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Abstract

In this work we present expansions of intersection local times of
fractional Brownian motions in R

d, for any dimension d ≥ 1, with
arbitrary Hurst coefficients in (0, 1)d. The expansions are in terms
of Wick powers of white noises (corresponding to multiple Wiener
integrals), being well-defined in the sense of generalized white noise
functionals. As an application of our approach, a sufficient condition
on d for the existence of intersection local times in L2 is derived,
extending the results in [NOL07] to different and more general Hurst
coefficients.
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1 Introduction

In the recent years the fractional Brownian motion has become an object
of intense study, namely, due to its special properties, such as short/long
range dependence and self-similarity, yielding its proper and natural uses in
several applications in different fields (e.g. mathematical finances [MO08],
telecommunications engineering [NRT03]).

Besides its own specific properties, the intersection properties of fractional
Brownian motion paths have been studied by many authors as well, see
e.g. the works done by Gradinaru et al. [GRV03], Nualart et al. [HN07],
[HN05], Rosen [Ros87], and the references therein.

One may consider intersections of sample paths with themselves, as in
[DOS08] and references therein, or with other independent fractional Brow-
nian motions, as in [NOL07].

This work concerns the latter standpoint. Within the white noise analy-
sis framework (Section 2), a first purpose of this work is an extension of the
results presented in [AOS01] to two d-dimensional independent fractional
Brownian motions BH1 and BH2 with different Hurst coefficients, H1 and
H2. Technically, this approach has the advantage that the underlying prob-
ability space does not depend on any Hurst coefficient under consideration.
As a consequence, one may analyze the intersection local time of any two
independent fractional Brownian motions, without any restriction on the
corresponding Hurst coefficients.

From the viewpoint of applications to physics, this absence of restrictions
on the Hurst coefficients under consideration is meaningful to widen the
modelling of polymers towards polymers molecules handling different types
of polymers.

For low dimensions, that is, either for d = 1 or for d = 2, the white noise
analysis framework allows the definition of the intersection local time of any
two independent fractional Brownian motions BHi

in terms of an integral
over a Donsker’s δ-function

L ≡
∫

d2t δ(BH1(t1)−BH2(t2)),

intended to sum up the contributions from each pair of moments of time t1,
t2 for which the fractional Brownian motions BHi

arrive at the same point.
A rigorous definition, such as, e.g., through a sequence of Gaussians ap-
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proximating the δ-function,

(2πε)−d/2 exp

(

−|x|2
2ε

)

, ε > 0,

will make L increasingly singular, and various “renormalizations” have to be
done as the dimension d increases. Of course, besides the dimension of the
space, the type of “renormalizations” needed depends as well on the Hurst
coefficients Hi ∈ (0, 1)d being considered. For d > 2 with 1/maxj H1,j +
1/maxj H2,j ≤ d, the expectation diverges in the limit and must be sub-
tracted. Depending on the values of maxj Hi,j, further kernel terms must be
also subtracted (Theorem 9).

In this work we are particularly interested in the chaos decomposition
of L. We expand L in terms of Wick powers [HKPS93] of white noise, an
expansion which corresponds to that in terms of multiple Wiener integrals
when one considers the Wiener process as the fundamental random variable.
This allows us to derive the kernels for L. Due to the local structure of the
Wick powers, the kernel functions are relatively simple and exhibit clearly the
dimension dependence singularities of L (Proposition 8). For comparison, we
also calculate the regularized kernel functions corresponding to the Gaussian
δ-sequence mentioned above (Theorem 9).

As an application of this approach, in Theorem 11 we derive a sufficient
condition for the existence of the intersection local times in L2, extending the
results obtained in [NOL07] to different and more general Hurst coefficients.

2 Gaussian white noise calculus

In this section we briefly recall the concepts and results of white noise anal-
ysis used throughout this work (for a detailed explanation see e.g. [BK88],
[HKPS93], [HØUZ96], [Kuo96], [Oba94]).

