98 research outputs found

    The Chemistry Behind the Use of Agricultural Biomass as Sorbent for Toxic Metal Ions: pH Influence, Binding Groups, and Complexation Equilibria

    Get PDF
    Waters, because of human activities, are often characterized by different kinds of contamination. In this chapter we will deal with contamination due to toxic metal ions. To purify wastewaters from these pollutants different treatment processes are applied, which include chemical precipitation, chemical oxidation or reduction, electrochemical treatment, membrane filtration, ion exchange, carbon sorption, and coprecipitation/sorption. A number of these processes are extremely expensive and some of them are ineffective at low concentrations. Alternative cost effective technologies based on low cost sorbents are nowadays of great concern in the applied research. These low cost sorbents must be abundant in nature, easily available, and above all they have to fit the worldwide request of recycling. Certain waste products from agricultural operations may become inexpensive sorbents and the potential of some of these wastes for the removal of a number of metal ions has been extensively investigated. The use of these wastes as sorbents fulfills two important scopes for the protection of environment: the reuse of waste materials and the detoxification of wastewaters. The biomass source depends on the agricultural production prevailing in the geographical areas where pollution and subsequent decontamination process take place. The real challenge in the field of biosorption is to identify the chemical mechanism that governs metal uptake by biosorbents. Vegetal biomaterials, constituted principally by lignin, cellulose and by a non-negligible portion of fatty acid as major constituents, can be regarded as natural ion-exchange materials. Furthermore, the functional groups on the biomaterial surface, such as hydroxyl, carbonyl, amino, sulphydryl and carboxylic groups, allow the sorption of metal ions by strong coordination. Therefore, identification of the functional groups can help in shedding light on the mechanism responsible for metal uptake. Also some factors affecting the sorption process such as particle size, pH, metal ion concentration, agitation time, and kinetics must be investigated. The results obtained contribute to the knowledge of the overall process that takes place

    Chelation Combination - A Strategy to Mitigate the Neurotoxicity of Manganese, Iron, and Copper?

    Get PDF
    The chelating thiol dimercaptosuccinate (DMSA) and the traditional agent D-penicillamine (PSH) are effective in enhancing the urinary excretion of copper (Cu) and lead (Pb) in poisoned individuals. However, DMSA, PSH, EDTA (ethylenediamine tetraacetate), and deferoxamine (DFOA) are water-soluble agents with limited access to the central nervous system (CNS). Strategies for mobilization of metals such as manganese (Mn), iron (Fe), and Cu from brain deposits may require the combined use of two agents: one water-soluble agent to remove circulating metal into urine, in addition to an adjuvant shuttler to facilitate the brain-to-blood mobilization. The present review discusses the chemical basis of metal chelation and the ligand exchange of metal ions. To obtain increased excretion of Mn, Cu, and Fe, early experiences showed promising results for CaEDTA, PSH, and DFOA, respectively. Recent experiments have indicated that p-amino salicylate (PAS) plus CaEDTA may be a useful combination to remove Mn from binding sites in CNS, while the deferasirox-DFOA and the tetrathiomolybdate-DMSA combinations may be preferable to promote mobilization of Fe and Cu, respectively, from the CNS. Further research is requested to explore benefits of chelator combinations. Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Chelation Combination - A Strategy to Mitigate the Neurotoxicity of Manganese, Iron, and Copper?publishedVersio

    A Friendly Complexing Agent for Spectrophotometric Determination of Total Iron

    Get PDF
    Iron, one of the most common metals in the environment, plays a fundamental role in many biological as well as biogeochemical processes, which determine its availability in different oxidation states. Its relevance in environmental and industrial chemistry, human physiology, and many other fields has made it necessary to develop and optimize analysis techniques for accurate determination. Spectrophotometric methods are the most frequently applied in the analytical determination of iron in real samples. Taking advantage of the fact that desferrioxamine B, a trihydroxamic acid used since the 1970s in chelation therapy for iron overload treatment, forms a single stable 1:1 complex with iron in whichever oxidation state it can be found, a smart spectrophotometric method for the analytical determination of iron concentration was developed. In particular, the full compliance with the Lambert-Beer law, the range of iron concentration, the influence of pH, and the interference of other metal ions have been taken into account. The proposed method was validated in terms of LoD, LoQ, linearity, precision, and trueness, and has been applied for total iron determination in natural water certified material and in biological reference materials such as control human urine and control serum

