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Abstract. Stochastic Riccati equation is a backward stochastic differential equation with
singular generator which arises naturally in the study of stochastic linear-quadratic optimal
control problems. In this paper, we obtain Gaussian density estimates for the solutions to
this equation.
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1. Introduction

In the paper, we consider the following backward stochastic differential equation

(BSDE):

(1.1)







R(t) = ξ +

∫ T

t

(

a(s) + b(s)R(s) + c(s)Z(s)−
Z2(s)

R(s)

)

ds−

∫ T

t

Z(s) dB(s)

R(t) > 0, t ∈ [0, T ],

where B is a standard Brownian motion and a, b, and c are adapted and uniformly

bounded stochastic processes.

Equation (1.1) is known in the literature as the stochastic Riccati equation, which

arises naturally in the study of stochastic linear-quadratic (LQ) optimal control prob-

lems. More precisely, the solvability of LQ problems is reduced to proving global

solvability of a stochastic Riccati equation of the form (1.1) (see, [6], [13], [12], and

references therein).

This research was funded by Viet Nam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 101.03-2015.15.
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The global solvability of the Riccati equation (1.1) is well studied in [6], [13],

and [12]. Because of its applications, one would like to know more information on the

solution of the stochastic Riccati equation. However, to the best of our knowledge,

deeper properties of the solution are scarce. Motivations of this paper come from

an observation made by Dos Reis in [4], where he noted that the information on the

density of the solution will provide more accurate estimates on the convergence rates

of numerical schemes for BSDEs. Thus the aim of the present paper is to investigate

the density of the solution to (1.1).

The study of the density of solutions is a classical topic and has many applications

in the theory of stochastic differential equations (see Chapter 2 in [10]). In particu-

lar, Gaussian density estimates for various classes of stochastic equations have been

extensively studied in recent years (see, e.g., [8] and references therein). However, it

is surprising that only few works are devoted to this topic for the class of BSDEs. We

only find in the literature the following three papers: the first one by Antonelli and

Kohatsu-Higa (2005) [2], where they studied the existence and smoothness of the

densities of the solution, the second one by Aboura and Bourguin (2013) [1], where

they provided Gaussian estimates for the densities of the solution, and the last one

by Mastrolia et al. (2015) [7], where the results are discussed in a general setting.

Since the equations considered in [1], [2], and [7] are Markovian ones, the results

obtained in these papers cannot be applied to (1.1). Furthermore, the generator (or

driver) of the equation (1.1) has a singularity at R = 0. This causes some math-

ematical difficulties which make the study of the density of the solution to (1.1)

particularly interesting.

In this paper, we will provide Gaussian density estimates for the first component of

the solution (R,Z). To get such results we will employ a Gaussian density criterion

stated in the terms of Malliavin analysis. Thus the main tasks arising here are

that we need to prove the Malliavin differentiability of the solution and control the

boundedness of Malliavin derivatives. The difficulties coming from the singularity of

the generator will be handled by using Girsanov’s theorem.

The rest of the paper is organized as follows. In Section 2, we recall some funda-

mental concepts of Malliavin calculus and general Gaussian estimates for the density.

The main results of the paper are stated and proved in Section 3.

2. Preliminaries

Let us recall some elements of stochastic calculus of variations (for more details

see [10]). We suppose that {B(t), t ∈ [0, T ]} is defined on a complete probability

space (Ω,F ,F, P ), where F = (Ft)t∈[0,T ] is a natural filter generated by the Brownian
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motion B. For h ∈ L2[0, T ], we denote by B(h) the Wiener integral

B(h) =

∫ T

0

h(t) dB(t).

Let S denote the dense subset of L2(Ω,F , P ) consisting of smooth random variables

of the form

(2.1) F = f(B(h1), . . . , B(hn)),

where n ∈ N, f ∈ C∞
b (Rn), h1, . . . , hn ∈ L2[0, T ]. If F has the form (2.1), we define

its Malliavin derivative as the process DF := {DtF, t ∈ [0, T ]} given by

DtF =

n
∑

k=1

∂f

∂xk
(B(h1), . . . , B(hn))hk(t).

We shall denote by D1,2 the space of Malliavin differentiable random variables, it is

the closure of S with respect to the norm

‖F‖21,2 := E|F |2 +

∫ T

0

E|DuF |
2 du.

In [8], we used Nourdin and Viens’s results from [9] to obtain the following sufficient

condition for a Malliavin differentiable random variable to have a density with lower

and upper Gaussian bounds.