2.1 Fractional Brownian motion

The starting point of white noise analysis for the construction of two indepen-
dent d-dimensional, d ≥ 1, fractional Brownian motions is the real Gelfand
triple

S2d(R) ⊂ L2
2d(R) ⊂ S ′

2d(R),
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where L2
2d(R) := L2(R,R2d) is the real Hilbert space of all vector valued

square integrable functions with respect to the Lebesgue measure on R, and
S2d(R), S

′
2d(R) are the Schwartz spaces of the vector valued test functions

and tempered distributions, respectively. We shall denote the L2
2d(R)-norm

by | · |2d (or if there is no risk of confusion simply by | · |) and the dual pairing
between S ′

2d(R) and S2d(R) by 〈·, ·〉2d, or simply by 〈·, ·〉, which is defined as
the bilinear extension of the inner product on L2

2d(R), i.e.,

〈g, f〉2d =
2d
∑

i=1

∫

R

dx gi(x)fi(x),

for all g = (g1, ..., g2d) ∈ L2
2d(R) and all f = (f1, ..., f2d) ∈ S2d(R). By the

Minlos theorem, there is a unique probability measure µ on the σ-algebra B
generated by the cylinder sets on S ′

2d(R) with characteristic function given
by

C(f) :=

∫

S′
2d(R)

dµ(~ω) ei〈~ω,f〉 = e−
1
2
|f |2, f ∈ S2d(R).

In this way we have defined the white noise measure space (S ′
2d(R),B, µ).

To construct two independent d-dimensional fractional Brownian motions
we shall consider a 2d-tuple of independent Gaussian white noises

~ω := (~ω1, ~ω2), ~ωi = (ωi,1, ..., ωi,d), i = 1, 2.

Within this formalism, a version of a d-dimensional Wiener Brownian motion
is given by

B(t) :=
(

〈ω1, 11[0,t]〉, ..., 〈ωd, 11[0,t]〉
)

, (ω1, ..., ωd) ∈ S ′
d(R),

where 11A denotes the indicator function of a set A and 〈·, ·〉 = 〈·, ·〉1. For
an arbitrary d-dimensional Hurst parameter H = (H1, ..., Hd) ∈ (0, 1)d, a
version of a d-dimensional fractional Brownian motion is given by

BH(t) :=
(

〈ω1,MH111[0,t]〉, ..., 〈ωd,MHd
11[0,t]〉

)

, (ω1, ..., ωd) ∈ S ′
d(R),

where, for a 1-dimensional Hurst parameter H ∈ (0, 1) and for a generic real
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valued function f ,

(MHf)(x) :=







































(1
2
−H)KH

Γ
(

H + 1
2

) lim
ε→0+

∫ ∞

ε

dy
f(x)− f(x+ y)

y
3
2
−H

, H ∈ (0, 1/2) (∗)

f(x), H = 1
2

KH

Γ
(

H − 1
2

)

∫ ∞

x

dy f(y)(y − x)H− 3
2 , H ∈ (1/2, 1) (∗∗)

,

provided the limit in (∗) exists for almost all x ∈ R and the integral in
(∗∗) exists for all x ∈ R (for more details see e.g. [Ben03] and [PT00] and
the references therein). Independently of the case under consideration, the
normalizing constant KH is given by

KH = Γ

(

H +
1

2

)(

1

2H
+

∫ ∞

0

ds
(

(1 + s)H− 1
2 − sH− 1

2

)

)− 1
2

.

There are several examples of functions f for which MHf exists for any
H ∈ (0, 1), namely, for f = 11[0,t] with t > 0 or for f ∈ S1(R). For more details
and proofs see e.g. [Ben03], [BHØZ08], [Mis08], [PT03], and the references
therein.

2.2 Hida distributions and characterization results

Let us now consider the complex Hilbert space (L2) := L2(S ′
2d(R),B, µ). For

simplicity one introduces the notation

n = (n1, · · · , nd) ∈ N
d, n =

d
∑

i=1

ni, n! =

d
∏

i=1

ni!.

