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Summary

Sphingolipids are bioactive lipids present in all eukaryotes. Tetrahymena thermophila is a ciliate that 

displays remarkable sphingolipid moieties, i.e., the unusual phosphonate-linked headgroup ceramides, 

present in membranes. To date, no identification has been made in this organism of the functions or 

related genes implicated in sphingolipid metabolism. By gathering information from the T. 

thermophila genome database together with sphingolipid moieties and enzymatic activities reported in 

other Tetrahymena species, we were able to reconstruct the putative de novo sphingolipid metabolic 

pathway in T. thermophila. Orthologous genes of 11 enzymatic steps involved in the biosynthesis and 

degradation pathways were retrieved. No genes related to glycosphingolipid or 

phosphonosphingolipid headgroup transfer were found, suggesting that both conserved and innovative 

mechanisms are used in ciliate. The knockout of gene TTHERM_00463850 allowed to identify the 

gene encoding a putative fatty acid 2-hydroxylase, which is involved in the biosynthesis pathway. 

Knockout cells have shown several impairments in the sexual stage of conjugation since different 

mating types of knockout strains failed to form cell pairs and complete the conjugation process. This 
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fatty acid 2-hydroxylase gene is the first gene of a sphingolipid metabolic pathway to be identified in 

ciliates and have a critical role in their sexual stage.
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Abbreviations

C1P: Ceramide-1-phosphate 

CAEP: ceramide 2-aminoethylphosphonate

Cer: ceramide

CMAEP: ceramide N-methyl-2-aminoethylphosphonate

EPC: ethanolamine-phosphorylceramide synthase

FA2H: fatty acid 2 hydroxylase protein

FA2H: fatty acid 2 hydroxylase gene

FA2H-EGFP: fatty acid 2 hydroxylase-EGFP fusion strain

FAH: fatty acid hydroxylase

IPC: inositol-phosphorylceramide synthase 

KOC5DES : C-5 sterol desaturase mutant strain

KOFA2H: fatty acid 2 hydroxylase knockout mutant strain 

S1P: sphingosine-1-phosphate 

SMP: sphingolipid metabolic pathway

SMS1/2: sphingomyelin synthases ½

Sph: sphingosine 

SPT: serine palmitoyltransferase
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Introduction

The identification and analysis of bioactive lipids have received significant attention in the past 25 

years, and the discoveries of the key roles played by lipids now assure that this field will increasingly 

be in the spotlight of cell biology investigation over the course of this century. Single lipid species 

involved in energy metabolism, membrane structure, and signaling are among the key breakthroughs. 

For instance, a pioneering work showed that protein kinase C (PKC) and calcium release are regulated 

by diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) (Nishizuka 1992). 

Eicosanoids, which are involved in inflammatory responses, constitute another example of lipids 

acting as signaling molecules (Serhan & Savill 2005). Other studies have reported that 

phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3), phosphatidic acid (PA), 

monoacylglycerols and anandamide (ligands for cannabinoid receptors), lyso-phosphatidic acid and 

platelet activating factor (PAF) have proved to act as regulatory molecules or  be implicated in cell 

signaling.

Sphingolipids are a class of bioactive lipids of special interest. This complex class of lipids has a 

common sphingosine backbone resulting from the de novo synthesis of serine and a long-chain fatty 

acyl-CoA, later converted into ceramides, phosphosphingolipids, glycosphingolipids, as well as a 

wide range of additional species (Hannun & Obeid 2008). Sphingolipids are found in eukaryotic 

organisms and in some anaerobic bacteria such as Fusobacterium, Sphingomonas, Sphingobacterium 

and others (Olsen & Jantzen 2001).

Sphingolipids can be divided into the following classes: sphingoid bases (long-chain bases) and their 

simple metabolites (such as sphingoid base/ 1-phosphate), sphingoid bases with an amide-linked fatty 

acid (e.g., ceramides), and more complex sphingolipids with head groups that are linked by 

phosphodiester bonds (phosphosphingolipids), glycosidic linkages (simple and complex 

glycosphingolipids such as cerebrosides and gangliosides), and other groups (such as phosphono- and 

arseno-sphingolipids). Although sphingolipids are diverse in structure and function, they all share 

synthetic and catabolic pathways in their synthesis and turnover. Thus, sphingolipid metabolism can 

be described as a number of interrelated systems emerging from a single common entry point and 

converging into a single common breakdown pathway (Gault, Obeid & Hannun 2010).
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Several bioactive molecules that are members of the sphingolipid family, including ceramide (Cer), 

sphingosine (Sph), Sph-1-phosphate (S1P), and Cer-1-phosphate (C1P), play different roles such as  

signal transduction, protein targeting regulation and intracellular membrane trafficking, mediation of 

cell-cell interactions and recognition, thus contributing to many cellular events (Hannun & Obeid 

2017). The intensification of studies in the past years is showing other bioactive sphingolipid moieties 

such as 2-hydroxy ceramides (Kota & Hama 2014). This species is synthesized by the fatty acid 2-

hydroxylase, introducing a hydroxyl group during the de novo ceramide synthesis. Demyelination of 

both central and peripheral nervous systems is frequently associated with its alteration in humans and 

mice, which generally leads to the onset of neurodegenerative diseases (Edvardson et al. 2008; Potter 

et al. 2011). The enzyme has also shown to regulate the differentiation of various cell types including 

adipocytes, keratinocytes, and megakaryocytes (Uchida et al. 2007; Guo et al. 2010; Jin et al. 2016). 

Historically, a variety of model systems have contributed to research on sphingolipids. These include 

both mammalian and invertebrate cells as well as fungi such as budding yeast (Acharya & Acharya 

2005; Merrill 2011; Montefusco, Matmati & Hannun 2014). One group of promising organisms that 

are just beginning to be tapped are the ciliates and in particular the experimentally versatile species 

Tetrahymena thermophila, a free-living unicellular ciliated protozoan that is widely found in 

freshwater habitats. Despite being a unicellular organism, Tetrahymena shares a wide number of cell 

structures and molecular processes that are also observed in multicellular eukaryotic organisms. In 

particular, many human proteins share orthologs with Tetrahymena that are not found in other 

unicellular models such as yeast (Eisen et al. 2006). Tools for sophisticated genetic manipulation, e.g., 

gene knockout by homologous recombination, simultaneous deletion of multiple genes within a gene 

family, gene tagging and overexpression, are well established (Ruehle, Orias & Pearson 2016). 

Indeed, Tetrahymena has been a widely used eukaryotic model organism in biological research. Many 

advances have emerged in molecular biology in this eukaryotic organism, especially the elucidation of 

the characteristics of telomers (Blackburn & Gall 1978) and telomerase (Greider & Blackburn 1985), 

the self-splicing RNA process (Kruger et al. 1982), the first revelation that a transcription factor was a 

histone modifying enzyme (Taverna, Coyne & Allis 2002) and one of the initial descriptions of the 

role played by small RNAs in the formation of heterochromatin (Mochizuki et al. 2002; Mochizuki & 
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Gorovsky 2004). Tetrahymena is also widely exploited at the biotech level (Elguero, Nudel & Nusblat 

2018). 

Over more than fifty years Tetrahymena has been used in many classical studies on lipid metabolism 

and membranes (Taketomi 1961; Thompson 1967). Most recently, several groups have focused on 

phosphatidylinositol phosphates (Kurczy et al. 2010; Leondaritis et al. 2011), and polycyclic 

triterpenoids such as hopanoids and sterols (Tomazic et al. 2014). In addition, there have been 

important works on membrane dynamics such as membrane junctions, membrane curvature and 

traffic in the endomembrane system, which depend on lipid determinants (Nusblat, Bright & 

Turkewitz 2012). 

Nevertheless, there has been only very limited work on sphingolipids in ciliates, chiefly concerned 

with the identification of a number of moieties present in subcellular fractions (Viswanathan & 

Rosenberg 1973; Kaya, Ramesha & Thompson 1984a; Kaneshiro 1987) and the identification of some 

enzymatic activities. Preliminary studies in Paramecium suggested that sphingolipids and 

phosphonolipids would play a critical role in controlling the ion channels involved in the locomotor 

capacity of this ciliate, based on the evidence that a barium-sensitive locomotory mutant of P. 

tetraurelia, baA, carried altered sphingolipid and phosphonolipid compositions (Forte et al. 1981). 

To date, no related gene implicated in sphingolipid metabolism in Tetrahymena or any other ciliate 

has been reported. To tackle this issue, a genome-wide survey of putative genes implicated in 

sphingolipid metabolism has been conducted in Tetrahymena thermophila with the aim of beginning 

to disclose the biosynthetic and phylogenetic pathways in this organism. Furthermore, we pinpointed 

a sphingolipid fatty acid 2-hydroxylase in the ciliate by somatic knockout and assessed its 

physiological role, which was found to significantly impact on the sexual stage of conjugation. 
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Results

Identification of genes involved in sphingolipid metabolism in T. thermophila.

To analyze the genetic diversity of the T. thermophila sphingolipid metabolic pathway (SMP) we 

decided to gather information using genomic data retrieved from the Tetrahymena Genomic Database 

(TGD) and the OMA orthology database. Based on the very few reports on sphingolipid species found 

in T. thermophila, we inferred the SMP including sphingolipid moieties reported in other species of 

Tetrahymena, particularly T. pyriformis and T. mimbres. Using the KEGG sphingolipid metabolic 

pathway map as a template we were able to identify 38 putative genes, corresponding to 11 enzymatic 

steps involved in sphingolipid biosynthesis and degradation in T. thermophila (Fig. 1 and Table S1). 

