.021			945	0.235
3660	7420	90	0.012	70	0.009	1015	0,137
4125	10660	_50	0.005	370	0.035	675	0.063
4465	4685	70	0.015	595	0.127	815	0.174
4800	3105	100	0.032	135	0.043		
5225	1090	95	0.087	155	0.142		
5525	1095			85	0.078		
6000	5440	810	0.149	255	0.047		
6300	4840	65	0.013	165	0.034		
6600	8655	190	0.922	140	0.016		
6900	7840	385	0.049	75	0.010		
7100	7439	75	0.010	190	0.026		
5400	2045	50	0.024	120	0.059		

I- Influent Concentration, ng/l; O- Effluent Concentration, ng/l; O/I- Fractional Concentration

E-14

1. 2. 3.

PERFORMANCE OF CRANULAR ACTIVATED CARBON FOR REMOVAL OF NAPHTHALENE AND 1, 2, 3 TRICHLOROBENZENE

l

BEDVOLUMES		CA	NEW RBON	SEGEN CA	RERATED REON	EXHAUSTED CARBON		
	1	0	0/1	0	0/1	0	0/1	
300	9725	475	0.049	480	0.049	665	0.068	
600	7865	75	0.010	115	0.015	435	0.355	
900	7320	65	0.009	1095	0.150	435	0.059	
1240	4990	70	0.014	245	0.049	380	0.076	
1 580	3950	150	0.038	140	0.035	635	0.161	
1835	7930	35	0.004	20	0.003	405	0.051	
2090	1305	260	0.199	1365	1.046	1500	1.149	
2430	1880	165	0.088	345	0.184	470	0,250	
3235	2335	50	0.021			390	0.107	
3660	3560	50	0.014	345	0.097	470	0.132	
4125	5845	15	0.003	155	0.027	395	0.068	
4465	1335	45	0.034	115	0.086	435	0.326	
4800	1460	15	0.010	20	0.014			
5225	235	25	0.106	50	0.213			
5525	250			40	0.160			
6000	680	280	0.412	65	0.096			
6300	530	1280	2.415	40	0.075			
6606	845	250	0.296	20	0.024			
6900	560	1485	2.652	15	0.027			
7100	1124	410	0.365	85	0.076			
2400	2515	35	0.014	20	0.008			

I- Influent Concentration, ng/l; O- Effluent Concentration, ng/l; O/l- Fractional Concentration

.....

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF HEPTALDEHYDE

6

and the second second

5

۰.

2 5

BEDVOLUMES		·c/	NEW ARBON	REGE	NERATED RBON	EXH CA	AUSTED RBON
	I	0	0/1	0	0/1	0	0/1
300	40	80	2.000	105	2.625	0	0
600	0	0		0		55	
900	140	40	0.286	75	0.536	0	0
1240	80	0	0	110	1.375	80	1.000
1580	85	75	0.882	65	0.765	435	5.118
1835	160	20	0.125	15	0.094	215	1.344
2090	35	15	0.429	0	0	0	0
2430	205	120	0.585	80	0.390	0	0
3235	40	35	0.875			45	1.125
3660	50	50	1.000	135	2.700	40	0.800
4125	130	115	0.885	135	1.038	55	0.423
4465	0	30		85		0	
4800	240	35	0.146	25	0.104		
5225	1910	50	0.026	265	0.139		
5525	370	T		345	0.932		1
5000	180	190	1.056	75	0.417		· ·
6300	150	220	1.467	130	0,867		
660e	1445	160	0.111	200	0.138		
6930	1530	0	0	140	0.092		
7100	0	T					
3460	0						

I- Influent Concentration, ng/1; 0- Effluent Concentration, ng/1; 0/I- Fractional Concentration