The space (L2) is canonically isomorphic to the symmetric Fock space of
symmetric square integrable functions,

(L2) ≃
(

∞
⊕

k=0

SymL2(Rk, k!dkx)
)⊗2d

,

5



which leads to the chaos expansion of the elements in (L2),

F (~ω1, ~ω2) =
∑

m

∑

k

〈: ~ω⊗m

1 : ⊗ : ~ω⊗k

2 :, fm,k〉

=
∑

m

∑

k

〈

d
⊗

i=1

: ω⊗mi

1,i : ⊗
d
⊗

j=1

: ω
⊗mj

2,j :, fm,k

〉

,

with kernel functions fm,k in the Fock space, that is, square integrable func-
tions of the m+ k arguments and symmetric in each mi-, kj-tuple.

To proceed further we have to consider a Gelfand triple around the space
(L2). We will use the space (S)∗ of Hida distributions (or generalized Brow-
nian functionals) and the corresponding Gelfand triple (S) ⊂ (L2) ⊂ (S)∗.
Here (S) is the space of white noise test functions such that its dual space
(with respect to (L2)) is the space (S)∗. Instead of reproducing the ex-
plicit construction of (S)∗ (see e.g. [HKPS93]), in Theorem 2 below we
characterize this space through its S-transform. We recall that given a
f = (f1, f2) ∈ S2d(R), and the Wick exponential

: exp(〈~ω, f〉) : :=
∑

m

∑

k

1

m!k!
〈: ~ω⊗m

1 : ⊗ : ~ω⊗k

2 :, f⊗m

1 ⊗ f⊗k

2 〉 = C(f)e〈~ω,f〉2d ,

we define the S-transform of a Φ ∈ (S)∗ by

SΦ(f) := 〈〈Φ, : exp(〈·, f〉) :〉〉 , ∀ f ∈ S2d(R). (1)

Here 〈〈·, ·〉〉 denotes the dual pairing between (S)∗ and (S) which is defined as
the bilinear extension of the sesquilinear inner product on (L2). We observe
that the multilinear expansion of (1),

SΦ(f) :=
∑

m

∑

k

〈Fm,k, f
⊗m

1 ⊗ f⊗k

2 〉,

extends the chaos expansion to Φ ∈ (S)∗ with distribution valued kernels
Fm,k such that

〈〈Φ, ϕ〉〉 =
∑

m

∑

k

m!k!〈Fm,k, ϕm,k〉, (2)

for every generalized test function ϕ ∈ (S) with kernel functions ϕm,k.
In order to characterize the space (S)∗ through its S-transform we need

the following definition.
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Definition 1 A function F : S2d(R) → C is called a U-functional whenever
1. for every f1, f2 ∈ S2d(R) the mapping R ∋ λ 7−→ F (λf1 + f2) has an entire
extension to λ ∈ C,
2. there are constants K1, K2 > 0 such that

|F (zf)| ≤ K1e
K2|z|

2‖f‖2 , ∀ z ∈ C, f ∈ S2d(R)

for some continuous norm ‖·‖ on S2d(R).

We are now ready to state the aforementioned characterization result.

Theorem 2 ([KLPSW96], [PS91]) The S-transform defines a bijection be-
tween the space (S)∗ and the space of U-functionals.

As a consequence of Theorem 2 one may derive the next two statements.
The first one concerns the convergence of sequences of Hida distributions
and the second one the Bochner integration of families of distributions of
the same type (for more details and proofs see e.g. [HKPS93], [KLPSW96],
[PS91]).

Corollary 3 Let (Φn)n∈N be a sequence in (S)∗ such that

(i) for all f ∈ S2d(R), ((SΦn)(f))n∈N is a Cauchy sequence in C,

(ii) there are constants K1, K2 > 0 such that for some continuous norm ‖·‖
on S2d(R) one has

|(SΦn)(zf)| ≤ K1e
K2|z|

2‖f‖2, ∀ z ∈ C, f ∈ S2d(R), n ∈ N.

Then (Φn)n∈N converges strongly in (S)∗ to a unique Hida distribution.