Proposition 2.1. Let F be in D
1,2 with mean zero. If there exist positive con-

stants β1, β2 such that, for all x ∈ R, almost surely

β1 6

∫ ∞

0

DrF E[DrF | Fr] dr 6 β2,

then F has a density ̺F satisfying, for almost all x ∈ R,

(2.2)
E|F |

2β2
exp

(

−
x2

2β1

)

6 ̺F (x) 6
E|F |

2β1
exp

(

−
x2

2β2

)

.
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3. The main results

We first collect the conditions that were imposed in [13] to prove the existence

and uniqueness of the solution:

(H1) ξ is a FT -measurable random variable and there exist two positive constants

mξ,Mξ such that mξ 6 ξ 6Mξ a.s.,

(H2) a, b and c are F-adapted stochastic processes and uniformly bounded on [0, T ]

by positive constants Ma,Mb, and Mc, respectively. In addition, a(t) > 0 a.s.

for all t ∈ [0, T ].

The next proposition refines Theorem 4.3 in [13].

Proposition 3.1. Under the assumptions (H1) and (H2), the Riccati equa-

tion (1.1) has a unique solution (R,Z).Moreover, the first component of the solution

is bounded uniformly in t ∈ [0, T ]:

(3.1) k := mξe
−MbT 6 R(t) 6Mξe

MbT +
Ma(e

MbT − 1)

Mb
=: K a.s.

and the second component of the solution satisfies the condition that {
∫ t

0 Z(s) dB(s),

t ∈ [0, T ]} is a BMO-martingale.

P r o o f. The existence of a unique solution (R,Z) to the Riccati equation (1.1)

has been already proved by Yu in [13], Theorem 4.3. In order to finish the proof, we

have to verify (3.1) and show that {
∫ t

0
Z(s) dB(s), t ∈ [0, T ]} is a BMO-martingale.

Let α > 0 be a real number that will be chosen later. Consider the following

backward stochastic differential equation:

(3.2) Rα(t) = ξ +

∫ T

t

(

a(s) + b(s)Rα(s) + c(s)Zα(s)−
Z2
α(s)

α ∨Rα(s)

)

ds

−

∫ T

t

Zα(s) dB(s), t ∈ [0, T ].

It is easy to verify that the equation (3.2) is a BSDE with quadratic growth. Conse-

quently, this equation admits a unique solution (Rα, Zα) and the stochastic process

{
∫ t

0

Zα(s) dB(s), t ∈ [0, T ]

}

is a BMO-martingale (see, e.g., Theorems 9.6.3 and 9.6.4 in [3]). Since c is uniformly

bounded, the stochastic process

{
∫ t

0

(

c(s)−
Zα(s)

α ∨Rα(s)

)

dB(s), t ∈ [0, T ]

}
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is also a BMO-martingale. By Theorem 2.3 in [5], the stochastic exponential

exp

(
∫ t

0

(

c(s)−
Zα(s)

α ∨Rα(s)

)

dBs −
1

2

∫ t

0

(

c(s)−
Zα(s)

α ∨Rα(s)

)2

ds

)

is a uniformly integrable martingale. Applying Girsanov’s theorem (see, e.g., Corol-

lary 1.2 in [5]), we obtain that the stochastic process

{

B1(t) := B(t)−

∫ t

0

(

c(s)−
Zα(s)

α ∨Rα(s)

)

ds, t ∈ [0, T ]

}

is a standard Brownian motion under the probability measureQ1, whereQ1 is defined

as

dQ1

dP
= exp

(
∫ T

0

(

c(s)−
Zα(s)

α ∨Rα(s)

)

dBs −
1

2

∫ T

0

(

c(s)−
Zα(s)

α ∨Rα(s)

)2

ds

)

.

Under Q1 equation (3.2) becomes

Rα(t) = ξ +

∫ T

t

(a(s) + b(s)Rα(s)) ds−

∫ T

t

Zα(s) dB1(s), t ∈ [0, T ],

which is a linear BSDE, its explicit solution is given by

(3.3) Rα(t) = EQ1

[

ξe
∫

T

t
b(s) ds +

∫ T

t

a(s)e
∫

s

t
b(u) du ds

∣

∣ Ft

]

, t ∈ [0, T ],

where EQ1 denotes the expectation under Q1. By the boundedness of ξ, a, b, and c

we deduce that

k 6 Rα(t) 6 K a.s. ∀ t ∈ [0, T ], α > 0.

