9 research outputs found

    Antimicrobial effective nanoparticles: Mechanisms and recent achievements

    No full text
    Multiple drug resistance in bacteria has become one of the most important global public health concerns in the last few decades. Existing antimicrobials could be inadequate in the treatment of infections caused by multiple antibiotics-resistant bacteria. Research on the development of inexpensive and effective antimicrobials has gained importance recently. Nanotechnology is a promising alternative in the development of new antimicrobials, as in other fields of science. The antimicrobial effects of nanoparticles alone and antimicrobiotics bound to nanoparticles on multiple drug-resistant microorganisms will be discussed in detail. As the treatment of resistant microorganisms with existing agents becomes inadequate, new treatment searches have begun. Considering the long and expensive production processes of a new treatment agent, inexpensive and effective new solutions have become sought after, and it has come to the fore to increase the effectiveness of the existing one and make it effective in the target area. Antimicrobial-based metal nanoparticles are used extensively in various cancer types as they are valuable in tumor detection, early diagnosis, and targeted delivery of chemotherapeutic agents. Metal nanoparticles are used as important agents in cancer therapy as they are easily penetrating cells and they are non-toxic to tissues. In this review, nanoparticles that have antimicrobial, antibiofilm effects, and drug delivery systems are discussed with their effect mechanism and different application fields. [Med-Science 2022; 11(2.000): 905-13

    Nová analytická platforma založená na NH2fMWCNT pro stanovení antiarytmika Propafenonu ve farmaceutických přípravcích

    No full text
    A novel sensor based on a modification of glassy carbon electrode (GCE) with NH2-functionalized multi walled carbon nano-tubes (NH(2)fMWCNTs) is reported and its applicability to the electrochemical sensing of Propafenone (PPF) demonstrated. The electrochemical catalytic activity was also utilized as a sensitive detection method for the investigation of the detailed redox mechanism of PFF using cyclic and and differential pulse voltammetry. The surface morphology of the sensor was investigated by SEM armed with EDX probe. Electrochemical impedance spectroscopy was employed as well to define the electron transfer capability of modified and bare electrodes. Key experimental and instrumental conditions related to electrochemical determination by cyclic, differential pulse, and square wave voltammetry, such as amount of modifier, pH, scan rate, accumulation time and potential were studied and optimized. The results have shown a significant enhancement of the peak current after modifying the electrode; the calibration curves of PPF offering good linearity from 0.1 to 10 mu M, limit of quantification (LOQ) being 0.03 mu M and limit of detection (LOD) 0.01 mu M, both when using DPV technique. The proposed sensor was successfully applied to the determination of PFF in dosage form without any special purification, separation or pre-treatment steps. The results of analyses obtained with the proposed sensor were satisfactory and fully statistically relevant. (C) 2019 Elsevier B.V. All rights reserved.Byl popsán nový senzor založený na modifikaci elektrody ze skelného uhlíku (GCE) pomocí NH2-funkcionalizovaných vícestěnných uhlíkových nanotrubic (NH (2) fMWCNT) a prokázána jeho použitelnost pro elektrochemické stanovení Propafenonu (PPF). Elektrochemická katalytická aktivita byla také použita jako citlivá detekční metoda pro zkoumání podrobného redoxního mechanismu PFF pomocí cyklické a diferenciální pulzní voltametrie. Morfologie povrchu senzoru byla zkoumána pomocí SEM opatřeného EDX sondou. Elektrochemická impedanční spektroskopie byla také použita pro definování schopnosti přenosu elektronů modifikovaných a holých elektrod. Byly studovány a optimalizovány klíčové experimentální a instrumentální podmínky týkající se elektrochemického stanovení pomocí voltametrie s cyklickými, diferenciálními pulzy a čtvercovými vlnami, jako je množství modifikátoru, pH, rychlost skenování, doba akumulace a potenciál. Výsledky ukázaly významné zvýšení špičkového proudu po úpravě elektrody; kalibrační křivky PPF vykazující dobrou linearitu od 0,1 do 10 μM, limit kvantifikace (LOQ) je 0,03 μM a limit detekce (LOD) 0,01 μM, oba při použití techniky DPV. Navrhovaný senzor byl úspěšně použit pro stanovení PFF v lékové formě bez jakýchkoli zvláštních kroků čištění, separace nebo předúpravy. Výsledky analýz získaných s navrhovaným senzorem byly uspokojivé a plně statisticky relevantní
    corecore