The evolutionary conservation of the enzymes shows a broad different degree ranging the highest 

values between 32,48 % - 54,90 % of similarity and 16,11 % - 41,25 % of identity, depending on the 

enzyme type and the evolutionary distance between different organisms (Fig. S1 and Table S2).

The genes identified in the T. thermophila genome belong to a de novo biosynthetic pathway of 

ceramides, sphingosine, and sphingosine-1-phosphate. In the case of the first biosynthetic enzyme, the 

serine palmitoyltransferase (SPT), two orthologous genes of the H. sapiens SPTC2 were retrieved 

from OMA. Interestingly, phylogenetic studies indicate that both genes, as well as other ciliates 

genes, could be acquired from related prokaryotic SPT (Fig. S1). These sequences are grouped into a 

branch which includes the characterized SPT from the Sphingomonas_paucimobilis (Ikushiro et al. 

2001) and distant from others eukaryotic characterized SPTs from animals, plants, and fungi. 

Prokaryotic HGT events have been previously reported in the apicomplexan SPTs (Mina et al., 2017), 

therefore, the SPTs could have been acquired before ciliates and apicomplexans diverged from the 

alveolate common ancestor. Another possibility is that one of the T. thermophila sequence (Q22BA8) 

codifies for another enzyme since the most similar reviewed proteins (phylogenetic tree) codifies for 

an 8-amino-7-oxononanoate synthase involved in biotin biosynthesis. No clear orthologous of the 

second biosynthetic enzyme 3-Ketodihydrosphingosine reductase (KDHR) was found neither in 

KEGG nor OMA. Nevertheless, nine putative genes member of the short-chain 

dehydrogenase/reductase (SDR) superfamily which groups to the KDHR among other enzyme 

families, were retrieved using reviewed enzymes from animals, fungi, plants, and slime molds in 

TGD. This could imply that probably the ciliate use a different SDR type to the canonical 3-A
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dehydrosphinganine reductase to perform the conversion of 3-dehydrosphinganine to 

dihydrosphinganine (sphinganine). The third biosynthetic step is carried out by the ceramide synthase, 

which catalyzes the formation of dihydroceramide from dihydrosphingosine and acyl-CoA substrates. 

Using reviewed proteins from the plant Arabidopsis thaliana (LAG1 and LAG2), four T. thermophila 

orthologous were retrieved from OMA. The last step involved in de novo ceramide biosynthesis is the 

dihydroceramide desaturase. This enzyme, belonging to the fatty acid desaturase superfamily, 

catalyzes the 4 desaturation of dihydroceramide to generate ceramide. Two orthologous genes were 

retrieved from OMA using the H. sapiens enzyme (DEGS1). The synthesis of sphingosine and 

sphingosine 1P from ceramide involves two enzymes: a ceramidase (acid, basic or neutral) and a 

sphingosine kinase. Six orthologous of the acid ceramidase type and two of the sphingolipid kinase 

were retrieved from the KEEG database. 

Previous studies reported ceramides moieties with n-C16, iso-C17 and n-C19 long chain bases and 

16:0, iso-17:0 and 2-OH16:0 fatty acids in T. pyriformis (Kaya et al. 1984a). In contrast, the presence 

of free sphingosine and S1P was not reported in the Tetrahymena genus, probably due to very low 

levels in the cell (30 times less of sphingosine and 3000 times less of S1P than ceramides) (Hannun & 

Obeid 2008). The identification of two paralogs of sphingosine kinase in the macronuclear genome T. 

thermophila is in agreement with previous reports on the characterization of two forms of this enzyme 

in T. pyriformis, albeit with different activities and responses to inhibitors (Wang, Banno & Nozawa 

2002). 

Other sphingosyl phosphatides identified in T. pyriformis are sphingomyelin and the ceramide- 

phosphono-analogs, ceramide N-methyl-2-aminoethylphosphonate (CMAEP) and ceramide 2-

aminoethylphosphonate (CAEP) (Sugita et al. 1979). Unexpectedly, no orthologous genes involved in 

the head group transfer to ceramide, such as the sphingomyelin synthases (SMS1/2), ethanolamine-

phosphorylceramide synthase (EPC) or inositol-phosphorylceramide synthase (IPCs) were identified 

in the ciliate using as query ceramide synthases from organisms of diverse evolutionary origin. This 

could imply the presence of another enzyme involved in the phosphonate transfer to ceramide, not yet 

identified. With regard to the biosynthesis of ceramide 1 phosphate, we could not find any reports in 

the literature on the presence of this sphingolipid nor an orthologous gene of a ceramide kinase, ruling 

out the production of this bioactive sphingolipid in the cell.A
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The elucidation of the biosynthetic pathway of glycosphingolipids in T. thermophila is still a 

challenge. No putative orthologous genes of the glucosylceramide synthase, implicated in the first 

step of   glycosylceramide biosynthesis in animals, fungi and plants (UGCG, HSX11, and At2g19880 

respectively) were identified in the T. thermophila genome. Neither could we find orthologous genes 

of the glucosyltransferases nor the galactosylceramide synthase identified in animals. Genes involved 

in the metabolism of glycosylinositol phosphorylceramides, present in fungi, protozoans, and plants, 

were not identified in the ciliate as well. The only glycosphingolipid reported in the Tetrahymena 

genus is a glycosylphosphatidylinositol-anchored protein from T. mimbres which contains a ceramide 

with the long-chain base 3-O-methylsphinganine bound to palmitic and stearic fatty acids (Hung, Ko 

& Thompson 1995). The pathway to biosynthesize GPIs containing inositol-phosphorylceramide, the 

lipid remodeling pathway, involves the substitution of the diacylglycerol by a ceramide by three 

enzymes: a phospholipase A2, an O-acyltransferase and a ceramide transferase. The only genes 

retrieved in our search were three paralogs to the O-acyltransferase GUP1p from Saccharomyces 

cerevisiae (Bosson 2006).

The search of putative genes codifying for enzymes involved in the catabolism as well as the 

recycling and interconversion of sphingolipids such as sphingomyelinases, acid ceramidases, β-

glucosylceramidases, and S1P phosphatases, retrieved only five paralogs of the human acid 

sphingomyelinases (SMPD1) and six paralogs of the human acid ceramidase (ASAH1), as commented 

above. In the case of the sphingosine-1-phosphate lyase, the final enzyme in the sphingolipid 

catabolic pathway and the only known exit from the sphingolipid metabolism, we could retrieve three 

paralogous sequences in the T. thermophila genome. 

Finally we also searched orthologous genes of enzymes that introduce variations to the long-chain 

base structure such as the C4-sphingolipid hydroxylase and the delta-4-sphingolipid desaturase, the 

delta8-sphingolipid desaturase (these present in fungi and plants), and the C9-sphingolipid 

methyltransferase (only present in fungi), as well as enzymes that introduce variations to the N,-linked 

fatty acids such as the delta-3-sphingolipid desaturase (present only in some fungi) and the 

sphingolipid fatty acid 2-hydroxylase (present in most eukaryotes). The retrieved search showed only 

two paralogous genes for the delta-4-sphingolipid desaturase (commented above) and no other 

putative genes for other enzymes that modify the long-chain base. Regarding the enzymes that modify A
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the N-linked fatty acids, four paralogs of the delta-3-sphingolipid desaturase and two of the fatty acid 

2-hydroxylase were identified in the T. thermophila genome. In the case of the latter, the 

identification and characterization of the enzyme activity have shown a specific requirement of the 

ceramide moiety as substrate, not replaceable by free fatty acids (Kaya, Ramesha & Thompson 

1984b).

Identification and localization of FA2H from T. thermophila.

In order to reveal the gene network involved in sphingolipid metabolism in T. thermophila, we started 

by identifying the fatty acid 2-hydroxylase enzyme. FA2H is a membrane-bound oxidase that 

introduce the hydroxyl group to the -carbon of the FA moiety of the ceramide substrate by coupling 

the electron-transport proteins NADH–cytochrome b5 reductase and cytochrome b5. The enzyme 

belongs to the FAH superfamily, which is characterized by the presence of conserved histidine motifs 

(Shanklin, Whittle & Fox 1994) and the presence of 4 membrane-spanning helices, as revealed by the 

crystal structure (Zhu et al. 2015).

Two putative sequences (UniProt ID: Q23PP8 and Q232H4) in the T. thermophila genome (Fig. 2A) 

were identified by Blast and orthology analyses using as query reviewed (Swiss-Prot) FA2H proteins 

from plants, fungi and metazoan. Both sequences contains a fatty acid hydroxylase domain 

(PF04116), as all members of this group of enzymes, and a cytochrome-b5 domain (PF00173), which 

is present in many but not all FAHs of different organisms (Fig. 2B). 

The search of other ciliate sequences using 8 ciliate genomes from different genera, retrieved putative 

sequences from Euplotes octocarinatus, Oxytricha trifallax, Stylonychia lemnae (classes Spirotrichea) 

and from Stentor coeruleus (class Heterotrichea), while other sequences from oligohymenophorean 

ciliates were not retrieved (Fig. 2C). 

Phylogenetic analysis of FA2H proteins grouped both sequences into a well-defined monophyletic 

branch along with other putative FA2H proteins from spirotrichean and heterotrichean ciliates and 

closer to fungus  than to archaeplastid and animal sequences (Fig. 2D). 