    Gadolinium in Medical Imaging - Usefulness, Toxic Reactions and Possible Countermeasures - A Review

    Get PDF
    Gadolinium (Gd) is one of the rare-earth elements. The properties of its trivalent cation (Gd3+) make it suitable to serve as the central ion in chelates administered intravenously to patients as a contrast agent in magnetic resonance imaging. Such Gd-chelates have been used for more than thirty years. During the past decades, knowledge has increased about potential harmful effects of Gd-chelates in patients with severe renal dysfunction. In such patients, there is a risk for a potentially disabling and lethal disease, nephrogenic systemic fibrosis. Restricting the use of Gd-chelates in persons with severely impaired renal function has decreased the occurrence of this toxic effect in the last decade. There has also been an increasing awareness of Gd-retention in the body, even in patients without renal dysfunction. The cumulative number of doses given, and the chemical structure of the chelate given, are factors of importance for retention in tissues. This review describes the chemical properties of Gd and its medically used chelates, as well as its toxicity and potential side effects related to injection of Gd-chelates. Keywords: chelates; contrast induced nephropathy; gadolinium; gadolinium induced respiratory distress syndrome; gadolinium kinetics; gadolinium toxicity; nephrogenic systemic fibrosis; side effects of gadolinium chelates; treatment of gadolinium toxicity. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).Gadolinium in Medical Imaging - Usefulness, Toxic Reactions and Possible Countermeasures - A ReviewpublishedVersio

    Arsenic toxicity: Molecular targets and therapeutic agents

    Get PDF
    High arsenic (As) levels in food and drinking water, or under some occupational conditions, can precipitate chronic toxicity and in some cases cancer. Millions of people are exposed to unacceptable amounts of As through drinking water and food. Highly exposed individuals may develop acute, subacute, or chronic signs of poisoning, characterized by skin lesions, cardiovascular symptoms, and in some cases, multi-organ failure. Inorganic arsenite(III) and organic arsenicals with the general formula R-As2+ are bound tightly to thiol groups, particularly to vicinal dithiols such as dihydrolipoic acid (DHLA), which together with some seleno-enzymes constitute vulnerable targets for the toxic action of As. In addition, R-As2+-compounds have even higher affinity to selenol groups, e.g., in thioredoxin reductase that also possesses a thiol group vicinal to the selenol. Inhibition of this and other ROS scavenging seleno-enzymes explain the oxidative stress associated with arsenic poisoning. The development of chelating agents, such as the dithiols BAL (dimercaptopropanol), DMPS (dimercapto-propanesulfonate) and DMSA (dimercaptosuccinic acid), took advantage of the fact that As had high affinity towards vicinal dithiols. Primary prevention by reducing exposure of the millions of people exposed to unacceptable As levels should be the prioritized strategy. However, in acute and subacute and even some cases with chronic As poisonings chelation treatment with therapeutic dithiols, in particular DMPS appears promising as regards alleviation of symptoms. In acute cases, initial treatment with BAL combined with DMPS should be considered

    Sorption of ofloxacin and chrysoidine by grape stalk. A representative case of biomass removal of emerging pollutants from wastewater

    Get PDF
    Emerging pollutants, as antibiotics or dyes, in aquatic ecosystems are a crucial concern and numerous techniques have been developed for their removal. Efficiency, cost effectiveness, and biodegradability reveal biomass sorption as one of the most appealing methods. This study aims to evaluate the effectiveness of grape stalk as a sorbent for ofloxacin (a fluoroquinolone antibiotic) and chrysoidine (an azo-dye). The kinetic and the thermodynamic aspects of the sorption were studied. A pseudo first-order kinetic behavior is shown by both substances, though the kinetic constants of ofloxacin are almost double than those of chrysoidine. The sorption isotherms, which strictly follow the Langmuir model, show remarkable differences as a function of pH and of biomass size. The trend of Langmuir parameters, Qmax and K, as a function of pH and size, is discussed, and different binding mechanisms are proposed. Kinetic and thermodynamic parameters prefigure grape stalk as a potential biomass for scavenging toxic substances from wastewater

