2,639 research outputs found

    Pharmacokinetics and protein binding of morphine in horses

    Get PDF
    Morphine could be detected in horses dosed with 0.1 mg of drug/kg of body weight for up to 48 hours in blood and 144 hours in urine. This dose of morphine elicited no observ­able effects and is a suggested an­algesic dose. Computer analysis revealed that a 3-compartment open system was the best fitting model with a serum half life of 87.9 minutes and a urine half life of 101.1 minutes. Binding to equine serum proteins was linear over a drug con­centration range of 3.88 x 10-5M to 3.50 x 10-aM and averaged 31.6%. In RBC-partitioning experiments, 78.1 % of the drug was found in the plasma fraction. The data indicated that a horse should not be given morphine closer than 1 week before a race

    DETECTION OF MORPHINE AND ITS ANALOGUES USING ENZYMATIC HYDROLYSIS

    Get PDF
    The invention relates to a method for hydrolyzing drug glucuronic acid conjugates present in mammalian body fluids, the conjugates being derived from a narcotic analgesic, antagonist, or agonist-antagonist whose metabolism includes conjugation with glucuronic acid. The method comprises incubating the body fluid sample at from about 60 to about 70° C., for at least about 1 hour, with 3-glucuronidase derived from Patella vulgata, and substantially increases the sensitivity of chromatographic techniques for the detection of morphine and its analogues

    Quantitative Spectroscopy of Supernovae for Dark Energy Studies

    Full text link
    Detailed quantitative spectroscopy of Type Ia supernovae (SNe~Ia) provides crucial information needed to minimize systematic effects in both ongoing SNe Ia observational programs such as the Nearby Supernova Factory, ESSENCE, and the SuperNova Legacy Survey (SNLS) and in proposed JDEM missions such as SNAP, JEDI, and DESTINY. Quantitative spectroscopy is mandatory to quantify and understand the observational strategy of comparing ``like versus like''. It allows us to explore evolutionary effects, from variations in progenitor metallicity to variations in progenitor age, to variations in dust with cosmological epoch. It also allows us to interpret and quantify the effects of asphericity, as well as different amounts of mixing in the thermonuclear explosion.Comment: White paper submitted to the Dark Energy Task Force, 13 pages, 5 figure

    Precise time delays from strongly gravitationally lensed type Ia supernovae with chromatically microlensed images

    Get PDF
    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ∼2 over previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility

    Correcting the z~8 Galaxy Luminosity Function for Gravitational Lensing Magnification Bias

    Get PDF
    We present a Bayesian framework to account for the magnification bias from both strong and weak gravitational lensing in estimates of high-redshift galaxy luminosity functions. We illustrate our method by estimating the z8z\sim8 UV luminosity function using a sample of 97 Y-band dropouts (Lyman break galaxies) found in the Brightest of Reionizing Galaxies (BoRG) survey and from the literature. We find the luminosity function is well described by a Schechter function with characteristic magnitude of M=19.850.35+0.30M^\star = -19.85^{+0.30}_{-0.35}, faint-end slope of α=1.720.29+0.30\alpha = -1.72^{+0.30}_{-0.29}, and number density of log10Ψ[Mpc3]=3.000.31+0.23\log_{10} \Psi^\star [\textrm{Mpc}^{-3}] = -3.00^{+0.23}_{-0.31}. These parameters are consistent within the uncertainties with those inferred from the same sample without accounting for the magnification bias, demonstrating that the effect is small for current surveys at z8z\sim8, and cannot account for the apparent overdensity of bright galaxies compared to a Schechter function found recently by Bowler et al. (2014a,b) and Finkelstein et al. (2014). We estimate that the probability of finding a strongly lensed z8z\sim8 source in our sample is in the range 315%\sim 3-15 \% depending on limiting magnitude. We identify one strongly-lensed candidate and three cases of intermediate lensing in BoRG (estimated magnification μ>1.4\mu>1.4) in addition to the previously known candidate group-scale strong lens. Using a range of theoretical luminosity functions we conclude that magnification bias will dominate wide field surveys -- such as those planned for the Euclid and WFIRST missions -- especially at z>10z>10. Magnification bias will need to be accounted for in order to derive accurate estimates of high-redshift luminosity functions in these surveys and to distinguish between galaxy formation models.Comment: Accepted for publication in ApJ. 20 pages, 13 figure

    Spectral Models for Early Time SN 2011fe Observations

    Get PDF
    We use observed UV through near IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal SNe Ia and to examine its individual peculiarities. As a benchmark, we use a delayed-detonation model with a progenitor metallicity of Z_solar/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed detonation model with a transition density that has been fit to other Branch-normal Type Ia supernovae. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ~0.1 M_sun than does the model. We discuss several explanations for the discrepancies. Finally, we examine variations in both the spectral energy distribution and in the colors due to variations in the progenitor metallicity, which suggests that colors are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. We do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.Comment: 9 pages, 14 figures, MNRAS, in press, fixed typ

    The Subluminous and Peculiar Type Ia Supernova PTF09dav

    Get PDF
    PTF09dav is a peculiar subluminous type Ia supernova (SN) discovered by the Palomar Transient Factory (PTF). Spectroscopically, it appears superficially similar to the class of subluminous SN1991bg-like SNe, but it has several unusual features which make it stand out from this population. Its peak luminosity is fainter than any previously discovered SN1991bg-like SN Ia (M_B -15.5), but without the unusually red optical colors expected if the faint luminosity were due to extinction. The photospheric optical spectra have very unusual strong lines of Sc II and Mg I, with possible Sr II, together with stronger than average Ti II and low velocities of ~6000 km/s. The host galaxy of PTF09dav is ambiguous. The SN lies either on the extreme outskirts (~41kpc) of a spiral galaxy, or in an very faint (M_R>-12.8) dwarf galaxy, unlike other 1991bg-like SNe which are invariably associated with massive, old stellar populations. PTF09dav is also an outlier on the light-curve-width--luminosity and color--luminosity relations derived for other sub-luminous SNe Ia. The inferred 56Ni mass is small (0.019+/-0.003Msun), as is the estimated ejecta mass of 0.36Msun. Taken together, these properties make PTF09dav a remarkable event. We discuss various physical models that could explain PTF09dav. Helium shell detonation or deflagration on the surface of a CO white-dwarf can explain some of the features of PTF09dav, including the presence of Sc and the low photospheric velocities, but the observed Si and Mg are not predicted to be very abundant in these models. We conclude that no single model is currently capable of explaining all of the observed signatures of PTF09dav.Comment: Accepted for publication in Ap

    Optical and ultraviolet spectroscopic analysis of SN 2011fe at late times

    Full text link
    We present optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349, and 578 days post-maximum light, as well as an ultraviolet spectrum obtained with Hubble Space Telescope at 360 days post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code PHOENIX. The day +100 spectrum can be well fit with models which neglect collisional and radiative data for forbidden lines. Curiously, including this data and recomputing the fit yields a quite similar spectrum, but with different combinations of lines forming some of the stronger features. At day +205 and later epochs, forbidden lines dominate much of the optical spectrum formation; however, our results indicate that recombination, not collisional excitation, is the most influential physical process driving spectrum formation at these late times. Consequently, our synthetic optical and UV spectra at all epochs presented here are formed almost exclusively through recombination-driven fluorescence. Furthermore, our models suggest that the ultraviolet spectrum even as late as day +360 is optically thick and consists of permitted lines from several iron-peak species. These results indicate that the transition to the "nebular" phase in Type Ia supernovae is complex and highly wavelength-dependent.Comment: 22 pages, 21 figuress, 1 table, submitted to MNRA
    corecore