Sequence analysis of the two putative proteins revealed that the Q232H4 sequence lacks the first two 

of the four characteristic histidine motifs of this enzyme family (HXXXXH, HXXHH, HXXXH, and 

HXXHH). These histidine motifs contain histidine residues that coordinate two iron atoms at the 

active center of the enzyme and are essential for catalysis. Single mutations of each of the four A
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histidines, which are absent in the Q232H4 sequence, have shown to alter the FA2H activity in S. 

cerevisiae. Furthermore, the conserved Asp-323, which is a critical determinant involved in the 

hydroxylase activity reaction through the stabilization of the ceramide headgroup, is replaced by 

glutamic acid (Fig. S2) (Zhu et al. 2015). These conserved histidine residues are critical not only in 

FA2H but in all enzymes belonging to the fatty acid desaturase and fatty acid hydroxylases 

superfamilies (Shanklin, Whittle & Fox 1994). Therefore, considering these critical modifications, we 

discarded the Q232H4 sequence for the analysis as a putative fatty acid 2 hydroxylase.

To evaluate whether Q23PP8 is a fatty acid 2-hydroxylase, a KO mutant strain (KOFA2H) was 

generated by eliminating the coding gene through a somatic knockout procedure (Fig. 3A-C). Growth 

and morphology during vegetative growth were indistinguishable between the WT and KO, 

suggesting that the gene (FA2H) is nonessential. The fatty acid composition of sphingolipids from 

both strains grown at 30°C is shown in Table S3. The relative amount of main fatty acid species in 

WT strain followed the order 2-OH 17:0 > 2-OH 18:0> 16:0 > 18:0 > 17:0. In contrast, the main fatty 

acids from the KOFA2H strain grown in the same medium and at the same growth temperature were 

17:0, 18:0 > 16:0, and no fatty acids with a hydroxyl group at the -carbon position were detected 

(Fig. 3D). The lack of residual activity in this mutant corroborates that the discarded Q232H4 

sequence is not a bona fide fatty acid 2 hydroxylase.

We also measured the composition of lipids in membranes from WT and KOFA strain. Although 

no significant changes were observed in the composition of neutral lipid, the KOFA2H strain showed 

a different profile in the polar lipid fraction (Fig. 3E). In order to gain further insight into some lipid 

identification of the KOFA2H strain, we enriched different polar lipid fractions and analyzed by high 

resolution mass spectrometry the lipid moieties only present in the mutant strain (see Material and 

Methods). By this strategy, we could identify in the chloroform/methanol (70/30) fraction a precursor 

ion with a m/z of 645.5030 that is not present in the WT strain. The search in Lipid Maps and 

METLIN databases retrieved a potential compound with a formula of C36H73N2O5P which might 

correspond to an N-palmitoyl-D-sphingosyl-1-(2-aminoethyl)phosphonate. The main fragments 

(mz/mz) of 520.5026 and 502.4905 (I 100 % and 63 % respectively) generated correspond to N-

palmitoylsphingosine (Fig. 3F) and are in agreement with the ceramide 2-aminoethylphosphonate 

identified. A
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In order to localize the enzyme in T. thermophila cells, the fatty acid 2 hydroxylase was C-terminally 

tagged with EGFP. The tagged gene was targeted to its endogenous locus (Fig. 3E) to avoid potential 

misexpression artifacts in the ciliate. As a result of the high autofluorescence of the background, 

remarkable even in wild type cells, the selectivity of the signal was increased using anti-GFP antibody 

and indirect immunofluorescence microscopy. The microscopic analysis of FA2H-EGFP revealed a 

strong signal around the nucleus, in a pattern that is consistent with a perinuclear localization, along 

with a more diffuse one in the cytoplasm (Fig. 4).

Biological role of FA2H from T. thermophila.

To get information on the potential biological role of the FA2H, the gene expression profile during 

the three major stages of the organism's life cycle (growth, starvation, and conjugation) was retrieved 

from the TGD and examined.

Considering that previous research works reported a significant increase in the transcription of the 

gene during the first hours of the conjugation stage, the behavior of WT and KO strains was analyzed 

(Fig. S3) during the entire conjugation sexual process. T. thermophila cells can have one of seven 

different mating types, and each mating type can only conjugate with a cell of another mating type, 

but not with the same (Elliott & Hayes 1953) (Fig. 5A). For the purpose of the analysis, we generated 

two fatty acid 2-hydroxylase KO mutant strains of different mating types, B2086.2, and CU427.4, as 

well as a non-related C5 sterol desaturase KO mutant strain (KOC5DES) in the CU428.2 WT strain, 

to be used as control. As shown in Fig. 5B, the cell pairing (early event in conjugation) decreased by 

around 88 % when a WT strain was induced to conjugate with any of the knockouts KOFA2H strains. 

In the case of conjugation between two KOFA2H strains of different mating types, no cell pairing 

events were observed at all. In contrast, conjugation between two WT strains or WT plus KOC5DES 

strain showed similar rates in pairing (64 % and 67 % respectively). We also analyzed the ratio of 

cells that completed the conjugation process (using phenotypic assays) concerning those that begin 

the cell pairing event (efficiency). It was shown that, in the case of the conjugation between a WT and 

a KOFA2H, only a very low percentage of conjugants were able to complete all the stages (1 %), 

whereas between the two KOFA2H strains of different mating type, no conjugants were recovered. 

Moreover, the efficiency between two WT strains or between one WT strain and one KOC5DES 

strain was similar (94 % and 92 % respectively). Additionally we measure the number of conjugating A
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cells and the progression of the meiotic stages every hour in WT x KOFA2H and compare to WT x 

WT cross. As shown in Figure 5C, along the first hours of conjugation (shown from 2 h to 5 h) it was 

observed a delay in the meiotic prophase stage I (significant at 2 h), stage IV (significant at 4 h) and 

stage 5 (at 5 h) in WT x KOFA2H, possibly as a consequence of the delay in the cells pairing.
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Discussion

Over the past several years, studies on sphingolipids and their function as bioactive lipids have 

intensified in different model organisms, revealing a vast complexity of the lipidome and its many 

functions (Hannun & Obeid 2017). The genes implicated in the sphingolipid metabolism pathway 

have been identified in diverse eukaryotic lineages such as the Opisthokont clade including 

vertebrates, invertebrates and many fungi (Acharya & Acharya 2005; Merrill 2011; Montefusco et al. 

2014); in the Archaeplastida clade including lower vascular plants and several species of higher plants 

(Michaelson et al. 2016); in the Kinetoplastida clade including Trypanosoma and Leishmania (Smith 

& Bütikofer 2010; Zhang & Beverley 2010) and in the apicomplexan clade including  parasites 

Plasmodium, Toxoplasma and Cryptosporidium (Pratt et al. 2013; Ramakrishnan et al. 2013). The 

study of the sphingolipid metabolism pathway in T. thermophila performed in this work indicates that 

both conserved and innovative mechanisms are used in ciliates compared with those in other 

eukaryotic lineages. For example, the genes involved in the head group transfer to ceramides, such as 

the SMS1/2, EPC or IPCs which at least one of them is present in all the eukaryotic organism studied 

up to date (Tafesse, Ternes & Holthuis 2006) were not identified in the ciliate, suggesting an 

innovative mechanism for the phosphonate-group transfer to ceramides. Genes involved in 

glycosphingolipid biosynthesis (excluding the lipid remodeling pathway) were not retrieved in our 

search. Although this can suggest a different and innovative mechanism in ciliates, the fact that only a 

few genes have been presently identified in most other organisms, i.e., kinetoplastids and 

apicomplexans, indicate that further studies are required to support this hypothesis. Moreover, the 

presence in the ciliate of orthologs of many conserved enzymes in other organisms such as the serine 

palmitoyltransferase, 3-ketodihydrosphingosine reductase, dihydroceramide synthase, 

dihydroceramide C-4desaturase, sphingosine kinase, and sphingosine-1-phosphate lyase reinforces the 

concept of conservation of the general sphingolipid metabolism pathway in the eukaryotic kingdom.

The genome analysis also allowed the identification of two putative enzymes introducing variations to 

the basic sphingolipid structure, such as the fatty acid 2-hydroxylase. Using a KO strategy, we 

demonstrated that the TTHERM_00463850 gene codes for a fatty acid-2 hydroxylase in the ciliate T. 

thermophila. Lipid analysis of Tetrahymena membranes from KOFA2H mutant strain, identified at 

least one sphingolipid moiety, N-palmitoyl-D-sphingosyl-1-(2-aminoethyl) phosphonate, not present A
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in the WT strain. Although different ceramide 2-aminoethylphosphonate have been previously 

identified, to the best of our knowledge, this is the first identification of a ceramide 2-

aminoethylphosphonate with both the detailed composition of the N-acyl fatty acid as well as the 

sphingoid long chain base within the same molecule.  

The fatty acid-2 hydroxylase is the third enzyme belonging to the FAH superfamily that was  

identified and characterized in the ciliate, together with a C5 sterol desaturase and a C24 sterol 

deethylase (Nusblat et al. 2009; Tomazic et al. 2011); and, so far, the first one involved in 

sphingolipid metabolism. The FAH enzymes are integral membrane proteins that are located in the 

endoplasmic reticulum, which is in accordance with the ER localization of the FA2H-EGFP fusion in 

the ciliate and is consistent with the localization of other FAHs studied in T. thermophila 

(Poklepovich et al. 2012) as well other FA2H from yeast (Natter et al. 2005), mammalian (Eckhardt et 

al. 2005) and plants (Nagano et al. 2012).

