15 research outputs found
A novel Tetrahymena thermophila sterol C-22 desaturase belongs to the fatty acid hydroxylase/desaturase superfamily
Sterols in eukaryotic cells play important roles in modulating membrane fluidity and in cell signaling and trafficking.
During evolution, a combination of gene losses and acquisitions gave rise to an extraordinary diversity of sterols in
different organisms. The sterol C-22 desaturase identified in
plants and fungi as a cytochrome P-450 monooxygenase
evolved from the first eukaryotic cytochrome P450 and was lost
in many lineages. Although the ciliate Tetrahymena thermophila desaturates sterols at the C-22 position, no cytochrome
P-450 orthologs are present in the genome. Here, we aim to
identify the genes responsible for the desaturation as well as
their probable origin. We used gene knockout and yeast heterologous expression approaches to identify two putative
genes, retrieved from a previous transcriptomic analysis, as
sterol C-22 desaturases. Furthermore, we demonstrate using
bioinformatics and evolutionary analyses that both genes
encode a novel type of sterol C-22 desaturase that belongs to
the large fatty acid hydroxylase/desaturase superfamily and the
genes originated by genetic duplication prior to functional
diversification. These results stress the widespread existence of
nonhomologous isofunctional enzymes among different lineages of the tree of life as well as the suitability for the use of
T. thermophila as a valuable model to investigate the evolutionary process of large enzyme families.Fil: Sanchez Granel, María L. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología (UBA-CONICET); Argentina.Fil: Fricska, Annamária. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología (UBA-CONICET); Argentina.Fil: Gargiulo, Laura B. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología (UBA-CONICET); Argentina.Fil: Nudel, Clara B. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología (UBA-CONICET); Argentina.Fil: Nusblat, Alejandro D. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología (UBA-CONICET); Argentina.Fil: Siburu, Nicolás G. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Uttaro, Antonio Domingo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Fil: Maldonado, Lucas L. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica (UBA-CONICET); Argentina
Genome analysis of sphingolipid metabolism-related genes in Tetrahymena thermophila and identification of a fatty acid 2-hydroxylase involved in the sexual stage of conjugation
Sphingolipids are bioactive lipids present in all eukaryotes. Tetrahymena thermophila is a ciliate that displays remarkable sphingolipid moieties, that is, the unusual phosphonate-linked headgroup ceramides, present in membranes. To date, no identification has been made in this organism of the functions or related genes implicated in sphingolipid metabolism. By gathering information from the T. thermophila genome database together with sphingolipid moieties and enzymatic activities reported in other Tetrahymena species, we were able to reconstruct the putative de novo sphingolipid metabolic pathway in T. thermophila. Orthologous genes of 11 enzymatic steps involved in the biosynthesis and degradation pathways were retrieved. No genes related to glycosphingolipid or phosphonosphingolipid headgroup transfer were found, suggesting that both conserved and innovative mechanisms are used in ciliate. The knockout of gene TTHERM_00463850 allowed to identify the gene encoding a putative fatty acid 2-hydroxylase, which is involved in the biosynthesis pathway. Knockout cells have shown several impairments in the sexual stage of conjugation since different mating types of knockout strains failed to form cell pairs and complete the conjugation process. This fatty acid 2-hydroxylase gene is the first gene of a sphingolipid metabolic pathway to be identified in ciliates and have a critical role in their sexual stage.Fil: Cid, Nicolás Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Puca, Gervasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Nudel, Berta Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Nusblat, Alejandro David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentin
Expresión heteróloga y localización subcelular del candidato vacunal GPI4 de babesia bovis en el ciliado tetrahymena thermophila
Los glicosilfosfatidilinositoles (GPIs) se encuentran en abundancia en la superficie de protozoos parásitos como glicolípidos libres y como anclas de proteínas de superficie a la membrana plasmática. Se ha demostrado que las proteínas ancladas por GPIs están involucradas en el mecanismo de invasión a la célula huésped, por lo que representan blancos moleculares muy interesantes para el diseño de nuevas estrategias vacunales contra protozoos
patógenos de importancia veterinaria. Además, los GPIs libres actúan como potentes moduladores de la respuesta inmunológica. Tetrahymena thermophila es un protozoo ciliado de vida libre que expresa en la superficie abundantes proteínas ancladas por GPI, y ha sido utilizado como plataforma biotecnológica para la expresión de antígenos recombinantes.Instituto de PatobiologíaFil: Montes, M. G. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Flores, Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: Rodriguez, Anabel Elisa. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; ArgentinaFil: González Maglio, D. H. Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral (IDEHU); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Florin-Christensen, Monica. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiologia; ArgentinaFil: Nusblat, Alejandro David. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patobiología; Argentin
Development and characterization of an improved formulation of cholesteryl oleate-loaded cationic solid-lipid nanoparticles as an efficient non-viral gene delivery system