Corollary 4 Let (Ω,B, m) be a measure space and λ 7→ Φλ be a mapping
from Ω to (S)∗. We assume that the S-transform of Φλ fulfills the following
two properties:

(i) the mapping λ 7→ (SΦλ)(f) is measurable for every f ∈ S2d(R),

(ii) the SΦλ obeys a U-estimate

|(SΦλ)(zf)| ≤ C1(λ)e
C2(λ)|z|2‖f‖2 , z ∈ C, f ∈ S2d(R),

for some continuous norm ‖ · ‖ on S2d(R) and for some C1 ∈ L1(Ω, m),
C2 ∈ L∞(Ω, m).
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Then
∫

Ω

dm(λ) Φλ ∈ (S)∗

and

S

(
∫

Ω

dm(λ) Φλ

)

(f) =

∫

Ω

dm(λ) (SΦλ) (f).

3 Chaos expansions

Let us now consider two independent d-dimensional fractional Brownian mo-
tions BH1(t) and BH2(t) with Hurst multiparameters H1 = (H1,1, ..., H1,d)
and H2 = (H2,1, ..., H2,d), respectively. That is, given a 2d-tuple of indepen-
dent white noises (ω1,1, ..., ω1,d, ω2,1, ..., ω2,d),

BHi
(t) :=

(

〈ωi,1,MHi,1
11[0,t]〉, ..., 〈ωi,d,MHi,d

11[0,t]〉
)

, i = 1, 2.

Proposition 5 For each t and s strictly positive real numbers the Bochner
integral

δ(BH1(t)−BH2(s)) :=

(

1

2π

)d ∫

Rd

dλ eiλ(BH1
(t)−BH2

(s))

is a Hida distribution with S-transform given by

Sδ(BH1(t)−BH2(s))(f)

=

(

1√
2π

)d d
∏

j=1

1√
t2H1,j + s2H2,j

· (3)

·e−
1
2

∑d
j=1

1

t
2H1,j+s

2H2,j
(
∫

R
dx (f1,j(x)(MH1,j

11[0,t])(x)−f2,j (x)(MH2,j
11[0,s])(x)))

2

,

for all f = (f1,1, ..., f1,d, f2,1, ..., f2,d) ∈ S2d(R).

Proof. The proof of this result follows from an application of Corollary 4 to
the S-transform of the integrand function

Φ(~ω1, ~ω2) := eiλ(BH1
(t)−BH2

(s)), ~ωi = (ωi,1, ..., ωi,d), i = 1, 2,

with respect to the Lebesgue measure on Rd. For this purpose we begin by
observing that since the fractional Brownian motions are independent one
has

SΦ(f) = SeiλBH1
(t)(f1) · Se−iλBH2

(s)(f2)
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for every f = (f1, f2) ∈ S2d(R), f1 := (f1,1, ..., f1,d), f2 := (f2,1, ..., f2,d). Hence,
according e.g. to [HKPS93], for all λ = (λ1, ..., λd) ∈ Rd we obtain

SΦ(f) =

d
∏

j=1

eiλj

∫

R
dx (f1,j(x)(MH1,j

11[0,t])(x)−f2,j (x)(MH2,j
11[0,s])(x))e−

1
2
λ2
j (t

2H1,j+s2H2,j ),

(4)
which clearly fulfills the measurability condition. Moreover, for all z ∈ C we
find

|SΦ(zf)|

=
d
∏

j=1

e−
1
4
λ2
j (t

2H1,j+s2H2,j ) ·

·
d
∏

j=1

∣

∣

∣e
− 1

4
λ2
j (t

2H1,j+s2H2,j )+izλj

∫

R
dx(f1,j(x)(MH1,j

11[0,t])(x)−f2,j (x)(MH2,j
11[0,s])(x))

∣

∣

∣

≤
d
∏

j=1

e−
1
4
λ2
j (t

2H1,j+s2H2,j ) ·

·
d
∏

j=1

e−
1
4
λ2
j (t

2H1,j+s2H2,j )+|z||λj||∫R dx(f1,j(x)(MH1,j
11[0,t])(x)−f2,j (x)(MH2,j

11[0,s])(x))|,

where, for each j = 1, ..., d, the corresponding term in the second product is
bounded by

exp

(

|z|2
t2H1,j + s2H2,j

(
∫

R

dx
(

f1,j(x)(MH1,j
11[0,t])(x)− f2,j(x)(MH2,j

11[0,s])(x)
)

)2
)

,
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because

−1

4
λ2
j(t

2H1,j + s2H2,j )