Phylogenetic analysis grouped the T. thermophila FA2H in a monophyletic cluster with other putative 

FA2H proteins from spirotrichean and heterotrichean ciliates. It is worth noting that no orthologous 

genes have been retrieved from the genome of other oligohymenophorean ciliates such as 

Ichthyophthirius multifiliis, Pseudocohnilembus persalinus, and Paramecium tetraurelia. In the case 

of the I.multifiliis and P. persalinus, the absence of the gene could be a result of their parasitic 

lifestyle. Actually, these ciliates have lost many genes during their extensive genome reduction 

(Xiong et al. 2015). However, the absence of the gene in the free living P. tetraurelia is not clear, 

much less, when -hydroxy fatty acids sphingolipids have been reported in lipid extracts of the ciliate 

(Kaneshiro 1987). Notably, unlike Tetrahymena, which has hydroxy fatty acids in its ethanolamine 

sphingophosphonolipids, in P. tetraurelia hydroxyl fatty acids were found only associated with 

glycosphingolipids, characterized by a fatty acid composition with high concentrations of C20 to C24 

neutral and a long chain of hydroxy fatty acids, suggesting that the free ceramides are not direct 

precursors of the glycosylated ceramides and that another synthesis pathway may be involved 

(Kaneshiro et al. 1997). 

2-hydroxy ceramides, synthesized by the FA2OH, have been shown to stabilize the myelin of the 

mammalian nervous system. It was observed that mutations in this gene are associated with various 

types of neurodegeneration, including brain iron accumulation, leukodystrophies, and hereditary A
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spastic paraplegias. 2-hydroxy ceramides also regulate the differentiation of various cell types 

(epidermal keratinocytes, schwan-noma cells, adipocytes, megakaryocytic cells) and have been 

showed to mediate proapoptotic signaling distinct from non-hydroxy ceramide, as well as the 

involvement in the regulation of gastric tumor growth (Hama 2010; Yao et al. 2019). The enzyme has 

been also studied in the yeast Saccharomyces cerevisiae where it was shown to be non- essential for 

growth (Haak et al. 1997), in the plant Arabidopsis thaliana where it was shown to be involved in the 

resistance to oxidative stress (Nagano et al. 2012) and in the invertebrate Caenorhabditis elegans in 

which it was shown to affect intestinal homeostasis, by interfering with heptadecenoic acid production 

(Li et al. 2018). Alternatively, our experiments demonstrated that growth and morphological 

parameters were not significantly different between KO and WT strains, suggesting that the gene is 

nonessential during T. thermophila vegetative growth. However, our results revealed a severe 

impairment in the sexual stage of conjugation. This process requires starved pairs of sexually mature 

cells with different mating types to begin to establish contact with each other (cell-cell contact, 

referred to as co stimulation) to form a stable pair. The cells then undergo a variety of highly 

conserved processes including meiosis, mitosis, nuclear exchange and karyogamy, and two 

postzygotic divisions of the fertilization nucleus that last 12 hours (Cole & Sugai 2012). The fail to 

form cell pairs when two KOFA2H strains of different mating type were induced to conjugate, 

suggests a deficiency during the early process of co-stimulation. This process involves a tip 

transformation of the cells, with a reorganization of surface glycoproteins (0–30 min after mixing 

different mating type starved cells), and a progress in pairing from loose to tight that finally 

establishes a mating junction (30-120 min) (Cole 2016). As previous studies have demonstrated, lipid 

domains are formed and re-arranged during this process in response to this structural requirement, 

including cylindrical lipid species replacement at the exchange junction with nonlamellar species 

supporting a tight curvature during conjugation (Ostrowski et al. 2004; Kurczy et al. 2010). 

Hypothetically, the lack of 2-hydroxy sphingolipids in the KOFA2H strains could be affecting the 

correct reorganization of surface glycoproteins associated with lipid rafts, usually enriched 

in sphingolipids, or it could affect the stabilization of lipid domains as was reported in the myelin of 

vertebrates (Simons & Ikonen 1997). In our experiments, a low percentage of WT x KOFA2H cells 

were able to form cell pairs, indicating that some reorganization of surface glycoproteins could take A
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place. Nevertheless, the number of cells that completed the conjugation process in this cross was 

negligible, suggesting that, although a low number of pairs make new micronuclei, they may abort 

during macronuclear development, a stage that resembles round one of genomic 

exclusion,(Martindale, Allis & Bruns 1982). Another possibility that could explain the differences in 

numbers between pair formation and conjugation completion could be the use of different counting 

methodologies, especially when starting with a small number of pairing cells, as in the case of WT x 

KOFA2H pairs (see Materials and methods).

The impairment in finishing the conjugation process in the ciliate resembles the mating-specific yeast 

cell cycle arrest caused by the deficiency in ceramide moieties with very long chain fatty acids 

(Villasmil et al. 2017).

To sum up, the current results highlight the significance of the FA2H in the cell pairing process, a step 

that is essential in the conjugation stage of T. thermophila, as well as the suitability for using this 

ciliate as a valuable research model to investigate sphingolipid metabolic pathways and their 

evolutionary conservation and divergence in the eukaryotic lineage. 
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Experimental Procedures

Strains, plasmids, and T. thermophila growth conditions

T. thermophila strains CU428.2 mpr1-1/mpr1-1 (MPR1; mp-s, VII), B2086.2 (II) and CU427 chx1-

1/chx1-1 (CHX1; cy-s, VI), designated as “wild type”, and plasmids pBS-MnB-3 and pmEGFP were 

retrieved from the Tetrahymena Stock Center (Cornell University, NY, USA). T. thermophila cultures 

were grown in PPYE medium (1% Proteose peptone (Britania, Argentina), 0.1% Yeast extract 

(Britania), 0.5% Glucose (Britania) and 0.003% Iron (III) citrate (Sigma-Aldrich, USA)) at 30°C and 

80 rpm in 250 mL Erlenmeyer flasks. Paromomycin (Sigma-Aldrich) was added from a 200 mg/ml 

PPYE stock solution when indicated, along with 1 g/ml of CdCl2, prepared as a 1 mg/ml stock 

solution in water. A 1:10 dilution of a 24-h culture was inoculated daily into the cultures. Cells were 

counted in a Neubauer chamber (Cassidy-Hanley 2012). To perform the mating assays, cells of 

different mating types were starved for 16-20 h and 5 ml of each culture were mixed in a 100 x 15 

mm petri dish to yield a 1:1 ratio at a cell concentration of 1x105 to 2x105 cells/ml. Cell pairing was 

recorded at 4hs after mixing. At 30 hs after mixing (time necessary to complete the conjugation 

process and allow the accumulation of ribosomes with the resistant cycloheximide version) the cells 

were distributed into 96-well plates (100 ul/well) varying the number of cells/well in ten fold dilution. 

Later, 2x PPYE media was added to the half of the plates (100 ul/well), while 2x PPYE media with 25 

g/ml of cycloheximide was added to the rest (100 ul/well). The rate of cells that completed 

conjugation process was estimated as the ratio between the number of wells grown in media with and 

without cycloheximide (%) (Hamilton and Orias, 2000; Chalker, 2012).

Standard DNA and RNA manipulation procedures for PCR and RT-PCR

Genomic DNA from T. thermophila CU428 (WT strain) was prepared as previously described 

(Cassidy-Hanley et al. 1997). Isolation of plasmid DNA from E. coli was performed using a QIAprep 

Spin Miniprep DNA purification system kit (Qiagen, Germany). Total RNA was prepared from T. 

thermophila cultures using TRIzol reagent (Invitrogen, CA, USA). Nucleic acid fragments were 

amplified by PCR using FIREPol DNA polymerase (Solis Biodyn, Estonia) or KAPA HiFi DNA 

Polymerase (Kapa Biosystems, USA) when high fidelity amplifications were needed. Moloney A
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murine leukemia virus (M-MLV) reverse transcriptase (Promega, USA) was used to conduct reverse 

transcription (RT) reactions following the manufacturer’s instructions. 

Construction of FA2H and C5 Sterol desaturase KO strains, and FA2H-EGFP fusion in T. 

Tetrahymena

For FA2H gene disruption in T. thermophila, the transformation sequence FA2H-neo3 was 

constructed. The 753 bp upstream (Up) and 801 bp downstream (Dw) flanking regions of the putative 

sequence TTHERM_00463850 (Q23PP8) were synthesized separately (Genscript, USA). Both 

sequences were cloned into plasmid pBS-MnB-3, which confers paromomycin resistance and 

transformed into competent E. coli DH5α cells (Shang et al. 2002). Then, FA2H-neo3 construction 

was released by KpnI and SacI double restriction enzyme digestion and then concentrated by ethanol 

precipitation. The transformation sequence FA2H-EGFP was constructed for localization of FA2H in 

a T. thermophila cell. A 912-base pair (bp) C-terminal fragment of the FA2H gene (Up), without the 

stop codon, was amplified by PCR using specific primers adding BamHI and SacI restriction sites at 

the ends of each fragment. Cloning of the sequence into pmEGFP (confers paromomycin resistance) 

was performed (Kataoka et al. 2010). Next, the amplification of downstream flanking region of 917 

bp (Dw) was also performed with the addition of XhoI and HindIII restriction sites at the ends of each 

fragment and cloned into pmEGFP+Up. For C5 sterol desaturase gene disruption, the flanking regions 

of the TTHERM_01194720 sequence were cloned into plasmid pBS-MnB-3 as detailed in Nusblat et 

al. 2009. The FA2H-EGFP construct was then released with SacI restriction enzyme from the vector. 