E-16

~

÷ _

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF P-XYLENE

EEDVOLUMES		c/	NEW ARBON	REGE	NERATED RBON	EXHAUSTED CARBON		
	1	Ō	0/1	0	0/1	0	0/1	
300	80	60	0.750	0	0	115	1.438	
600	95	35	0.368	25	0.263	100	1.053	
900	60	0	0	0	0	105	1.750	
1240	55	95	1.727	0	0	75	1.364	
1580	50	30	0.600	30	0.600	220	4.400	
1835	75	120	1.600	35	0.467	120	1.600	
2030	30	30	1.000	0	0	40	1.333	
2430	55	35	0.636	0	0	30	0,545	
3235	125	50	0.400			90	0,720	
3660	60	0	0	35	0,583	30	0,500	
4125	65	30	0.462	35	0.538	50	0.769	
4465	35	40	1.143	25	0.714	0	0	
4806	85	20	0.235	0	0			
5225	55	0	0	135	2.455			
5525	30			95	3.167			
6000	65	40	0.615	20	0.308			
6300	0	75		45				
6600	0	120		80				
6900	190	70	0.368	65	0.342			
7100				220				
9400	70	55	0.786	80	1.143			

I- Influent Concentration, g/1; 0- Effluent Concentration, g/1; 0/I- Fractional Concentration

7 _

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF M-XYLENE

(

.

BEDVOLUMES		C	NEW CARBON		NERATED RBON	EXHAUSTED CARBON		
	I	0	0/1	0	0/1	0	0/1	
300	155	270	1.742	105	0.677	440	2.839	
600	360	105	0.292	90	0.250	295	0.819	
900	50	25	0.500	20	0.400	350	7.000	
1240	185	390	2.108	25	0.135	235	1.270	
1580	90	80	0.889	95	1.056	695	7.722	
1835	110	315	2.864	100	0.909	460	4.182	
2090	70	65	0.929	15	0.214	125	1.786	
2430	135	110	0.815	15	0.111	75	0.556	
3235	320	95	0.297	1		310	0.969	
3660	215	55	0.256	100	0.465	105	0.488	
4125	180	75	0.417	35	0.194	180	1.000	
4465	150	120	0.800	60	0,400	135	0.900	
4800	120	40	0.333	25	0.208			
5225	75		[275	3.667	_		
5525	70	T		185	2.643		Τ	
6000	110	60	0.545	35	0.318			
6300	105	95	0.905	100	0.952			
5600	215	65	0.302	175	0.814			
6900	200	80	0.400	115	0.575			
7100	490	665	1.357	500	1.020			
9400	175	65	0.371	125	0.714		T	

I- Influent Concentration, ng/1; O- Effluent Concentration, ng/1; O/I- Fractional Concentration

<u>ч</u>.

يعو

. F I

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF 2-METHYL NAPHTHALENE

BEDVOLUMES		C/	NEW RBON	NERATED RBON	EXHAUSTED CARBON		
	I	0	0/1	0	0/1	0	0/1
300	130	0	0	0	0	0	0
600	75	30	0.400	0	0	50	0.567
900	100	15	0.150	45	0.450	40	0.400
1240	105	40	0,381	165	1,571	225	2.143
1580	130	0	0	Q	0	55	0,423
1835	135	30	0.222	20	0.148	90	0.667
2090	0						
2430	365	170	0.466			25	0.068
3235	40						
3660	0						
4125	40						
4465	0						
4800	0						
5225	265			90	0.340		
5525	185						
6000	315	280	0.889	95	0.302		
6300	80	100	1.250	30	0.375		
6608	85	20	0.235	30	0,353		
6900	0	155					
7100	75	105	1.400	25	0.333		
9400	95	40	0.421				

I- Influent Concentration, ng/1; O- Effluent Concentration, ng/1; O/I- Fractional Concentration

FERFORMANCE OF GRANULAR ACTIVATED CAKBON FOR REMOVAL OF 1-METHYL NAPHTHALENE

(

Ā

BEDVOLUMES		C/	NEW ARBON	REGE	NERATED RBON	EXHAUSTED CARBON		
	1	0	0/1	0	0/1	0	0/1	
300	80	0	0	0	0	0	0	
500	45	30	0.667	0	0	25	0.556	
900	90	0	0	55	0.611	60	0.667	
1240	120	25	0.208	50	0.417	50	0.417	
1580	115	0	0	0	0	110	0.957	
1835	70	0	0	0	0	40	0.571	
2090	0	0		0		0		
2430	385	170	0.442	0	0	15	0.039	
3235	45	0	0			0	0	
3660	0	0		0		0	1	
4125	80	0	0	0	0	0	0	
4465	20	0	0	0	0	0	0	
4800	0	40		0				
5225	290	0	0	115	0.397			
5525	85			0	0		1	
6000	365	475	1.301	130	0.356			
6300	80	135	1.688	65	0.813			
6600	160	65	0.406	40	0.250			
6900	0	205		0				
7100	485	355	0,732	65	0.134			
9400	85	15	0.176	0	0			