    A speciation study on the perturbing effects of iron chelators on the homeostasis of essential metal ions

    Get PDF
    A number of reports have appeared in literature calling attention to the depletion of essential metal ions during chelation therapy on beta-thalassaemia patients. We present a speciation study to determine how the iron chelators used in therapy interfere with the homeostatic equilibria of essential metal ions. This work includes a thorough analysis of the pharmacokinetic properties of the chelating agents currently in clinical use, of the amounts of iron, copper and zinc available in plasma for chelation, and of all the implied complex formation constants. The results of the study show that a significant amount of essential metal ions is complexed whenever the chelating agent concentration exceeds the amount necessary to coordinate all disposable iron-a frequently occurring situation during chelation therapy. On the contrary, copper and zinc do not interfere with iron chelation, except for a possible influence of copper on iron speciation during deferiprone treatment

    Sorption of chrysoidine by row cork and cork entrapped in calcium alginate beads

    Get PDF
    Abstract Azo-dyes, molecules characterised by the presence of the azo-group (–N N–), are widely used in textile, leather, rubber, plastic, and food industries. Water-soluble azo-dyes are greatly resistant to biodegradation, and are characterised by a high thermal and photo stability due to their complex structures. The release of these molecules into the environment is of crucial concern due to their toxic, mutagenic and carcinogenic characteristics. Biosorption has been demonstrated an effective method to remove pollutants from wastewaters thus solving ecological tasks, being a low cost process and the sorbent biodegradable. The main requirements of an efficient sorbent are thermal, chemical and mechanical stability, and rapid sorption. In this work, the ability of both row cork and the same sorbent entrapped in a biopolymeric gel of calcium alginate, on the removal of chrysoidine from aqueous solutions was examined. The influence on the sorption of pH, initial dye concentration, and particle size, as well as the efficiency of the entrapment, have been investigated. The maximum sorption was found for cork samples of fine particle size (FC), in both row and entrapped forms, at pH 7; conversely, at pH 4 the difference is significant (0.12 mmol/g for row cork and 0.20 mmol/g for entrapped cork), evoking a cooperation of alginate in binding the positively charged chrysoidine molecule

    Multipurpose iron-chelating ligands inspired by bioavailable molecules

    Get PDF
    Because of their capacity to bind metals, metal chelators are primarily employed for therapeutic purposes, but they can also find applications as colorimetric reagents and cleaning solutions as well as in soil remediation, electroplating, waste treatment, and so on. For instance, iron-chelation therapy, which is used to treat iron-overload disorders, involves removing excess iron from the blood through the use of particular molecules, like deferoxamine, that have the ability to chelate the metal. The creation of bioinspired and biodegradable chelating agents is a crucial objective that draws inspiration from natural products. In this context, starting from bioavailable molecules such as maltol and pyrogallol, new molecules have been synthetized and characterized by potentiometry, infrared spectroscopy and cyclic voltammetry. Finally, the ability of these to bind iron has been investigated, and the stability constants of ferric complexes are measured using spectrophotometry. These compounds offer intriguing scaffolds for an innovative class of versatile, multipurpose chelating agents

    Comparison of selectivity of a family of chelating agents for trivalent (Al<sup>3+</sup>, Fe<sup>3+</sup>) and bivalent (Cu<sup>2+</sup>, Zn<sup>2+</sup>) metal ions

    Get PDF
    Chelation therapy is used for the treatment of metal intoxication in humans. Selectivity towards the target metal ion is one important characteristic of the chelating agent. In the frame of our research of chelating agents for iron and aluminium, we synthesized five new ligands (Figure 1), and studied their behavior toward the trivalent metal ions. L4, L5, L6 and L8 were found to be excellent ligands for the coordination of Fe3+ and Al3+. We are presenting here a study on the same ligands with the two essential bivalent metal ions, Zn2+ and Cu2+. The results of spectrophotometric, potentiometric, and NMR measurements performed to determine the equilibrium formation constants will be presented. The speciation of the complexes with the trivalent metal ions in presence of endogenous zinc and copper will be discussed
    corecore