For T. thermophila transformation, we grew B2086 strain cells in 30 ml of PPYE medium at 30°C to 

reach a density between 2,5-3x105 cells/ml. Cultures were starved overnight in 10 mM Tris HCl 

buffer pH 7.5 and transformed with 10-15 g of linearized FA2H-neo3 or FA2H-EGFP constructs by 

a biolistic-gun protocol (Chalker 2012). Bombardment was performed with a Dupont biolistic PDS-

1000/He particle delivery system (Bio-Rad). Transformants were allowed to recover in 50 ml PPYE 

for 4 h. After this period, the cell suspension was diluted with 25 ml pre-warmed PPYE, to which 

paromomycin, cadmium chloride and an antibiotics/antifungal cocktail (streptomycin 250 g/ml, 

penicillin G 250 g/ml and amphotericin B 1 g/ml) were added, at a final concentration of 0.12 

mg/ml paromomycin and 1 g/mL CdCl2, and the entire culture was distributed in 96-well culture 

plates for incubation. The selection procedure was conducted by repeatedly transferring cells into A
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cultures with 1 g/mL CdCl2 and increasing paromomycin concentration until no further growth was 

achieved (70 mg/ml, 55 mg/ml and 45 mg/ml for the C5 sterol desaturase KO, KOFA2H and FA2H-

EGFP fusion respectively).

Lipid extraction and identification by gas chromatography and mass spectrometry

We collected T. thermophila cells from cultures grown in Erlenmeyer flasks at 30°C (2.0-4.0 x105 

cells/ml) by centrifugation at 1500 g for 5 min, and the extraction of total lipids was performed by the 

Bligh and Dyer method (Bligh & Dyer 1959). For analysis of the N-linked fatty acids, the organic 

phase was evaporated under N2 stream and saponified with 2 ml of NaOH 1,5N in methanol 2 h at 

RT. Samples were extracted with 2 volumes of CHCl3 and 1 volume of H2O. The organic phase was 

recovered and evaporated under N2
 stream and resuspension of the residue was performed in 1 ml of 

CHCl3. Each sample was seeded in a silica cartridge (Sep-Pak Vac 3cc) pre-conditioned with CHCl3, 

washed with 10 ml of CHCl3: AcH (9:1) and then eluted with 10 ml of MeOH to yield the 

sphingolipid fraction. Following evaporation under N2
 stream, the samples were resuspended in 10 ml 

of MeOH: HCl (5:1) and left overnight at 80°C. The methanolic phase was washed twice with 4 ml of 

hexane. The analysis of the composition of trimethyl-silyl-fatty acid methyl ester (TMS-FAME) 

derivatives was conducted in a Hewlett Packard HP 6890 gas chromatograph equipped with a Zebron 

ZB-5 column (30 m long, 0.53 mm inner diameter; Phenomenex, California, USA). The rise in 

column temperature was programmed at 10°C/min from 110 to 310°C and subsequently held for 10 

min at 310°C. Mass spectrometry (MS) detection was performed with the use of an HP mass selective 

detector (Mass Spec Model 5975VL) operated at an ionization voltage of 70 eV with a scan range of 

50–600 atomic mass units (amu). The identification of fatty acids was done by comparing them with 

NIST database standards (National Institute of Standards and Technologies, MD, USA). For analysis 

of intact lipid moieties by MS/MS, the Bligh and Dyer organic phase was evaporated under N2 stream 

and separated by low pressure column chromatography in silica gel G 230-400 mesh, following the 

procedure detailed in (Hanahan 1997). Briefly, we performed the resuspension of the lipid extract in 

chloroform:methanol 6:1 and applied it on the column. After draining, the following step-wise elution 

was processed: acetone/methanol (90/10); chloroform/methanol (80/20); chloroform/methanol 

(70/30); chloroform/methanol (55/45) and methanol (100). Each fraction, as well as the Bligh and 

Dyer extract were analyzed by using silica gel G thin-layer chromatography (TLC) (Nozawa & A
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Thompson 1971). For polar lipid, the elution was carried out with chloroform: acetic acid: methanol: 

water (75: 25: 5: 2.2, v/v) and detected with Dittmer reagent. For neutral lipids the elution was carried 

out with hexane:diethylether:acetic acid (70:30:1, v/v) and detected with iodine vapors. Determination 

of the exact mass of lipid molecular species from eluted fractions was performed by using a Bruker 

micrOTOF-Q II mass spectrometer equipped with an ESI source set to positive ionization mode. MS 

data were acquired within the mass range of m/z 300–1,100. The ESI parameters used were: capillary 

4.5 kV; end plate offset, -500 V; dry heater, 200°C; dry gas flow, 4.0 l/min; nebulizer 0.4 bar. For 

MS/MS, the collision energy used was 23.0 ev.

Microscopic Analysis

Tetrahymena cells expressing FA2H-EGFP were fixed with 2% paraformaldehyde in 50 mM HEPES 

pH 7.0 for 10 min at room temperature and permeabilized with ice-cold 0.1% Triton X-100 in 50 mM 

HEPES pH 7.0 for 10 min. After washing the fixed cells three times with ice-cold HEPES, they were 

treated with a blocking solution (1% bovine serum albumin in TBS buffer) at room temperature for 1 

h and incubated  in blocking solution containing anti-EGFP primary antibody (A-11122; Invitrogen) 

for 30 min at a 1:400 dilution. Cells were washed three times with TBS buffer containing 0.1% BSA 

for 5 min each and subsequently incubated at room temperature with goat anti-mouse-Alexa Fluor 

594 secondary antibody (A-11020; Invitrogen) for 1 h at a 1:200 dilution in blocking solution. After 

one wash in TBS buffer containing 0.1% BSA, the cells were incubated with 1 mM DAPI (4´,6-

diamidino-2-phenylindole, diluted in EtOH) at room temperature for 15 min. Finally, cells were 

washed twice with 50 mM HEPES pH 7.0 and mounted with anti-bleaching solution (0.2% n-propyl 

gallate, 90% glycerol in PBS). Digital images were collected using a Carl Zeiss Axio imager M2 

fluorescence microscope. Images were analyzed with Image J 1.50i (Wayne Rasband, National 

Institute of Health, USA). 

Bioinformatics and phylogenetic analyses

A dataset comprising the fatty acid 2-hydroxylases was generated by extensive sequence homology 

searches using as query sequences from representative eukaryotic FA2H proteins. Sequences were 

retrieved from the National Center of Biotechnology Information (NCBI), UniProtKB (EMBL-EBI) 

and from the genomes of the ciliates E. octocarinatus (http://ciliates.ihb.ac.cn/database/species/eo), P. A
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persalinus (http://ciliates.ihb.ac.cn/database/species/pp), P. tetraurelia (http://paramecium.cgm.cnrs-

gif.fr/) and I. multifiliis, S. coeruleus, O. trifallax, S. lemnae and T. thermophila (http://ciliates.org). 

OrthoMCL database v5 and OMA browser were also used to retrieve the orthologous sequences from 

FA2H proteins. Redundant sequences were excluded from the dataset sequences using BLASTp tool 

at NCBI homepage with the default setting parameters (Substitution matrix: BLOSUM62; word size: 

6; gap opening cost: 11; gap extension cost: 1). Pairwise alignments of each individual sequence from 

the dataset against the entire dataset were retrieved. Those sequences showing 100 % identity with 

another sequence from the dataset were considered repeated sequences and thus, were excluded from 

the final dataset. CD-HIT with a sequence identity cut-off of 0.99 was also used to exclude redundant 

sequences. For conducting the phylogenetic analyses, PROMALS3D with default parameters was 

used to obtain dataset multiple alignments (MSA). Poorly aligned sequence regions were removed 

using trimAl (http://trimal.cgenomics.org/) with the gappyout-tool. This MSA was used to obtain the 

best-fit evolution model using the ProtTest software (Darriba et al 2011) and the phylogeny was 

constructed by the maximum-likelihood method using PhyML software (Guindon et al. 2010).
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Graphical abstract:

Abbreviated Summary

The putative sphingolipid metabolic pathway in T. thermophila was reconstructed.

Conserved and innovative mechanisms are used in the ciliate.

A fatty acid 2-hydroxylase was identified and characterized from T. thermophila. 

ΔFA2H strains have shown impairments in the sexual stage of conjugation.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

References

Acharya, U. & Acharya, J.K., 2005, ‘Enzymes of Sphingolipid metabolism in Drosophila 

melanogaster’, CMLS Cellular and Molecular Life Sciences, 62(2), 128–142.

Blackburn, E.H. & Gall, J.G., 1978, ‘A tandemly repeated sequence at the termini of the 

extrachromosomal ribosomal RNA genes in Tetrahymena’, Journal of Molecular Biology, 

120(1), 33–53.

Bligh, E.G. & Dyer, W.J., 1959, ‘A rapid method of total lipid extraction and purification’, Canadian 

Journal of Biochemistry and Physiology, 37(1), 911–917.

Bosson, R., 2006, ‘GUP1 of Saccharomyces cerevisiae Encodes an O-Acyltransferase Involved in 

Remodeling of the GPI Anchor’, H. Riezman (ed.), Molecular Biology of the Cell, 17(6), 2636–

2645.

Cassidy-Hanley, D., Bowen, J., Lee, J.H., Cole, E., VerPlank, L.A., Gaertig, J., Gorovsky, M.A., 

Bruns, P.J. & D. Cassidy-Hanley, J. Bowen, J. H. Lee, E. Cole, L. A. VerPlank, J. Gaertig, M. A. 