I- Influent Concentration, ng/l; O- Effluent Concentration, ng/l; O/I- Fractional Concentration

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF TOTAL ORCANIC HALOGEN - TOX

ţ

BEDVOLUMES		CA	NEW RBON	REGEN	IERATED RBON	EXHAUSTED CARBON		
	1	a	0/1	0	0/1	0	0/1	
300	160.0	50.0	.313	56.9	. 355	142.0	.888.	
600	204.0	35.6	.175	38.0	. 186	149.0	.730	
900	294.0	113.0	. 384	50.2	.205	167.0	. 568	
1240	263.0	116.0	.441	97.3	.370	172.0	.654	
1580	316.0	75.4	.239	133.0	.421	187.0	. 592	
1835	400.0	38.7	.097	123.0	. 308	222.0	. 555	
2057	276.0	58.4	.212	47.3	.171	139.0	. 504	
2430	147.0	38.0	.259	59.9	.407	130.0	.884	
3235	112.0					158.0	1.411	
3660	150.0	70.6	.471	64.6	.431	172.0	1.147	
4125	121.0	90.5	.748	105.9	. 868	115.0	. 95 0	
4465	144.0	102.0	.708	100.0	. 694	90.8	.631	
4800	105.0	148.0	1.410	111.0	1.057			
5225	147.0	72.3	.492	85.5	. 582			
5525	151.0	66.5	.440	83.0	. 550			
6404	111.0	66.0	. 595	79.3	.714			
6300	93.4	68.1	.729	117.0	1.253			
6600	86.5	91.7	1.060	73.2	.846			
6980	91.1	64.3	.706	76.6	.841			
7100								
9400								

1- Influent Concentration, ug/1; 0- Effluent Concentration, ug/1; 0/1- Fractional Concentration

ъ¥ у

*

.

PERFORMANCE OF GRANULAR ACTIVATED CARBON FOR REMOVAL OF PURGABLE ORGANIC HALOGEN - POX

シーナー・シート

l

BEDVOLUMES		СА	NEW RBON	EXHAUSTED CARBON			
	1	0	0/1	0	0/1	0	0/1
300	98.4	6.2	. 063	4.2	.043	75.1	. 763
600	129.0	23.1	. 179	21.1	. 164	112.0	,868
900	187.0	94.1	. 503	38.3	.205	116.0	. 620
1240	173.0	104.0	.601	93.1	.538	117.0	.676
1580	191.0	5.6	. 029	107.0	.560	118.0	.618
1835	210.0	5.ó	.027	77.5	, 369	139.0	. 662
2090	99.2	6.1	.061	3.4	.034	79.8	.795
2439	81.1	13.0	.160	15.5	. 191	65.2	.804
3235	33,6					83.7	2.491
3660	93.6	30.1	. 322	27.1	.290	40.3	.431
4125	34.0	38.1	1.121	45.6	1.341	46.0	1.353
4465	40.0	33.5	.833	38.8	.970	28.6	.715
4800	23.3	26.7	1.146	31.3	1.343		
\$225	30.9	24.9	. 806	25.9	.838		
5525	16.4	30.4	1.854	31.9	1.945		
6009	29.8	31.8	1.067	32.0	1.074		
6300	28.0	29.6	1.057	26.4	.943		
6600	22.2	45.4	2.045	23.4	1.054		
6980	19.3	19.4	1.005	18.6	.964		
7100							
9400							

I- Influent Concentration, µg/1; O- Effluent Concentration, µg/1; O/I- Fractional Concentration

. . .

٠.

- -

APPENDIX F

F١

PLANT DOWNTIME AND MAINTENANCE LOG

APPENDIX F

PLANT DOWNTIME AND MAINTENANCE LOG

(

h

ŧ

This section contains a chronological listing of equipment problems experienced during Part II of the test period.