Nanoparticle-mediated plasmid delivery is considered a useful tool to introduce foreign DNA into the cells for the purpose of DNA vaccination and/or gene therapy. Cationic solid-lipid nanoparticles (cSLNs) are considered one of the most promising non-viral vectors for nucleic acid delivery. Based on the idea that the optimization of the components is required to improve transfection efficiency, the present study aimed to formulate and characterize cholesteryl oleate-containing solid-lipid nanoparticles (CO-SLNs) incorporating protamine (P) to condense DNA to produce P:DNA:CO-SLN complexes as non-viral vectors for gene delivery with reduced cytotoxicity and high cellular uptake efficiency. For this purpose, CO-SLNs were used to prepare DNA complexes with and without protamine as DNA condenser and nuclear transfer enhancer. The main physicochemical characteristics, binding capabilities, cytotoxicity and cellular uptake of these novel CO-SLNs were analyzed. Positively charged spherical P:DNA:CO-SLN complexes with a particle size ranging from 330.1 ± 14.8 nm to 347.0 ± 18.5 nm were obtained. Positive results were obtained in the DNase I protection assay with a protective effect of the genetic material and 100% loading efficiency was achieved at a P:DNA:CO-SLN ratio of 2:1:7. Transfection studies in human embryonic kidney (HEK293T) cells showed the versatility of adding protamine to efficiently transfect cells, widening the potential applications of CO-SLN-based vectors, since the incorporation of protamine induced almost a 200-fold increase in the transfection capacity of CO-SLNs without toxicity. These results indicate that CO-SLNs with protamine are a safe and effective platform for non-viral nucleic acid delivery.Centro de Investigación y Desarrollo en Fermentaciones Industriale
C-5(6) Sterol Desaturase from Tetrahymena thermophila: Gene Identification and Knockout, Sequence Analysis, and Comparison to Other C-5(6) Sterol Desaturases▿
The gene coding for a C-5(6) sterol desaturase in Tetrahymena thermophila, DES5A, has been identified by the knockout of the TTHERM_01194720 sequence. Macronucleus transformation was achieved by biolistic bombardment and gene replacement through phenotypic assortment, using paromomycin as the selective agent. A knockout cell line (KO270) showed a phenotype consistent with that of the DES5A deletion mutant. KO270 converted only 6% of the added sterol into the C-5 unsaturated derivative, while the wild type accumulated 10-fold larger amounts under similar conditions. The decreased desaturation activity is specific for the C-5(6) position of lathosterol and cholestanol; other desaturations, namely C-7(8) and C-22(23), were not affected. Analysis by reverse transcription-PCR reveals that DES5A is transcribed both in the presence and absence of cholestanol in wild-type cells, whereas the transcribed gene was not detected in KO270. The growth of KO270 was undistinguishable from that of the wild-type strain. Des5Ap resembles known C-5(6) sterol desaturases, displaying the three typical histidine motifs, four hydrophobic transmembrane regions, and two other highly conserved domains of unknown function. A phylogenetic analysis placed T. thermophila's enzyme and Paramecium orthologues in a cluster together with functionally characterized C-5 sterol desaturases from vertebrates, fungi, and plants, although in a different branch
<i>Sporothrix brasiliensis</i>: A Review of an Emerging South American Fungal Pathogen, Its Related Disease, Presentation and Spread in Argentina
Sporotrichosis, caused by Sporothrix schenckii and related species, is the most frequent implantation mycosis in Latin America. In Argentina, over the last 8 years, there have been 0.16 new cases per month of feline sporotrichosis in 2011, increasing to 0.75 cases per month in 2019 and involving zoonotic transmission to humans. Molecular identification by polymerase chain reaction (PCR) detected Sporothrix brasiliensis in these feline and zoonotic outbreaks. This study will focus on different feline and human sporotrichosis outbreaks caused by S. brasiliensis in Argentina during 2011–2019. We will address the sources of infection and environmental hotspots, as well as the application of several treatment strategies for improving the pharmacotherapy of the different clinical forms of the disease. Finally, we will provide a detailed summary of the clinical aspects and new advances in host–pathogen interactions, virulence factors and immune response, focusing on state-of-the-art diagnostic tools and potential vaccine candidates
Gene identification and functional characterization of a Δ12 fatty acid desaturase in Tetrahymena thermophila and its influence in homeoviscous adaptation to low temperature
Homeoviscous adaptation in poikilotherms is based in the regulation of the level of desaturation of fatty acids, variation in phospholipids head groups and sterol content in the membrane lipids, in order to maintain the membrane fluidity in response to changes in environmental temperature. Increased proportion of unsaturated fatty acids is thought to be the main response to low-temperature acclimation, which is mostly achieved by fatty acid desaturases. Genome analysis of the ciliate Tetrahymena thermophila and a gene knockout approach has allowed us to identify one Δ12 FAD and to study its activity in the original host and in a yeast heterologous expression system. The “PUFA index” -relative content of polyunsaturated fatty acids compared to the sum of saturated and monounsaturated fatty acid content- was ~57% lower at 15 °C and 35 °C in the Δ12 FAD gene knockout strain (KOΔ12) compared to WT strain. We characterized the role of T. thermophila Δ12 FAD on homeoviscous adaptation and analyzed its involvement in cellular growth, cold stress response, and membrane fluidity, as well as its expression pattern during temperature shifts. Although these alterations allowed normal growth in the KOΔ12 strain at 30 °C or higher temperatures, growth was impaired at temperatures of 20 °C or lower, where homeoviscous adaptation is impaired. These results stress the importance of Δ12 FAD in the regulation of cold adaptation processes, as well as the suitability of T. thermophila as a valuable model to investigate the regulation of membrane lipids and evolutionary conservation and divergence of the underlying mechanisms.This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 11220120100213; Ministerio de Ciencia, Tecnología e Innovación Productiva, PICT 2013–0701, and Universidad de Buenos Aires, UBACYT 20020130100680BA. Further funding was obtained through a Proyecto Intramural Especial of CSIC (201840I016) awarded to OM