Gorovsky,  and P.J.B., 1997, ‘Germline and somatic transformation of mating Tetrahymena 

thermophila by particle bombardment’, Genetics, 146(1), 135–147.

Cassidy-Hanley, D.M., 2012, ‘Tetrahymena in the Laboratory: Strain Resources, Methods for Culture, 

Maintenance, and Storage’, Methods in Cell Biology, 109, 237–276.

Chalker, D.L. (2012) Transformation and Strain Engineering of Tetrahymena. In Methods in Cell 

Biology. .

Cole, E. & Sugai, T., 2012, ‘Developmental progression of Tetrahymena through the cell cycle and 

conjugation’, Methods in Cell Biology, 109, 177–236.

Cole, E.S., 2016, ‘Cell-Cell Interactions Leading to Establishment of a Mating Junction in 

Tetrahymena and Paramecium, Two “Contact-Mediated” Mating Systems’, Biocommunication 

of Ciliates, pp. 195–220, Springer International Publishing, Cham.

Eckhardt, M., Yaghootfam, A., Fewou, S.N., Zöller, I. & Gieselmann, V., 2005, ‘A mammalian fatty 

acid hydroxylase responsible for the formation of α-hydroxylated galactosylceramide in myelin’, A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Biochemical Journal, 388(1), 245–254.

Edvardson, S., Hama, H., Shaag, A., Gomori, J.M., Berger, I., Soffer, D., Korman, S.H., Taustein, I., 

Saada, A. & Elpeleg, O., 2008, ‘Mutations in the Fatty Acid 2-Hydroxylase Gene Are Associated 

with Leukodystrophy with Spastic Paraparesis and Dystonia’, American Journal of Human 

Genetics, 83(5), 643–648.

Eisen, J., Coyne, R., Wu, M. & Wu, D., 2006, ‘Macronuclear genome sequence of the ciliate 

Tetrahymena thermophila, a model eukaryote’, PLoS Biol, 4(9), e286.

Elguero, M., Nudel, C. & Nusblat, A., 2018, ‘Biotechnology in ciliates: an overview’, Critical 

Reviews in Biotechnology.

Elliott, A.M. & Hayes, R.E., 1953, ‘Mating types in tetrahymena’, The Biological Bulletin, 105(2), 

269–284.

Forte, M., Satow, Y., Nelson, D. & Kung, C., 1981, ‘Mutational alteration of membrane phospholipid 

composition and voltage-sensitive ion channel function in paramecium.’, Proceedings of the 

National Academy of Sciences of the United States of America, 78(11), 7195–7199.

Gault, C.R., Obeid, L.M. & Hannun, Y.A., 2010, ‘An overview of sphingolipid metabolism: from 

synthesis to breakdown.’, Advances in experimental medicine and biology, 688, 1–23.

Greider, C.W. & Blackburn, E.H., 1985, ‘Identification of a specific telomere terminal transferase 

activity in tetrahymena extracts’, Cell, 43(2), 405–413.

Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O., 2010, ‘New 

algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the 

performance of PhyML 3.0’, Systematic Biology.

Guo, L., Zhou, D., Pryse, K.M., Okunaded, A.L. & Su, X., 2010, ‘Fatty acid 2-hydroxylase mediates 

diffusional mobility of raft-associated lipids, GLUT4 level, and lipogenesis in 3T3-L1 

adipocytes’, Journal of Biological Chemistry, 285(33), 25438–25447.

Haak, D., Gable, K., Beeler, T. & Dunn, T., 1997, ‘Hydroxylation of Saccharomyces cerevisiae 

ceramides requires Sur2p and Scs7p.’, The Journal of biological chemistry, 272(47), 29704–10.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Hama, H., 2010, ‘Fatty acid 2-Hydroxylation in mammalian sphingolipid biology’, Biochimica et 

Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1801(4), 405–414.

Hamilton, E.P., and Orias, E. (2000) Genetic crosses: Setting up crosses, testing progeny, and 

isolating phenotypic assortants. Methods Cell Biol .

Hanahan, D.J., 1997, ‘A guide to Phospholipid Chemistry’, Oxford University Press.

Hannun, Y.A. & Obeid, L.M., 2008, ‘Principles of bioactive lipid signalling: lessons from 

sphingolipids’, Nature Reviews Molecular Cell Biology, 9(2), 139–150.

Hannun, Y.A. & Obeid, L.M., 2017, ‘Sphingolipids and their metabolism in physiology and disease’, 

Nature Reviews Molecular Cell Biology, 19(3), 175–191.

He, D., Fiz-Palacios, O., Fu, C.J., Tsai, C.C. & Baldauf, S.L., 2014, ‘An alternative root for the 

eukaryote tree of life’, Current Biology, 24(4), 465–470.

Hung, C.Y., Ko, Y.G. & Thompson, G. a, 1995, ‘Temperature-induced alteration of 

inositolphosphorylceramides in the putative glycosylated lipid precursors of Tetrahymena 

mimbres glycosylphosphatidylinositol-anchored proteins.’, The Biochemical journal.

Ikushiro, Hiroko, Hideyuki Hayashi, & Hiroyuki Kagamiyama. ‘A Water-soluble Homodimeric 

Serine Palmitoyltransferase from Sphingomonas paucimobilis EY2395T Strain Purification, 

Characterization, Cloning, And Overproduction. ’, Journal of Biological Chemistry, 276(21), 

18249-18256.

Jin, Q., Ren, Y., Wang, M., Suraneni, P.K., Li, D., Crispino, J.D., Fan, J. & Huang, Z., 2016, ‘Novel 

function of FAXDC2 in megakaryopoiesis’, Blood Cancer Journal, 6(9), e478–e478.

Kaneshiro, E.S., 1987, ‘Lipids of Paramecium.’, Journal of lipid research, 28(11), 1241–58.

Kaneshiro, E.S., Jayasimhulu, K., Sul, D. & Erwin, J.A., 1997, ‘Identification and initial 

characterizations of free, glycosylated, and phosphorylated ceramides of Paramecium’, Journal 

of Lipid Research.

Kataoka, K., Schoeberl, U.E., and Mochizuki, K. (2010) Modules for C-terminal epitope tagging of 

Tetrahymena genes. J Microbiol Methods 82: 342–346.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Katoh, K., and Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: 

Improvements in performance and usability. Mol Biol Evol 30.

Kaya, K., Ramesha, C.S. & Thompson, G.A., 1984a, ‘Temperature-induced changes in the hydroxy 

and non-hydroxy fatty-acid containing sphingolipids abundant in the surface-membrane of 

tetrahymena-pyriformis nt-1’, Journal of Lipid Research, 25(1), 68–74.

Kaya, K., Ramesha, C.S. & Thompson, G.A., 1984b, ‘On the formation of alpha-hydroxy fatty acids. 

Evidence for a direct hydroxylation of nonhydroxy fatty acid-containing sphingolipids.’, The 

Journal of biological chemistry, 259(6), 3548–53.

Kota, V. & Hama, H., 2014, ‘2’-Hydroxy ceramide in membrane homeostasis and cell signaling’, 

Advances in Biological Regulation, 54(1), 223–230.

Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E. & Cech, T.R., 1982, ‘Self-

splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of 

tetrahymena’, Cell, 31(1), 147–157.

Kurczy, M.E., Piehowski, P.D., Bell, C.T. Van, Heien, M.L., Winograd, N. & Ewing, A.G., 2010, 

‘Mass spectrometry imaging of mating Tetrahymena show that changes in cell morphology 

regulate lipid domain formation.’, Proceedings of the National Academy of Sciences of the 

United States of America, 107(7), 2751–6.

Lefort, V., Longueville, J.E., and Gascuel, O. (2017) SMS: Smart Model Selection in PhyML. Mol 

Biol Evol 34.

Leondaritis, G., Sarri, T., Dafnis, I., Efstathiou, A. & Galanopoulou, D., 2011, ‘Biochemical and 

genetic evidence for the presence of multiple phosphatidylinositol- and phosphatidylinositol 4,5-

bisphosphate-specific phospholipases C in Tetrahymena.’, Eukaryotic cell, 10(3), 412–22.

Li, Y., Wang, C., Huang, Y., Fu, R., Zheng, H., Zhu, Y., Shi, X., Padakanti, P.K., Tu, Z., Su, X. & 

Zhang, H., 2018, ‘C. Elegans Fatty Acid Two-Hydroxylase Regulates Intestinal Homeostasis by 

Affecting Heptadecenoic Acid Production’, Cellular Physiology and Biochemistry, 49(3), 947–

960.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Li, W., and Godzik, A. (2006) Cd-hit: A fast program for clustering and comparing large sets of 

protein or nucleotide sequences. Bioinformatics 22.

Martindale, D.W., Allis, C.D. & Bruns, P.J., 1982, ‘Conjugation in Tetrahymena thermophila. A 

temporal analysis of cytological stages’, Experimental Cell Research.

Merrill, A.H., 2011, ‘Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of 

Sphingolipidomics’, Chemical Reviews, 111(10), 6387–6422.

Michaelson, L. V., Napier, J.A., Molino, D. & Faure, J.-D., 2016, ‘Plant sphingolipids: Their 

importance in cellular organization and adaption’, Biochimica et Biophysica Acta (BBA) - 

Molecular and Cell Biology of Lipids, 1861(9), 1329–1335.

Mina, J.G., Thye, J.K., Alqaisi, A.Q.I., Bird, L.E., Dods, R.H., Grøftehauge, M.K., et al. (2017) 

Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid 

biosynthesis in a phylum of eukaryotic protozoan parasites. J Biol Chem 292.

