16 research outputs found

    Recessive dystrophic epidermolysis bullosa: the origin of the c.6527insC mutation in the Spanish population

    Get PDF
    This work was supported by grants from the Spanish Ministry of Science and Innovation (MICINN) (SAF2007-61019 and SAF 2010-16976), INTRA ⁄08 ⁄714.1 and INTRA ⁄09 ⁄758 from the Biomedical Network Research Centre on Rare Diseases (CIBERER) and S2010 ⁄BMD-2420 (CELLCAM) from Comunidad de Madrid

    A prevalent mutation with founder effect in Spanish recessive dystrophic epidermolysis bullosa families

    Get PDF
    Background: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a genodermatosis caused by more than 500 different mutations in the COL7A1 gene and characterized by blistering of the skin following a minimal friction or mechanical trauma. The identification of a cluster of RDEB pedigrees carrying the c.6527insC mutation in a specific area raises the question of the origin of this mutation from a common ancestor or as a result of a hotspot mutation. The aim of this study was to investigate the origin of the c.6527insC mutation. Methods: Haplotypes were constructed by genotyping nine single nucleotides polymorphisms (SNPs) throughout the COL7A1 gene. Haplotypes were determined in RDEB patients and control samples, both of Spanish origin. Results: Sixteen different haplotypes were identified in our study. A single haplotype cosegregated with the c.6527insC mutation. Conclusion: Haplotype analysis showed that all alleles carrying the c.6527insC mutation shared the same haplotype cosegregating with this mutation (CCGCTCAAA_6527insC), thus suggesting the presence of a common ancestor.This work was supported in part by grants from Spanish Ministry of Science and Innovation (SAF2007-61019 and SAF2010-16976) and INTRA/08/714 from Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)

    The regenerative potential of fibroblasts in a new diabetes-induced delayed humanised wound healing model

    Get PDF
    Cutaneous diabetic wounds greatly affect the quality of life of patients, causing a substantial economic impact on the healthcare system. The limited clinical success of conventional treatments is mainly attributed to the lack of knowledge of the pathogenic mechanisms related to chronic ulceration. Therefore, management of diabetic ulcers remains a challenging clinical issue. Within this context, reliable animal models that recapitulate situations of impaired wound healing have become essential. In this study, we established a new in vivo humanised model of delayed wound healing in a diabetic context that reproduces the main features of the human disease. Diabetes was induced by multiple low doses of streptozotocin in bioengineered human-skin-engrafted immunodeficient mice. The significant delay in wound closure exhibited in diabetic wounds was mainly attributed to alterations in the granulation tissue formation and resolution, involving defects in wound bed maturation, vascularisation, inflammatory response and collagen deposition. In the new model, a cell-based wound therapy consisting of the application of plasma-derived fibrin dermal scaffolds containing fibroblasts consistently improved the healing response by triggering granulation tissue maturation and further providing a suitable matrix for migrating keratinocytes during wound re-epithelialisation. The present preclinical wound healing model was able to shed light on the biological processes responsible for the improvement achieved, and these findings can be extended for designing new therapeutic approaches with clinical relevance.This work was supported by grants from the Science and Innovation Ministry of Spain (SAF2010-16976), from the European VI Framework Programme (LSHB-CT-512102), from Comunidad de Madrid (S2010/BMD-2420; CELLCAM) and from Fundacion Ramon Areces (CIVP16A1864)

    Deletion of a Pathogenic Mutation-Containing Exon of COL7A1 Allows Clonal Gene Editing Correction of RDEB Patient Epidermal Stem Cells

    Get PDF
    Recessive dystrophic epidermolysis bullosa is a severe skin fragility disease caused by loss of functional type VII collagen at the dermal-epidermal junction. A frameshift mutation in exon 80 of COL7A1 gene, c.6527insC, is highly prevalent in the Spanish patient population. We have implemented geneediting strategies for COL7A1 frame restoration by NHEJ-induced indels in epidermal stem cells from patients carrying this mutation. TALEN nucleases designed to cut within the COL7A1 exon 80 sequence were delivered to primary patient keratinocyte cultures by non-integrating viral vectors. After genotyping a large collection of vector-transduced patient keratinocyte clones with high proliferative potential, we identified a significant percentage of clones with COL7A1 reading frame recovery and Collagen VII protein expression. Skin equivalents generated with cells from a clone lacking exon 80 entirely were able to regenerate phenotypically normal human skin upon their grafting onto immunodeficient mice. These patientderived human skin grafts showed Collagen VII deposition at the basement membrane zone, formation of anchoring fibrils, and structural integrity when analyzed 12 weeks after grafting. Our data provide a proof-of-principle for recessive dystrophic epidermolysis bullosa treatment through ex vivo gene editing based on removal of pathogenic mutationcontaining, functionally expendable COL7A1 exons in patient epidermal stem cells.The study was mainly supported by DEBRA International—funded by DEBRA Austria (grant termed as Larcher 1). Additional funds come from Spanish grants SAF2013-43475-R and SAF2017-86810-R from the Ministry of Economy and Competitiveness and PI14/00931 and PI17/01747 from the Instituto de Salud Carlos III, all of them co-funded with European Regional Development Funds (ERDF)

