200 research outputs found

    Intersection local times of independent fractional Brownian motions as generalized white noise functionals

    Get PDF
    In this work we present expansions of intersection local times of fractional Brownian motions in Rd\R^d, for any dimension d1d\geq 1, with arbitrary Hurst coefficients in (0,1)d(0,1)^d. The expansions are in terms of Wick powers of white noises (corresponding to multiple Wiener integrals), being well-defined in the sense of generalized white noise functionals. As an application of our approach, a sufficient condition on dd for the existence of intersection local times in L2L^2 is derived, extending the results of D. Nualart and S. Ortiz-Latorre in "Intersection Local Time for Two Independent Fractional Brownian Motions" (J. Theoret. Probab.,20(4)(2007), 759-767) to different and more general Hurst coefficients.Comment: 28 page

    Passive tracer in a flow corresponding to a two dimensional stochastic Navier Stokes equations

    Full text link
    In this paper we prove the law of large numbers and central limit theorem for trajectories of a particle carried by a two dimensional Eulerian velocity field. The field is given by a solution of a stochastic Navier--Stokes system with a non-degenerate noise. The spectral gap property, with respect to Wasserstein metric, for such a system has been shown in [9]. In the present paper we show that a similar property holds for the environment process corresponding to the Lagrangian observations of the velocity. In consequence we conclude the law of large numbers and the central limit theorem for the tracer. The proof of the central limit theorem relies on the martingale approximation of the trajectory process

    The Bismut-Elworthy-Li type formulae for stochastic differential equations with jumps

    Full text link
    Consider jump-type stochastic differential equations with the drift, diffusion and jump terms. Logarithmic derivatives of densities for the solution process are studied, and the Bismut-Elworthy-Li type formulae can be obtained under the uniformly elliptic condition on the coefficients of the diffusion and jump terms. Our approach is based upon the Kolmogorov backward equation by making full use of the Markovian property of the process.Comment: 29 pages, to appear in Journal of Theoretical Probabilit

    Multidimensional Quasi-Monte Carlo Malliavin Greeks

    Get PDF
    We investigate the use of Malliavin calculus in order to calculate the Greeks of multidimensional complex path-dependent options by simulation. For this purpose, we extend the formulas employed by Montero and Kohatsu-Higa to the multidimensional case. The multidimensional setting shows the convenience of the Malliavin Calculus approach over different techniques that have been previously proposed. Indeed, these techniques may be computationally expensive and do not provide flexibility for variance reduction. In contrast, the Malliavin approach exhibits a higher flexibility by providing a class of functions that return the same expected value (the Greek) with different accuracies. This versatility for variance reduction is not possible without the use of the generalized integral by part formula of Malliavin Calculus. In the multidimensional context, we find convenient formulas that permit to improve the localization technique, introduced in Fourni\'e et al and reduce both the computational cost and the variance. Moreover, we show that the parameters employed for variance reduction can be obtained \textit{on the flight} in the simulation. We illustrate the efficiency of the proposed procedures, coupled with the enhanced version of Quasi-Monte Carlo simulations as discussed in Sabino, for the numerical estimation of the Deltas of call, digital Asian-style and Exotic basket options with a fixed and a floating strike price in a multidimensional Black-Scholes market.Comment: 22 pages, 6 figure

    On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples

    Full text link
    We show a concise extension of the monotone stability approach to backward stochastic differential equations (BSDEs) that are jointly driven by a Brownian motion and a random measure for jumps, which could be of infinite activity with a non-deterministic and time inhomogeneous compensator. The BSDE generator function can be non convex and needs not to satisfy global Lipschitz conditions in the jump integrand. We contribute concrete criteria, that are easy to verify, for results on existence and uniqueness of bounded solutions to BSDEs with jumps, and on comparison and a-priori LL^{\infty}-bounds. Several examples and counter examples are discussed to shed light on the scope and applicability of different assumptions, and we provide an overview of major applications in finance and optimal control.Comment: 28 pages. Added DOI https://link.springer.com/chapter/10.1007%2F978-3-030-22285-7_1 for final publication, corrected typo (missing gamma) in example 4.1

    Fractional smoothness and applications in finance

    Full text link
    This overview article concerns the notion of fractional smoothness of random variables of the form g(XT)g(X_T), where X=(Xt)t[0,T]X=(X_t)_{t\in [0,T]} is a certain diffusion process. We review the connection to the real interpolation theory, give examples and applications of this concept. The applications in stochastic finance mainly concern the analysis of discrete time hedging errors. We close the review by indicating some further developments.Comment: Chapter of AMAMEF book. 20 pages

    Gaussian density estimates for the solution of singular stochastic Riccati equations

    Get PDF
    summary:Stochastic Riccati equation is a backward stochastic differential equation with singular generator which arises naturally in the study of stochastic linear-quadratic optimal control problems. In this paper, we obtain Gaussian density estimates for the solutions to this equation

    Stationary distributions for diffusions with inert drift

    Get PDF
    Consider reflecting Brownian motion in a bounded domain in Rd{\mathbb R^d} that acquires drift in proportion to the amount of local time spent on the boundary of the domain. We show that the stationary distribution for the joint law of the position of the reflecting Brownian motion and the value of the drift vector has a product form. Moreover, the first component is uniformly distributed on the domain, and the second component has a Gaussian distribution. We also consider more general reflecting diffusions with inert drift as well as processes where the drift is given in terms of the gradient of a potential

    Meixner class of non-commutative generalized stochastic processes with freely independent values I. A characterization

    Full text link
    Let TT be an underlying space with a non-atomic measure σ\sigma on it (e.g. T=RdT=\mathbb R^d and σ\sigma is the Lebesgue measure). We introduce and study a class of non-commutative generalized stochastic processes, indexed by points of TT, with freely independent values. Such a process (field), ω=ω(t)\omega=\omega(t), tTt\in T, is given a rigorous meaning through smearing out with test functions on TT, with Tσ(dt)f(t)ω(t)\int_T \sigma(dt)f(t)\omega(t) being a (bounded) linear operator in a full Fock space. We define a set CP\mathbf{CP} of all continuous polynomials of ω\omega, and then define a con-commutative L2L^2-space L2(τ)L^2(\tau) by taking the closure of CP\mathbf{CP} in the norm PL2(τ):=PΩ\|P\|_{L^2(\tau)}:=\|P\Omega\|, where Ω\Omega is the vacuum in the Fock space. Through procedure of orthogonalization of polynomials, we construct a unitary isomorphism between L2(τ)L^2(\tau) and a (Fock-space-type) Hilbert space F=Rn=1L2(Tn,γn)\mathbb F=\mathbb R\oplus\bigoplus_{n=1}^\infty L^2(T^n,\gamma_n), with explicitly given measures γn\gamma_n. We identify the Meixner class as those processes for which the procedure of orthogonalization leaves the set CP\mathbf {CP} invariant. (Note that, in the general case, the projection of a continuous monomial of oder nn onto the nn-th chaos need not remain a continuous polynomial.) Each element of the Meixner class is characterized by two continuous functions λ\lambda and η0\eta\ge0 on TT, such that, in the F\mathbb F space, ω\omega has representation \omega(t)=\di_t^\dag+\lambda(t)\di_t^\dag\di_t+\di_t+\eta(t)\di_t^\dag\di^2_t, where \di_t^\dag and \di_t are the usual creation and annihilation operators at point tt
    corecore