PLART DOUNTIME AND MAINTENANCE LOG

いくもので、「こうから」

k

l

* Equipment or Process Causing Plant Shutdown (#) Number of Process Causing Downtime

Material Material	3650								
Manhours Manhours		4		Q	~	5			
(D) Chloring fion				<u> </u>					
Cerbon Adsorption (8)					-				
() [][ers		• 11						- -	
(2) Ozonation	·								
Kecarbonation		29 +	l87 (mixer)				<u></u>		
(4) Chemical Chemical	72 *	75 *							
(3) computer		5	<u> </u>	• 9	*	* \$, 	
Description Propjem	alcium carbonate deposits on 24" elivery line from flash mixer to locculator reduced the flow apolity to 0.7 MGD. The deposits ere partially removed by soaking a 363 inhibited hydrochloric acid or 22 hours.	he softened deposits were later moved by hydroflushing (high ressure water cleaning)	alcium carbonate deposits on bearbonation mixer turbine caused hbalance and excessive vibration. eposits were removed.	amputer maintenance	amputer maintenance	mputer maintenance			
(2) Langent (2) (2)	0960346			<u> </u>		3			
unopinus suntgomu	(•)	01 (4. 5.7)		6 (3)	8 (C)	5 (3)			
De te	Feb 4 to 7	Feb 17 5 to 21 5	Feb 9 to 20	feb 9	Feb 10	Feb 23			

F-3

PLANT DOWNTINE AND MAINTENANCE LOG

.

÷

(

* Equipment or Process Causing Plant Shutdown (#) Number of Process Causing Downtime

Meterial S					<u> </u>							
Manhours Maintenance	6	13	24			-	8	•		85		
(3) Chloring Eion												
(8) Vdsorption Carbon				<u></u>								
()) E11fors				<u></u>								
(9) (2005 (0)					552							
Recerbonetion												
Clerification (4)		e	<u></u>			<u> </u>		: :	12 *			
(3) Londer			÷ ÷ **				-					
Description Propj en	Power out	Flushed lime slaker and lime slurry feed tank; computer maintenance	Computer maintenance Lime system maintenance Recarbonation maintenance	Computer maintenance Lime system maintenance Aeration system maintenance	Tube failed in ozonizer	Inspect ozonizer	Remove ozonizer dielectric tube and wash unit	Aerator sump pump frozen	Aerator sump pump frozen	General maintenance		
(S) never totinent										<u> </u>		<u> </u>
(1) Suspinus Susta	م					<u>.</u>		(+ (+)	15 (4)		3 (3)	
87 m					<u> </u>	11	12	- -		20	2	
	E VON	Nov 4	NOM	ACM .	Nov . to 3	Nov	AOK	Nov	Nov	Nov to 3	NOV	

-

. ب

plait downtime and maintenance log

(

F.

Equipment or Process Causing Plant Shutdown
 (#) Number of Process Causing Downtime

Paterial S												 	
Menhours Menhours	m			+	~		12	11	13	5	8		
(2) (2) (2)													
(8) Vasorption Carbon										•			
(1) Filters													
(9) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	. 84	5 5	10										
Recarbonation				-									
Clarification (4)					*				8				
(3) Computer		* N	*			+							
Description Problem	ûzonizer inspected	Computer maintenance	Computer power supply fallure	Tightened stack gas compressor belts	Changed ui! - lime clarifier reservoir	Computer maintenance	Computer maintenance	Computer maintenance	Computer maintenance	Computer maintenance	Computer maintenance		
(2) Unaveilable						_	~						
(1) zunicqomu blant		2 (3)	(c) 2			(6)							
•3 •g	oct 12 to 13	Oct 14.	0ct 16	Oct 20	0ct 23	0ct 24	Oct 27	Oct 28	Oct 29	Oct 30	Oct 31		
	-												

ORIGINAL PAGE IS OF POOR QUALITY - -

PLANT DOMITINE AND MAINTENANCE LOG

ř

Λ

(

Equipment or Process Causing Plant Shutdown
 (#) Number of Process Causing Downtime