Now we choose α = k. Then (Rk, Zk) satisfies equation (1.1). By the uniqueness of

the solution, we conclude that (Rk, Zk) = (R,Z). So the proposition is proved. �

R em a r k 3.1. For the reader’s convenience, we recall that the local martingale

of the form {
∫ t

0 u(s) dB(s), t ∈ [0, T ]} is a BMO-martingale if and only if

sup
τ∈T

E

[
∫ T

τ

|u(s)|2 ds
∣

∣ Fτ

]

<∞,

where T denotes the set of all F-stopping times.
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In order to be able to apply Proposition 2.1, we need to prove that the solution

of (1.1) is Malliavin differentiable. For this purpose, let us introduce the following

assumptions:

(H3) ξ ∈ D
1,2 and there exist finite constants nξ, Nξ such that for all 0 6 r 6 T ,

0 < nξ 6 Drξ 6 Nξ a.s.,

(H4) for each t ∈ [0, T ], the random variables a(t), b(t), c(t) belong to D1,2.Moreover,

there exist finite constants Na, Nb, and Nc such that

|Dra(t)| 6 Na, |Drb(t)| 6 Nb, |Drc(t)| 6 Nc a.s.

for all 0 6 r 6 t 6 T.

Proposition 3.2. Assume that (H1)–(H4) hold. Then, the unique solution (R,Z)

of the Riccati equation (1.1) is Malliavin differentiable. In addition, suppose that

(3.4) C :=
2

3

(

ln
K

mξ
+MbT

)

<
1

2
.

Then we have the following estimate:

(3.5)

e−MbTnξ −
eMbT (Na +KNb)T

1− C
− eMbTNcKT

3/2
( C

1− 2C

)1/2

6 DrR(t) 6
eMbT (Nξ + (Na +KNb)T )

1− C
+ eMbTNcKT

3/2
( C

1− 2C

)1/2

a.s.

for all 0 6 r 6 t 6 T.

P r o o f. We note that the solution (R,Z) of the Riccati equation (1.1) is also

the solution of the BSDE with quadratic growth (3.2). Therefore, the Malliavin

differentiability of (R,Z) follows from Theorem 3.2.3 in [4]. Moreover, we have for

0 6 r 6 t 6 T ,

DrR(t) = Drξ +

∫ T

t

(

Dra(s) + b(s)DrR(s) +R(s)Drb(s) + c(s)DrZ(s) + Z(s)Drc(s)

−
2Z(s)DrZ(s)

R(s)
+
Z2(s)

R2(s)
DrR(s)

)

ds−

∫ T

t

DrZ(s) dB(s),

or equivalently

(3.6) d(DrR(t)) = −
[

Dra(t) +R(t)Drb(t) + Z(t)Drc(t) +
(

b(t) +
Z2(t)

R2(t)

)

DrR(t)

+ c(t)DrZ(t)−
2Z(t)DrZ(t)

R(t)

]

dt+DrZ(t) dB(t), t ∈ [r, T ].
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Equation (3.6) is a linear equation with the terminal condition DrR(T ) = Drξ, its

solution is given by

(3.7) DrR(t) = e
∫

T

t
ψ(s) dsDrξ +

∫ T

t

e
∫

s

t
ψ(r) dr

(

Dra(s) +R(s)Drb(s) + Z(s)Drc(s)

+ c(s)DrZ(s)−
2Z(s)DrZ(s)

R(s)

)

ds−

∫ T

t

e
∫

s

t
ψ(r) drDrZ(s) dB(s)

with

ψ(t) = b(t) +
Z2(t)

R2(t)
.

We now define the probability measure Q2 by

dQ2

dP
= exp

(
∫ T

0

(

c(s)−
2Z(s)

R(s)

)

dBs −
1

2

∫ T

0

(

c(s)−
2Z(s)

R(s)

)2

ds

)

.

Under Q2, the stochastic process

B2(t) = B(t)−

∫ t

0

(

c(s)−
2Z(s)

R(s)

)

ds

is a standard Brownian motion and (3.7) can be rewritten as

DrR(t) = e
∫

T

t
ψ(s) dsDrξ +

∫ T

t

e
∫

s

t
ψ(r) dr(Dra(s) +R(s)Drb(s) + Z(s)Drc(s)) ds

−

∫ T

t

e
∫

s

t
ψ(r) drDrZ(s) dB2(s).