Mochizuki, K., Fine, N.A., Fujisawa, T. & Gorovsky, M.A., 2002, ‘Analysis of a piwi-related gene 

implicates small RNAs in genome rearrangement in Tetrahymena’, Cell, 110(6), 689–699.

Mochizuki, K. & Gorovsky, M.A., 2004, ‘Conjugation-specific small RNAs in Tetrahymena have 

predicted properties of scan (scn) RNAs involved in genome rearrangement’, Genes and 

Development, 18(17), 2068–2073.

Montefusco, D.J., Matmati, N. & Hannun, Y.A., 2014, ‘The yeast sphingolipid signaling landscape’, 

Chemistry and Physics of Lipids, 177, 26–40.

Nagano, M., Takahara, K., Fujimoto, M., Tsutsumi, N., Uchimiya, H. & Kawai-Yamada, M., 2012, 

‘Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally 

differentiated in fatty acid 2-hydroxylation and stress responses.’, Plant physiology, 159(3), 

1138–48.

Natter, K., Leitner, P., Faschinger, A., Wolinski, H., McCraith, S., Fields, S. & Kohlwein, S.D., 2005, 

‘The Spatial Organization of Lipid Synthesis in the Yeast Saccharomyces cerevisiae Derived 

from Large Scale Green Fluorescent Protein Tagging and High Resolution Microscopy’, A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Molecular & Cellular Proteomics, 4(5), 662–672.

Nishizuka, Y., 1992, ‘Intracellular signaling by hydrolysis of phospholipids and activation of protein 

kinase C.’, Science (New York, N.Y.), 258(5082), 607–14.

Nozawa, Y. & Thompson, G. a, 1971, ‘Studies of membrane formation in Tetrahymena pyriformis. II. 

Isolation and lipid analysis of cell fractions.’, The Journal of cell biology.

Nusblat, A.D., Bright, L.J. & Turkewitz, A.P., 2012, ‘Conservation and Innovation in Tetrahymena 

Membrane Traffic: Proteins, Lipids, and Compartments’, Methods in Cell Biology.

Nusblat, A.D., Najle, S.R., Tomazic, M.L., Uttaro, A.D. & Nudel, C.B., 2009, ‘C-5(6) sterol 

desaturase from Tetrahymena thermophila: Gene identification and knockout, sequence analysis, 

and comparison to other C-5(6) sterol desaturases’, Eukaryotic Cell.

Olsen, I. & Jantzen, E., 2001, ‘Sphingolipids in Bacteria and Fungi’, Anaerobe, 7(2), 103–112.

Ostrowski, S.G., Bell, C.T. Van, Winograd, N. & Ewing, A.G., 2004, ‘Mass spectrometric imaging of 

highly curved membranes during Tetrahymena mating’, Science.

Poklepovich, T.J., Rinaldi, M.A., Tomazic, M.L., Favale, N.O., Turkewitz, A.P., Nudel, C.B. & 

Nusblat, A.D., 2012, ‘The cytochrome b5 dependent C-5(6) sterol desaturase DES5A from the 

endoplasmic reticulum of Tetrahymena thermophila complements ergosterol biosynthesis 

mutants in Saccharomyces cerevisiae’, Steroids.

Potter, K.A., Kern, M.J., Fullbright, G., Bielawski, J., Scherer, S.S., Yum, S.W., Li, J.J., Cheng, H., 

Han, X., Venkata, J.K., Akbar Ali Khan, P., Rohrer, B. & Hama, H., 2011, ‘Central nervous 

system dysfunction in a mouse model of Fa2H deficiency’, GLIA.

Pratt, S., Wansadhipathi-Kannangara, N.K., Bruce, C.R., Mina, J.G., Shams-Eldin, H., Casas, J., 

Hanada, K., Schwarz, R.T., Sonda, S. & Denny, P.W., 2013, ‘Sphingolipid synthesis and 

scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii’, Molecular and 

Biochemical Parasitology, 187(1), 43–51.

Ramakrishnan, S., Serricchio, M., Striepen, B. & Bütikofer, P., 2013, ‘Lipid synthesis in protozoan 

parasites: A comparison between kinetoplastids and apicomplexans’, Progress in Lipid A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Research, 52(4), 488–512.

Robert, X., and Gouet, P. (2014) Deciphering key features in protein structures with the new 

ENDscript server. Nucleic Acids Res 42.

Ruehle, M.D., Orias, E. & Pearson, C.G., 2016, Tetrahymena as a unicellular model eukaryote: 

Genetic and genomic tools, Genetics, 203(2), 649–665.

Serhan, C.N. & Savill, J., 2005, ‘Resolution of inflammation: the beginning programs the end’, 

Nature Immunology, 6(12), 1191–1197.

Shang, Y., Song, X., Bowen, J., Corstanje, R., Gao, Y., Gaertig, J., and Gorovsky, M.A. (2002) A 

robust inducible-repressible promoter greatly facilitates gene knockouts, conditional expression, 

and overexpression of homologous and heterologous genes in Tetrahymena thermophila. Proc 

Natl Acad Sci 99: 3734–3739.

Shanklin, J., Whittle, E. & Fox, B.G., 1994, ‘Eight Histidine Residues Are Catalytically Essential in a 

Membrane-Associated Iron Enzyme, Stearoyl-CoA Desaturase, and Are Conserved in Alkane 

Hydroxylase and Xylene Monooxygenase’, Biochemistry, 33(43), 12787–12794.

Simons, K. & Ikonen, E., 1997, ‘Functional rafts in cell membranes’, Nature, 387(6633), 569–572.

Smith, T.K. & Bütikofer, P., 2010, ‘Lipid metabolism in Trypanosoma brucei’, Molecular and 

Biochemical Parasitology, 172(2), 66–79.

Stothard P., 2000, ‘The Sequence Manipulation Suite: JavaScript programs for analyzing and 

formatting protein and DNA sequences’, Biotechniques, 28, 1102-1104.

Sugita, M., Fukunaga, Y., Ohkawa, K., Nozawa, Y. & Hori, T., 1979, ‘Structural Components of 

Sphingophosphonolipids from the Ciliated Protozoan, Tetrahymena pyriformis WH-14’, The 

Journal of Biochemistry, 86(2), 281–288.

Tafesse, F.G., Ternes, P. & Holthuis, J.C.M., 2006, ‘The multigenic sphingomyelin synthase family.’, 

The Journal of biological chemistry, 281(40), 29421–5.

Taketomi, T., 1961, ‘Phospholipids in Tetrahymena Pyriformis W’, Zeitschrift für allgemeine 

Mikrobiologie, 1(5), 331–340.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Taverna, S.D., Coyne, R.S. & Allis, C.D., 2002, ‘Methylation of histone H3 at lysine 9 targets 

programmed DNA elimination in Tetrahymena’, Cell, 110(6), 701–711.

Thompson, G.A., 1967, ‘Studies of Membrane Formation in Tetrahymena pyriformis. I. Rates of 

Phospholipid Biosynthesis *’, Biochemistry, 6(7), 2015–2022.

Tomazic, M.L., Najle, S.R., Nusblat, A.D., Uttaro, A.D. & Nudel, C.B., 2011, ‘A novel sterol 

desaturase-like protein promoting dealkylation of phytosterols in Tetrahymena thermophila’, 

Eukaryotic Cell.

Tomazic, M.L., Poklepovich, T.J., Nudel, C.B. & Nusblat, A.D., 2014, Incomplete sterols and 

hopanoids pathways in ciliates: Gene loss and acquisition during evolution as a source of 

biosynthetic genes, Molecular Phylogenetics and Evolution.

Uchida, Y., Hama, H., Alderson, N.L., Douangpanya, S., Wang, Y., Crumrine, D.A., Elias, P.M. & 

Holleran, W.M., 2007, ‘Fatty acid 2-hydroxylase, encoded by FA2H, accounts for 

differentiation-associated increase in 2-OH ceramides during keratinocyte differentiation’, 

Journal of Biological Chemistry, 282(18), 13211–13219.

Villasmil, M.L., Gallo-Ebert, C., Liu, H.Y., Francisco, J. & Nickels, J.T., 2017, ‘A link between very 

long chain fatty acid elongation and mating-specific yeast cell cycle arrest’, Cell Cycle.

Viswanathan, C. V & Rosenberg, H., 1973, ‘Isolation of ceramide-

monomethylaminoethylphosphonate from the lipids of Tetrahymena pyriformis W.’, Journal of 

lipid research, 14(3), 327–30.

Wang, S., Banno, Y. & Nozawa, Y., 2002, ‘Two Forms of Membrane-Bound Sphingosine Kinase in 

Tetrahymena and Activity Changes During Growth and the Cell Cycle’, The Journal of 

Eukaryotic Microbiology, 49(4), 305–311.

Xiong, J., Wang, G., Cheng, J., Tian, M., Pan, X., Warren, A., Jiang, C., Yuan, D. & Miao, W., 2015, 

‘Genome of the facultative scuticociliatosis pathogen Pseudocohnilembus persalinus provides 

insight into its virulence through horizontal gene transfer’, Scientific Reports, 5(1), 15470.

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. & Zhang, Y., 2015, ‘The I-TASSER Suite: protein A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

structure and function prediction’, Nature Methods, 12(1), 7–8.

Yao, Y., Yang, X., Sun, L., Sun, S., Huang, X., Zhou, D., Li, T., Zhang, W., Abumrad, N.A., Zhu, X., 

He, S. & Su, X., 2019, ‘Fatty acid 2-hydroxylation inhibits tumor growth and increases 

sensitivity to cisplatin in gastric cancer’, EBioMedicine.