												كمناهد ويبر	
Reciel S											=		,
Maintenance Maintenance	s	N	~	R	-	2		2	•		8		
(a) (b) or inerion	2 بريد ميرين								,				
(8) Adsorption											•		* .
(1) Eilfeiz	- <u></u>						·=,						
Ozonation (5)	•			8								8	
(2) Kecerbonetion	10												
Chemical Clarification (4)						<u></u>						*	
(E) Computer							• •		* *	<u></u>			·
Description Problem	Recarbonation system maintenance	Calibrated pit probe	Naintenance on furnace controls lockouts; cleaned stack gas filter	Disassembled ozonizer and cleaned tubes	Replaced beit on devatering screw drive motor	Replaced bolt on dematering screw	Computer an intenance	Repair lime conveyor	Repair lime mixer	Computer maintenance	Lime bin vibrator belts	Ozonizer but of service; dryer solensid valve not working	Ĭ
(2) Intruent Intluent		<u> </u>								<u> </u>			-
(I) Sunscomus Jueid				<u> </u>			(C) (2 (2)			1 (4)	
93.60	Sep 12	Sep 15	Sep 16	161-16 10 20	Sep 21	Sep 22	Sep 23	Sep 25	Sep 30		0ct 2	Oct 8 to 11	

÷

F-6

PLANT DOWNTINE AND INTIMINCE LOG

~ ~

₽. I

1

٦

....

(

Equipment or Process Causing Plant Shutdown
 (#) Number of Process Causing Downtime

										_		-	
Leines &		<u></u>											
Manhours Mathours		-	•	4	4			•	•	1	~	•	
(a) (a)													
(8) Vasorption Cerbon													
(7) Filters													
(9) (2) (9) (9)													
Kecarbona 210n		12 (4) 5						نے ہے		14 (4)	24 (4)	11 (4)	
Clarification (4)		12 5(5)	11(5)							1	24	11	
(3) computer	*			# 10	+ 5	•	+	* 5		4			
problem	Computer maintenance	Studge furnace down	Sludge furnace dom	Computer / new facility interface 1300 - 1900	Computer maintenance 1200 - 1430	Computer maintenance 1330 - 1700	Computer maintenance 1130 - 1700	Computer muintenance 1000 - 1830	Computer anintenance	Flushed lime slurry feed tank	Furnace maintenance calibrated pit probe	Tightened stack gas compressor belts	1
(2) neveileble influent								*					
unopanus auredomu aneld	E •	•		5 (3)	5 (3)	3 (3)	6 (3)	9 (3)					
Dete	Pure 19	Aug 21	Aug 22	Aug 26	Aug 27	Aug 28	Aug 29	Sep 2	Sep 8	Sep 9	Sep 10	Sep 11	

-

F-8

PLANT DOWNTIME AND MAINTEMANCE LOG

Ļ

* Equipment or Process Causing Plant Shutdown (1) Number of Process Causing Downtime

	1		_											
Lairaj RM												·····		<u> </u>
Manhours Manhours Manhours		•	r							r N		13	 o	
(3) Chloring tion														
(8) Kdsorption								·				•		
()) [] [] [612														
Ozonation (6)	† <u> </u>													
(2) Kecarbonation									-	-		æ)	13	
(() Chemical Chemical	19					*0	-					8 (5) 13 1	13 (5)	
(3) Computer													· · · ·	
Prob]ec	Replaced lime slurry feed pump mechanical seal - on lime at 1900	Computer maintenance					Down 0400 - 2400)zonizer maintenance	lightened stack gas compressor elts. Down 1300 - 1400		lecarbonation maintenance. Letator sump pump frozen by calcium arbonate deposits		
(S) Influent Influent	* M				* @			• 8			• •			
(1) ansgonu sueld	3 (2)			~	3 (2)		0 (2)	8 (2)	3 (2)		3 (2)	3 (4)		
00 2 60	1 (2)	Jul 2	Jul B	ET INC	11 14	Jul 16	Jul 17 2	Jul 18	12 Inc	Jul 22	La 14	Jul 24 1	Jul 25	

<u>ب</u> د.

APPENDIX G WMS COSTS

.....

Sec. Ash

APPENDIX G

WMS COSTS

This section contains operating and maintenance costs incurred by each sensor/subsystem in the WMS during the test period. A list of recommended spares is also included.