Consequently, we can get

(3.8) DrR(t) = EQ2(e
∫

T

t
ψ(s) dsDrξ

∣

∣ Ft)

+ EQ2

(
∫ T

t

e
∫

s

t
ψ(r) dr[Dra(s) +R(s)Drb(s) + Z(s)Drc(s)] ds

∣

∣ Ft

)

.

In order to be able to estimate DrR(t), we observe that under Q2 equation (1.1)

becomes

R(t) = ξ +

∫ T

t

(

a(s) + b(s)R(s) +
Z2(s)

R(s)

)

ds−

∫ T

t

Z(s) dB2(s), t ∈ [0, T ].

Applying Itô’s differentiation rule to lnR(t) gives

d(lnR(t)) = −
( a(t)

R(t)
+ b(t) +

Z2(t)

R2(t)

)

dt+
Z(t)

R(t)
dB2(t)−

1

2

Z2(t)

R2(t)
dt.
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Hence,

EQ2

[
∫ T

t

Z2(s)

R2(s)
ds

∣

∣ Ft

]

=
2

3
EQ2

[

ln
R(t)

ξ
−

∫ T

t

( a(s)

R(s)
+ b(s)

)

ds
∣

∣ Ft

]

.

This, combined with (3.1) and the boundedness of a, b, and ξ, yields

(3.9) EQ2

[
∫ T

t

Z2(s)

R2(s)
ds

∣

∣ Ft

]

6
2

3

(

ln
K

mξ
+MbT

)

=: C a.s.

Since R2(t) 6 K2 for all t ∈ [0, T ], we also have

(3.10) EQ2

[
∫ T

t

Z2(s) ds
∣

∣ Ft

]

6 K2C a.s.

Furthermore, by employing the method used in the proof of Theorem 9.6.4 in [3] we

can deduce from (3.9) that

(3.11) EQ2

[

exp

(

ε

∫ T

t

Z2(s)

R2(s)
ds

)

∣

∣ Ft

]

6
1

1− εC
a.s.,

where ε is a positive constant such that εC < 1. By Hölder inequality we have

∣

∣

∣

∣

EQ2

(
∫ T

t

e
∫

s

t
ψ(r) drZ(s)Drc(s) ds

∣

∣ Ft

)∣

∣

∣

∣

6 T eMbTEQ2

(

e
∫

T

t

Z2(r)

R2(r)
dr

∫ T

t

|Z(s)Drc(s)| ds
∣

∣ Ft

)

6 T eMbT [EQ2(e
∫

T

t
2Z2(r)

R2(r)
dr ∣

∣ Ft)]
1/2

[

EQ2

((
∫ T

t

|Z(s)Drc(s)| ds

)2
∣

∣ Ft

)]1/2

6 T eMbTNc(T − t)1/2[EQ2(e
∫

T

t
2Z2(r)

R2(r)
dr ∣

∣ Ft)]
1/2

[

EQ2

(
∫ T

t

|Z(s)|2 ds
∣

∣ Ft

)]1/2

6 eMbTNcT
3/2[EQ2(e

∫
T

t
2Z2(r)

R2(r)
dr ∣

∣ Ft)]
1/2

[

EQ2

(
∫ T

t

|Z(s)| ds
∣

∣

2
Ft

)]1/2

.

We therefore can obtain from (3.10) and (3.11) with ε = 2 the following estimate:

(3.12)

∣

∣

∣

∣

EQ2

(
∫ T

t

e
∫

s

t
ψ(r) drZ(s)Drc(s) ds

∣

∣ Ft

)∣

∣

∣

∣

6 eMbTNcKT
3/2

( 1

1− 2C

)1/2

C1/2 a.s.
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On the other hand, from (3.11) with ε = 1 we have

(3.13) e−MbTnξ 6 EQ2(e
∫

T

t
ψ(s) dsDrξ|Ft) 6

eMbTNξ

1− C
a.s.

and

(3.14)

∣

∣

∣

∣

EQ2

(
∫ T

t

e
∫

s

t
ψ(r) dr[Dra(s) +R(s)Drb(s)] ds

∣

∣ Ft

)∣

∣

∣

∣

6
eMbT (Na +KNb)T

1− C
a.s.

By combining (3.12), (3.13), and (3.14), we can deduce the bounds for DrR(t) as

follows:

DrR(t) 6
eMbTNξ

1− C
+

eMbT (Na +KNb)T

1− C
+ eMbTNcKT

3/2
( 1

1− 2C

)1/2

C1/2 a.s.

and

DrR(t) > e−MbTnξ −
eMbT (Na +KNb)T

1− C
− eMbTNcKT

3/2
( 1

1− 2C

)1/2

C1/2 a.s.