Zhang, K. & Beverley, S.M., 2010, ‘Phospholipid and sphingolipid metabolism in Leishmania’, 

Molecular and Biochemical Parasitology, 170(2), 55–64.

Zhu, G., Koszelak-Rosenblum, M., Connelly, S.M., Dumont, M.E. & Malkowski, M.G., 2015, ‘The 

Crystal Structure of an Integral Membrane Fatty Acid α-Hydroxylase.’, The Journal of 

biological chemistry, 290(50), 29820–33.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Figures legends

Figure 1: Sphingolipid metabolism pathways of eukaryotic organisms, highlighting Tetrahymena 

thermophila pathways. Enzymes identified in the T. thermophila genome are shown in green and the 

sphingolipid moieties reported in the Tetrahymena genus are drawn. CAEP: ceramide 2-

aminoethylphosphonate, S1P: sphingosine-1-phosphate, EPC: ethanolamine-phosphorylceramide, 

C1P: ceramide-1-phosphate, PPC : phosphonate-phosphorylceramide, IPC: inositol-

phosphorylceramide. 

Figure 2: A. Schematic representation of the phylogenetic tree, showing major eukaryotic 

supergroups and the position of phyla based on the phylogenetic analysis by He et. al. (He et al. 

2014). Blue circles indicate the presence of fatty acid 2-hydroxylase previously identified and used as 

query for the search of other fatty acid 2-hydroxylases. The red circle shows the position of ciliates in 

the eukaryotic tree. B. Schematic representation of the secondary structure of a model of the T. 

thermophila fatty acid 2-hydroxylase placed within a model lipid bilayer (gray lines) is depicted. The 

protein structure was predicted using the I-TASSER server with default setting parameters (Yang et 

al. 2015). In dark grey the cytochrome-b5 domain (at the upper part of the molecule) and the fatty acid 

hydroxylase domain (at the bottom part of the molecule) are shown in dark grey. C. Schematic 

diagram showing the orthologous sequences retrieved from ciliate genomes in green. D. Phylogenetic 

analysis of fatty acid 2-hydroxylase. For phylogenetic analyses, PROMALS3D with default 

parameters was used to obtain dataset multiple alignments (MSA). Poorly aligned sequences were 

removed using trimAl (http://trimal.cgenomics.org/) with the gappyout-tool. This MSA was used to 

construct the phylogenetic tree by the neighbor joining method with support of 1000 bootstraps using 

MEGA X software. Phylogenetic trees obtained with Minimum Evolution and Maximum Parsimony 

methods showed similar reconstruction. The S. cerevisiae C5-sterol desaturase (P32353) was used as 

outgroup. Black arrows indicate putative FA2H from T. thermophila.

Figure 3: A. Schematic representation of FA2H gene replacement in the wild-type (WT) locus, 

primers used to check the incorporation of neo 3 cassette in the FA2H locus are shown with arrows, 

grey for WT locus and black for knock-out (KO) locus. B. Genomic DNA of the T. thermophila WT 

and KOFA2H strains analyzed by PCR to check the gene replacement event. C. FA2H gene A
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transcription in WT and KOFA2H strains analyzed by RT-PCR. D. Fatty acid composition of 

sphingolipids from WT and KO strains expressed as a percentage of the total amount. Results are 

shown as the mean ± SD of three independent cultures. E. Polar lipids of WT and KO strains analyzed 

by TLC using chloroform: acetic acid: methanol: water (75: 25: 5: 2.2, v/v) as elution solvents. NL: 

neutral lipids, AEPL: ceramide 2-aminoethylphosphonate, PE:phosphatidylethanolamine, PC: 

phosphatidylcholine, SM: sphingomyelin. A red arrow indicates a polar lipid moiety present only in 

the KO strain. F. Mass spectra for the ceramide 2-aminoethylphosphonate identification. m/z 

obtained: precursor ion: 645.5330, fragments: 520.5026 and 502.4905. m/z of predicted ions: 

precursor ion: 645.5330 ([M+H]+), fragment m/z : 502.4940 ([M]+) and 520.5060 ([M+H]+).

Figure 4: Localization of EGFP tagged FA2H in T. thermophila. A. Schematic representation of gene 

replacement in the wild-type (WT) locus of the FA2H gene by targeting the FA2H-EGFP construct by 

homologous recombination, using a cassette in which neo 4 confers paromomycin resistance. B. 

Immunofluorescence localization of EGFP-tagged FA2H. WT and FA2H-EGFP strains were grown 

to Log phase and fixed for indirect immunofluorescence staining. The EGFP was localized by anti-

GFP primary antibody followed by labeling with anti-mouse-Alexa Fluor 594 secondary antibody. 

The ciliate nucleus was stained with DAPI (4´,6-diamidino-2-phenylindole, diluted in EtOH). 

Figure 5: A. Stages of conjugation in Tetrahymena. B. Efficiency of the conjugation sexual process 

in WT and fatty acid 2-hydroxylase KO strains as well in the C5-sterol desaturase KO strain, used as 

control. The percentage of cell pairing and the percentage of them finishing the conjugation process 

are shown as the mean ± SD of three independent cultures. Statistical analysis was performed using 

one-way ANOVA. *** denotes statistical significances (P≤ 0.001, respectively) with respect to the 

value recorded in WT x WT conjugation assay. C. Temporal analysis of meiotic stages of conjugation 

between two WT strains; and one KOFA2H strain with one WT strain of a different mating type. 

Roman numerals indicates the six stages of meiotic prophase. A percentage of each meiotic stage 

from the total of cell pairings is shown in each hour. Between 42 and 84 cell pairings were examined 

in triplicate experiments. *** denote statistical significances (P≤0.001).
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Supplementary information

Figure S1: Phylogenetic analysis of putative enzymes corresponding to enzymatic steps involved in 

the T. thermophila sphingolipid metabolism pathway. T. thermophila putative proteins are shown in 

blue, reviewed proteins (Swiss-Prot) in green, and proteins used as outgroups in red. To infer 

phylogenetic trees of each putative enzymes, different datasets comprising sequences retrieved by 

BLAST at UniProt were generated using as query the sequences listed in Table S1. Sequences with an 

E value below of 1e-10 were filtered. To reduce the number of sequences to approximately 80 to 120 

in each dataset, we cluster proteins using CD-HIT at 40-80 % of sequence identity (Li and Godzik, 

2006). Amino acid sequences were aligned using the MAFFT algorithm (Katoh and Standley, 2013) 

implemented in the online resource at CBRC, Japan (MSA Supporting Information). Phylogenetic 

relationships were determined using Maximum Likelihood using PhyML 3.0 optimized by SPR and 

NNI with a support of 100 bootstraps at the ATGC online resource. The evolutionary models for the 

MSA were selected using the Smart Model Selection method (SMS) (Lefort et al., 2017). 

Figure S2: Sequence similarities of reviewed fatty acid 2-hydroxylases and putative sequences of T. 

thermophila. The four histidine clusters are indicated with a solid green line. The secondary structure 

of S. cerevisiae FA2H is shown at the top of the alignment (PDB 4ZR0). The conserved residues 

absent in the Q232H4 T. thermophila sequence, are indicated with green arrows for the histidine 

residues and in blue arrow for the aspartic acid 323 residue. Amino acid sequences were aligned using 

the MAFFT algorithm (Katoh and Standley, 2013) implemented in the online resource at CBRC, 

Japan. The figure was generated using the Espript program (Robert and Gouet, 2014).
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Figure S3: Gene expression profile of FA2H. Blue and red lines represent the expression values 

normalized by two different methods. For growing cells (L) l, m and h correspond respectively to 

1x105 cells/ml, 3.5x105cells/ml and 1x106 cells/ml. For starvation (S) 2x105 cells/ml were collected 

at 0, 3, 6, 9, 12, 15 and 24. For conjugation (C) B2086 and CU428 cells were mixed, and samples 

were collected at 0, 2, 4, 6, 8, 10, 12, 14, 16 and 18 hours after mixing. Data were retrieved from the 

Tetrahymena Functional Genomics Database.

Table S1: Putative enzymes of T. thermophila sphingolipid metabolism pathway. The enzymes were 

search by sequence homology using query reviewed proteins (Swiss-Prot) of different organisms. To 

retrieve reliable sequences, the OMA (Orthologous MAtrix) database, the KEGG (Kyoto 

Encyclopedia of Genes and Genomes) sphingolipid metabolic pathway, and the Tetrahymena 

Genomic Database (TGD) were used. Putative sequences with an E value below of 1e-10 were 

filtered.

Table S2: Evolutionarily conservation of putative enzymes of T. thermophila sphingolipid 

metabolism pathway. The identity and similarity percentage of T. thermophila proteins with reviewed 

proteins (Swiss-Prot) from different organisms were calculated using the Ident and Sim program from 

the Sequence Manipulation Suite (Stothard 2000). The highest values are shown in green and blue 

(identity and similarity respectively).

Table S3: Fatty acid composition of sphingolipids from WT and KOFA2H strains grown at 30°C. 

Results are shown as the mean ± SD of three independent cultures. Statistical analysis was performed 

using one-way ANOVA. *, ** and *** denote statistical significances (P< 0.05, P≤ 0.01 and P≤ 

0.001, respectively) with respect to the value recorded in WT cells.

MSA Supporting Information: Multiple sequence alignments in Fasta format used for phylogenetic 

reconstruction are included in a zip file.
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