Sample Collection and Distribution System

The following expenditures can be expected for 8 months of continuous operation:

1)	50 Stainless Steel Filter Sci	reens \$ 66.00
2)	Pneumatic Cylinder	45.00
3)	Pump Boots	20.00
4)	Pump Parts	66.00
5)	Drive Belts	12.50
6)	Red Valves	62,50
7)	Pressure Transducers	165.00
8)	Red Valves Sleeves (4)	120.00
		Tota1 = \$557.00

Recommended Spares:

50 Stainless Steel Filters (10)
 Pressure Gages (1)
 Pump Boots (4)
 Monyo Pump (1)
 Drive Belts (2)
 Red Valves (1)
 Pressure Transducer (1)
 Red Valve Sleeves (4)
 Pneumatic Back Flushing Cylinder (1)

The only major hardware components to fail during the test period were Red Valves, one Monyo pump, and one pneumatic cylinder. As such, it is not yet possible to estimate the life expectancy of the system except to state that it should be at least 4 years.

During the course of the test period, 7 man-hours were spent for scheduled maintenance and 9.75 man-hours for unscheduled maintenance.

Commercial Sensors

Total Organic Carbon

The following expenditures can be expected for 8 months of continuous operation:

1)	Phosphoric Acid	\$125.00
2)	Pump Tubing	33.00
3)	Sample Pump	250,00
4)	Persulfate	744.00
5)	U.V. Lamps (3)	540.00
6)	Filters	33.00
		Total = \$1725.00

Recommended Spares:

Sample Pump (1)
 Reagent Pump (1)
 U.V. Chamber Pump (1)
 U.V. Lamps (3)
 Pump Tubing
 Fiberfax Filter (Mist Filter) (1 lb.)

The overall life of the analyzer has yet to be determined. During the course of the test period 32.0 man-hours were spent on routine maintenance and 11.5 man-hours on unscheduled maintenance.

Hardness Analyzer

The following expenditures can be expected for 8 months of continuous operation:

1)	Bromide Electrodes	\$ 175.00
2)	Copper Electrodes	273.00
3)	#113201 Reagent (21.45 Gal.)	1393.00
4)	Pump Tubes (3 sets)	90.00
5)	Calcium Carbonate	7.00
6)	Ammonium Hydroxide	3.00
7)	Hydrochloric Acid	3.00
•	-	Total = \$1946.00

Recommended Spares:

- 1) Pump Tubes (2 sets)
- 2) Promide Electrode (1)
- 3) Copper Electrode (1)

G-2

The overall life of the analyzer has yet to be determined. However, the apparent life expectancy of several of the components has been determined:

- 1) Electrodes 6 months
- 2) Pump Tubes 3 months
- 3) Flow Cell 2 years

During the course of the test period, 67.75 man-hours were spent on routine maintenance and 4.75 man-hours on unscheduled maintenance.

Nitrate Analyzer

- Trickets

The following expenditures can be expected for 8 months of continuous operation:

1)	Phosphoric Acid	\$329.00
2)	Marshals Reagent	327.00
3)	Sulfanilamide	198.00
4)	Poppet Valves	30.00
5)	Cadmium	50.00
5)	Potassium Nitrate	8.00
7)	Ammonium Acetate	10.00
8)	Acetic Acid	10.00
		Total = \$952.00

Spares

- 1) Poppet Valves (4)
- 2) Metricone Drive w/ Motor (1)
- 3) Pump Bellows (1)
- 4) Pump Motor (1)
- 5) Diaphragms (Air Pump) (2)

The overall life expectancy of the analyzer has yet to be determined. However, the apparent life expectancy of several components has been determined.

- 1) Metricone 2 years
- 2) Pump Motor 3 years
- 3) Pump Poppet Valves 6 months

During the course of the test period, 19.5 man-hours were spent on scheduled maintenance and 22.0 man-hours on unscheduled maintenance.

pH Analyzer

The only operating cost incurred during operation will be \$50.00 for standards. It is recommended that a spare electrode be kept on hand. The estimated life expectancy of the electrode is 3 years. During the course of the test period, 2.0 man-hours were spent on routine maintenance and 1.0 man-hour on unscheduled maintenance.

Residual Chlorine Analyzer

The following expenditures can be expected for 8 months of continuous operation:

1)	Redox Electrodes	\$150.00
2)	Iodine Electrodes	150.00
3)	#112501 Reagent	456.00
4)	#112502 Reagent	456.00
5)	Residual Chlorine Standard	19.80
6)	Pump Tube Sets (3)	150.00
	•	Total = \$1381.80

Recommended Spares:

Pump Tubes (2 sets)
 Redox Electrode (1)
 Iodine Electrode (1)

The overall life expectancy of the analyzer has yet to be determined. However, the apparent life expectancy of several of the components has been determined:

- 1) Electrodes 6 months
- 2) Pump Tubes 3 months
- 3) Temperature Controlled Flow Cell 3 years

During the course of the test period, 50.75 man-hours were spent on routine maintenance and 2.25 man-hours on unscheduled maintenance.