    A prevalent mutation with founder effect in Spanish Recessive Dystrophic Epidermolysis Bullosa families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a genodermatosis caused by more than 500 different mutations in the <it>COL7A1 </it>gene and characterized by blistering of the skin following a minimal friction or mechanical trauma.</p> <p>The identification of a cluster of RDEB pedigrees carrying the c.6527insC mutation in a specific area raises the question of the origin of this mutation from a common ancestor or as a result of a hotspot mutation. The aim of this study was to investigate the origin of the c.6527insC mutation.</p> <p>Methods</p> <p>Haplotypes were constructed by genotyping nine single nucleotides polymorphisms (SNPs) throughout the <it>COL7A1 </it>gene. Haplotypes were determined in RDEB patients and control samples, both of Spanish origin.</p> <p>Results</p> <p>Sixteen different haplotypes were identified in our study. A single haplotype cosegregated with the c.6527insC mutation.</p> <p>Conclusion</p> <p>Haplotype analysis showed that all alleles carrying the c.6527insC mutation shared the same haplotype cosegregating with this mutation (<b><it>CCGCTCAAA_6527insC</it></b>), thus suggesting the presence of a common ancestor.</p

    Beneficial effect of systemic allogeneic adipose derived mesenchymal cells on the clinical, inflammatory and immunologic status of a patient with recessive dystrophic epidermolysis bullosa: A case report

    Get PDF
    Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable inherited mucocutaneous fragility disorder characterized by recurrent blisters, erosions, and wounds. Continuous blistering triggers overlapping cycles of never-ending healing and scarring commonly evolving to chronic systemic inflammation and fibrosis. The systemic treatment with allogeneic mesenchymal cells (MSC) from bone marrow has previously shown benefits in RDEB. MSC from adipose tissue (ADMSC) are easier to isolate. This is the first report on the use of systemic allogeneic ADMSC, correlating the clinical, inflammatory, and immunologic outcomes in RDEB indicating long-lasting benefits. We present the case of an RDEB patient harboring heterozygous biallelic COL7A1 gene mutations and with a diminished expression of C7. The patient presented with long-lasting refractory and painful oral ulcers distressing her quality of life. Histamine receptor antagonists, opioid analgesics, proton-pump inhibitors, and low-dose tricyclic antidepressants barely improved gastric symptoms, pain, and pruritus. Concomitantly, allogeneic ADMSC were provided as three separate intravenous injections of 106 cells/kg every 21 days. ADMSC treatment was well-tolerated. Improvements in wound healing, itch, pain and quality of life were observed, maximally at 6-9 months post-treatment, with the relief of symptoms still noticeable for up to 2 years. Remarkably, significant modifications in PBL participating in both the innate and adaptive responses, alongside regulation of levels of profibrotic factors, MCP-1/CCL2 and TGF-beta, correlated with the health improvement. This treatment might represent an alternative for non-responding patients to conventional management. It seems critical to elucidate the paracrine modulation of the immune system by MSC for their rational use in regenerative/immunoregulatory therapies.This study was supported by a donation from Berritxuak-Elkartea (2015/00397/002), a collaborative rare disease association and, from La Paz University Hospital as well as by grants from the Community of Madrid (AvanCell-CM S2017/BMD-3692) and the Spanish Ministry of Economy and Competitiveness (SAF2017-86810-R). The UCMteamis supported by grants from the Spanish Institute of Health Carlos III (RD16/0011/0002) and the Spanish Ministry of Economy and Competitiveness (RTI2018-093899-B-I00). MJE is recipient of a contract funded by DEBRA-Spain

    Silicon quantum dots embedded in a SiO2 matrix: From structural study to carrier transport properties

    Get PDF
    We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.(FP7/2007-2013), Grant Agreement No. 24597

    Targeted silencing of DEFB4 in a bioengineered skin-humanized mouse model for psoriasis: development of siRNA SECosome-based novel therapies

    No full text
    Psoriasis is a complex inflammatory skin disease that presents a wide variety of clinical manifestations. Human ÎČ defensin-2 (hBD-2) is highly up-regulated in psoriatic lesions and has been defined as a biomarker for disease activity. We explored the potential benefits of targeting hBD-2 by topical application of DEFB4-siRNA-containing SECosomes in a bioengineered skin-humanized mouse model for psoriasis. A significant improvement in the psoriatic phenotype was observed by histological examination, with a normalization of the skin architecture and a reduction in the number and size of blood vessels in the dermal compartment. Treatment leads to the recovery of transglutaminase activity, filaggrin expression and stratum corneum appearance to the levels similar to those found in normal regenerated human skin. The availability of a reliable skin-humanized mouse model for psoriasis in conjunction with the use of the SECosome technology may provide a valuable preclinical tool for identifying potential therapeutic targets for this disease

    Silicon quantum dots embedded in a SiO2 matrix: From structural study to carrier transport properties

    No full text
    We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.(FP7/2007-2013), Grant Agreement No. 24597
    corecore