So the proof of the proposition is complete. �

It follows from (3.5) that

∫ t

0

(DrR(t))
2 dr 6 γt a.s.,

where

γ := max
{[

e−MbTnξ −
eMbT (Na +KNb)T

1− C
− eMbTNcKT

3/2
( C

1− 2C

)1/2]2

,

[eMbT (Nξ + (Na +KNb)T )

1− C
+ eMbTNcKT

3/2
( C

1− 2C

)1/2]2}

.

As a product of Proposition 3.6.2 in [11], we obtain the following corollary which

provides a Gaussian upper bound for tail probabilities of R(t).

Corollary 3.1. Let assumptions (H1)–(H4) and condition (3.4) hold. Then, for

each t ∈ (0, T ), we have

P (R(t) > x) 6 exp
(

−
(x− ER(t))2

2γt

)

, x > ER(t),

P (R(t) 6 x) 6 exp
(

−
(x− ER(t))2

2γt

)

, x < ER(t).

We now are in a position to formulate and prove the main result of this paper.
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Theorem 3.1. Let assumptions (H1)–(H4) and condition (3.4) hold. We addi-

tionally assume that

(3.15) e−MbTnξ −
eMbT (Na +KNb)T

1− C
− eMbTNcKT

3/2
( C

1− 2C

)1/2

> 0.

Then, for each t ∈ (0, T ], the density ̺R(t) of the random variable R(t) exists and

satisfies the bounds, for almost all x ∈ R,

(3.16)
E|R(t)− ER(t)|

2β2t
exp

(

−
(x− ER(t))2

2β1t

)

6 ̺R(t)(x)

6
E|R(t)− ER(t)|

2β1t
exp

(

−
(x− ER(t))2

2β2t

)

,

where the constants β1, β2 are defined as follows

β1 :=
[

e−MbTnξ −
eMbT (Na +KNb)T

1− C
− eMbTNcKT

3/2
( C

1− 2C

)1/2]2

,

β2 :=
[eMbT (Nξ + (Na +KNb)T )

1− C
+ eMbTNcKT

3/2
( C

1− 2C

)1/2]2

.

P r o o f. For t ∈ (0, T ], we set F = R(t) − ER(t). Obviously, the random

variable F has zero mean and is Malliavin differentiable with DrF = DrR(t) for all

0 6 r 6 t 6 T.

We obtain from (3.5) and (3.15) that

β1t 6

∫ ∞

0

DrF E[DrF | Fr] dr =

∫ t

0

DrF E[DrF | Fr] dr 6 β2t a.s.

Hence, in view of Proposition 2.1, the density ̺F (x) of random variable F exists and

satifies

E|R(t)− ER(t)|

2β2t
exp

(

−
x2

2β1t

)

6 ̺F (x) 6
E|R(t)− ER(t)|

2β1t
exp

(

−
x2

2β2t

)

, x ∈ R.

So we can finish the proof of the theorem because ̺R(t)(x) = ̺F (x− ER(t)). �

We end this paper with a remark on the class of stochastic Riccati equations with

small coefficients.

R em a r k 3.2. For ε > 0, let us consider the equation

(3.17)







R(t) = ξ +

∫ T

t

(

εa(s) + εb(s)R(s) + εc(s)Z(s)−
Z2(s)

R(s)

)

ds−

∫ T

t

Z(s) dB(s)

R(t) > 0, t ∈ [0, T ],
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where the terminal condition ξ and coefficients a, b, c fulfil assumptions (H1)–(H4).

When ε tends to zero, we have

k → mξ, K →Mξ, C →
2

3
ln
Mξ

mξ
,

and the left-hand side of (3.15) converges to nξ. Thus, when ε is sufficiently small,

the conditions of Theorem 3.1 are satisfied if (H1)–(H4) hold and ln
Mξ

mξ
< 3

4 .

4. Conclusion

In this paper, based on the recent advances in the theory of density estimates

for a Malliavin differentiable random variable, we obtained a set of sufficient condi-

tions that ensures that the density of the solution to stochastic Riccati equations is

bounded by Gaussian densities. The results can be useful for studying the numerical

approximations of the solution. We therefore partly enrich the knowledge of the

theory of stochastic Riccati equations.
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