Sodium Analyzer

The following expenditures can be expected for 8 months of continuous operation:

1)	Sodium Electrode (1)	\$165.00
2)	Reference Electrode (1)	42.00
3)	Anhydrous Ammonia (1 cyl.)	45.00
4)	Sodium Chloride (3.3 lbs.)	14.52
5)	Reference Electrode Electrolyte	15.00
	Total =	\$281.52

Recommended Spares:

1) Sodium Electrode (1)

2) Reference Electrode (1)

The overall life expectancy of the analyzer has yet to be determined. However, the life expectancy of the reference electrode is approximately 1 year. During the course of the test period, 70.00 man-hours were spent on scheduled maintenance and 13.5 man-hours on unscheduled maintenance.

Temperature Sensor

The following expenditure can be expected for 8 months of continuous operation of the two temperature sensors.

Action Pac electronics module (1) \$125.00

The only recommended spare is 1 Action Pac electronics module.

The life expectancy of the sensor has yet to be determined. During the course of the test period, .5 man-hour was spent on scheduled maintenance and .5 on unscheduled maintenance.

Turbidity

l

The following expenditures can be expected for 8 months of continuous operation of the Sigrist Model UP52-TJ Photometer:

1)	Chart Paper (2 rolls)		\$32.00
2)	Light Source (2)		15.00
3)	Glow Lamp (1)		9.50
•		 Total =	\$56.50

Recommended Spares:

- 1) Chart Paper (1 roll)
- 2) Light Sources (2)

Since there have been no major component failures in the Sigrist Photometer, the life expectancy has yet to be determined. During the course of the test period, 2.25 man-hours were spent on scheduled maintenance and .25 man-hour on unscheduled maintenance.

Ammonia Analyzer

The following expenditures can be expected for 8 months of continuous operation:

1)	Sodium Hypochlorite	\$501.00
2)	Sodium Hydroxide	52.00
3)	Phenol	134.00
4)	Sodium Metaphosphate	7.50
5)	Ammonium Chloride	4.00
6)	Pump Check Valves (4)	60.00
7)	Hydrochloric Acid	 30.50
		 Tota1 = \$789.00

Recommended Spares:

- 1) Metricone Drive Unit w/motor (1)
- 2) Pump Check Valves (4)
- 3) Glass Flow Cell (1)
- 4) Spare Pump Motor (1)
- 5) Pump Bellows (1)
- 6) Diaphragms (Air Pump) (2)

The overall life expectancy of the analyzer has yet to be determined. However, the apparent life expectancy of several of the components has been determined:

- Metricone Assembly 2 years
 Pump Motor 3 years
- 3) Pump Check Valves 3-5 months

During the course of the test period, 159.75 man-hours were spent on scheduled maintenance and 18.25 man-hours on unscheduled maintenance.

Conductivity

The Beckman conductivity sensor required no consumables and suffered no part failures during the test period.

There are no recommended spares for this sensor.

During the course of the test period, .5 man-hour was spent on scheduled maintenance, and no man-hours on unscheduled maintenance.

Dissolved Oxygen Analyzer

The following expenditures can be expected for 8 months of continuous operation for the Delta Scientific unit:

1)	Sodium Sulfite	\$ 10.00
2)	Cobalt Chloride	8.00
3)	Membrane Kit (1)	42.00
4)	Electrolyte	15.00
5)	D.O. Test Kit	25.00
		Total = \$100.00

Recommended Spares:

1) Membrane Kit (3)

The overall life expectancy of the analyzer has yet to be determined. The only significant failure which took place was the electrode. Based on this it appears the electrode's life expectancy is 4 years.

During the course of the test period, 4.0 man-hours were spent on routine maintenance and 0.5 man-hour on unscheduled maintenance.

Chemiluminescence Biosensor

ţ.

, er K

ł

F

. Pi

Carl Street and a street and a street and a street and a street and a street and a street and a street and a st

. .

