9 research outputs found

    Uses of Remnant Human Lung Tissue for Mechanical Stretch Studies

    Get PDF
    Human lung tissue donated for research purposes is a precious resource which can enhance the exploration of mechanisms involved in ventilator-induced lung injury (VILI). The goal of this work was to establish methods and demonstrate the feasibility of obtaining viable primary human type I-like alveolar epithelial cells (AECs) from remnant tissue, even after a significant lapse in post-mortem time, as well as human precision-cut lung slices (PCLSs), and stretch them at magnitudes correlated with mechanical ventilation volumes. Although after 3 days in culture many of the isolated cells stained for the type II AEC marker pro-surfactant Protein C (pro-SPC), after 6 days in culture the monolayer stained only weakly and non-specifically for pro-SPC, and stained brightly for the type I AEC marker aquaporin-5. A strong zona-occludin 1 stain demonstrated the formation of tight junctions between the cells in the epithelial monolayer after only 3 days in culture. To demonstrate the utility of the preparations for the study of lung injury, we stretched the cells and the PCLSs cyclically, uniformly, and equibiaxially and quantified their viability. Our data show that the described methods allow the utilization of human tissue in in vitro stretch studies investigating VILI

    Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    Get PDF
    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and α-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[13C6]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective α-keto acids, utilizing α-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants

    Laser Tooth Preparation for Pit and Fissure Sealing

    No full text
    Objectives: Various approaches are available for pit and fissure sealing, including: the use of sealants, with or without mechanical preparation; the use of etching, with or without bonding; and the use of lasers as an alternative to mechanical preparation. The objective of this study is to evaluate pit and fissure sealing by comparing the retention and microleakage of sealants, between mechanical and Er:Yag laser enamel preparation. Methods: Sixty extracted sound third molars are classified into six groups: A, bur mechanical preparation and sealant application; B, bur mechanical preparation, etching and sealant; C, bur mechanical preparation, etching, bonding and sealant; D, laser mechanical preparation and sealant; E, laser mechanical preparation, etching and sealant application; F, laser mechanical preparation, etching, bonding, and sealant. Statistical analysis methods include Fisher’s exact test, a general linear model for one-way analysis of variance (ANOVA) of multiple comparisons, and Bonferroni multiple comparison tests. Results: All the groups showed dye microleakage beneath the sealants. Less microleakage was observed for those that used bur rather than laser, 41 versus 44 specimens, respectively. The number of specimens without microleakage decreased as follows: group E (24), group A (18), groups B and F (17), group C (14), and group D (5). Retention was 100% in all groups except group D. Conclusion: Mechanical preparation increases retention of sealants, especially when etching material is used; additionally, bonding can help the retention. The best technique is mechanical preparation via laser and subsequent use of etching, without bonding prior to application of the dental sealant

    Mechanophysical Stimulations of Mucin Secretion in Cultures of Nasal Epithelial Cells

    Get PDF
    Nasal epithelial cells secret mucins and are exposed in vivo to airflow-induced mechanophysical stresses, including wall shear stress (WSS), temperature, and humidity. In this work, human nasal epithelial cells cultured under air-liquid interface conditions were subjected to fields of airflow-induced oscillatory WSS at different temperature and humidity conditions. Changes in mucin secretion due to WSS were measured and the role of the cytoskeleton in mucin secretion was explored. Mucin secretion significantly increased in response to WSS in a magnitude-dependent manner with respect to static cultures and independently of the airflow temperature and humidity. In static cultures, mucin secretion decreased at high humidity with or without elevation of the temperature with respect to cultures at a comfortable climate. In cultures exposed to WSS, mucin secretion increased at high temperature with respect to cultures at comfortable climate conditions. The polymerization of actin microfilaments was shown to increase mucin secretion under WSS, whereas the dynamics of microtubule polymerization did not affect secretion. In conclusion, the data in this study show that mucin secretion is sensitive to oscillatory WSS as well as high temperature and humidity conditions
    corecore