Since the biosensor is a prototype unit unique to the WMS, the major initial matérial cost figures are presented:

1)	Photometer (1)	\$2,000.00
2)	Peristaltic Pumps (2)	1,046.00
3)	Chart Recorder (1)	700.00
4)	Teflon Valves (5)	600.00
5)	Air Solenoid Valves (6)	480.00
6)	Flow Meters (2)	100.00
7)	Tubing and Fittings	200.00
		Total = \$5,126.00

The following expenditures can be expected for 8 months of continuous operation:

1)	5- Amino- 2,3- dihydro- 1,4 -	\$ 30.00
• •	prinalazinegiane (12 g)	7 50
2)	Sodium Hydroxide (50%) (1 qt)	/.50
3)	Hydrogen Peroxide (30%) (1 pt)	11.00
4)	Carbon Monoxide (3 cylinders)	173.50
5)	Pump Tubes (4 pks)	10.00
6)	Solenoid Valves (2)	180.00
7)	Valve Bushings (4)	6.00
		Total = \$418.00

Recommended Spares:

1) Photomultiplier Tube (1)

- 2) Valve Bushings (8)
- Teflon Valve (1)
 Solenoid Valve (1)
- 5) Peristaltic Pump (1)

As there have been no major component failures, the life expectancy of the biosensor has yet to be determined.

During the course of the test period, 77.0 man-hours were spent on scheduled maintenance and 15.0 man-hours on unscheduled maintenance.

Coliform Detector

The estimated material cost for the breadboard detector is \$5K.

G-7

The following expenditures can be expected for 8 months with one run a day:

1)	Media (5.6 1bs)	\$ 89.00
2)	Platinum Electrodes (3)	255.00
3)	Nitric Acid (2 pts)	45.00
4)	Pump Tubes (5 pks)	33.50
5)	Thermometers (5)	118.00
6)	Thermistors (3)	61.00
7)	Temperature Control Boards (2)	125.00
8)	Electrolyte (6.6 pts)	40.00
- •		Total = \$755.50

Recommended Spares:

Thermometers (5)
 Electrodes (3)
 Peristaltic Pump (1)
 Teflon Valves (2)
 Valve Bushings (10)
 Valve Port Faces (10)
 Solenoid Valves (2)

As yet the overall life expectancy of the coliform detector has not been determined. However, the apparent life expectancy of the electrodes appears to be 3 years. The life expectancy of the valve bushings and nort faces is also 3 years.

During the course of the test period, 110.00 man-hours were spent on routine maintenance and 100.00 man-hours on unscheduled maintenance.

Gas Chromatograph

The initial cost of the WMS automated GC was \$78K.

The following expenditures can be expected for 8 months of continuous operation:

1)	Nitrogen Gas (2 cyl)	\$130.00
2)	Argon-methane Gas (3 cyl)	150.00
3)	Chart Paper (4 boxes)	237.00
4)	Printer Head (1)	100.00
5)	Valve Bushings (2)	50.00
		Total = \$657.00

Recommended Spares:

1) Preparative Column Prefilter (1)

- 2) Bendix Valve Bushings (2)
- 3) Analytical Column (1)

The useful life of the GC has yet to be determined. The instrumentation should last for many years; however, the analytical and preparative columns may require replacement more often.

During the course of the test period, 51.0 man-hours were spent on routine maintenance and 140.0 man-hours on unscheduled maintenance.

Deionized Water System

(

The following expenditures can be expected for 8 months of continuous operation:

1)	Rogard Filters	\$ 130.00
2)	Carbon Filters	160.00
3)	Ion-Exchange Filters	475.00
4)	Reverse Osmosis Cartridge	550.00
5)	Pump Impellers (3)	16.50
6)	Sodium Hypochlorite	23.00
7)	Chlorine Filter	16.00
		Total = \$1370.50

Recommended Spares:

- 1) Pump Impellers '3)
- 2) Rogard Filters (8)
- 3) Carbon Filters (4)
- 4) Ion-Exchange Filters (8)

The useful life of the deionized water system has yet to be determined. The life expectancy of the various filters has varied significantly throughout the test pariod.

During the course of the test period, 10.0 man-hours were spent on routine maintenance and 3.5 man-hours on unscheduled maintenance.