+|z||λj|
∣

∣

∣

∣

∫

R

dx
(

f1,j(x)(MH1,j
11[0,t])(x)− f2,j(x)(MH2,j

11[0,s])(x)
)

∣

∣

∣

∣

= −
( |z|√

t2H1,j + s2H2,j

∣

∣

∣

∣

∫

R

dx
(

f1,j(x)(MH1,j
11[0,t])(x)− f2,j(x)(MH2,j

11[0,s])(x)
)

∣

∣

∣

∣

−|λj|
2

√

t2H1,j + s2H2,j

)2

+
|z|2

t2H1,j + s2H2,j

(∫

R

dx
(

f1,j(x)(MH1,j
11[0,t])(x)− f2,j(x)(MH2,j

11[0,s])(x)
)

)2

.

As a result,

|SΦ(zf)| ≤ e−
1
4

∑d
j=1 λ

2
j (t

2H1,j+s2H2,j ) ·

·e|z|
2
∑d

j=1
1

t
2H1,j+s

2H2,j
(
∫

R
dx (f1,j(x)(MH1,j

11[0,t])(x)−f2,j (x)(MH2,j
11[0,s])(x)))

2

,

where, as a function of λ, the first exponential is integrable on Rd and the
second exponential is constant.

An application of the result mentioned above completes the proof. In
particular, it yields (3) by integrating (4) over λ. �

In order to proceed further the next result shows to be very useful. It
improves the estimate obtained in [Ben03, Theorem 2.3] towards the charac-
terization results stated in Corollaries 3 and 4.

Lemma 6 ([DOS08]) Let H ∈ (0, 1) and f ∈ S1(R) be given. There is a
non-negative constant CH independent of f such that

∣

∣

∣

∣

∫

R

dx f(x)(MH11[0,t])(x)

∣

∣

∣

∣

≤ CHt

(

sup
x∈R

|f(x)|+ sup
x∈R

|f ′(x)|+ |f |
)

for all t > 0.

In particular, the use of Lemma 6 allows to state the next result on
intersection local times LH1,H2 as well as on their subtracted counterparts

L
(N)
H1,H2

. There, and throughout the rest of this work as well, given a H =

(H1, ..., Hd) ∈ (0, 1)d we shall use the notation

H̄ := max
j=1,...,d

Hj.
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Theorem 7 Let T > 0 be given. For any pair of integer numbers d ≥ 1,
N ≥ 0 and for any pair of Hurst multiparameters H1, H2 ∈ (0, 1)d such that

max{H̄1, H̄2}
(

N +
d

2
− 1

2min{H̄1, H̄2}

)

< N +
1

2
,

the Bochner integral

L
(N)
H1,H2

:=

∫ T

0

dt

∫ T

0

ds δ(N)(BH1(t)−BH2(s))

is a Hida distribution.

Proof. To prove this result we shall again use Corollary 4 with respect to
the Lebesgue measure on [0, T ]2. For this purpose let us denote the truncated
exponential series by

expN (x) :=
∞
∑

n=N

xn

n!
.

It follows from (3) that for every t, s > 0 the S-transform of δ(N)(BH1(t) −
BH2(s)) is given by

Sδ(N)(BH1(t)−BH2(s))(f) (5)

=

(

1√
2π

)d d
∏

j=1

1√
t2H1,j + s2H2,j

expN

(

−1

2

d
∑

j=1

1

t2H1,j + s2H2,j
·

·
(
∫

R

dx
(

f1,j(x)(MH1,j
11[0,t])(x)− f2,j(x)(MH2,j

11[0,s])(x)
)

)2
)

,

which is a measurable function.
In order to check the boundedness condition, on S2d(R) let us consider

the norm ‖ · ‖ defined for all f = (f1, ..., f2d) ∈ S2d(R) by

‖f‖ :=

(

2d
∑

i=1

(

sup
x∈R

|fi(x)|+ sup
x∈R

|f ′
i(x)|+ |fi|

)2
)

1
2

. (6)

We observe that on S1(R) this norm reduces to the continuous norm

‖f‖ = sup
x∈R

|f(x)|+ sup
x∈R

|f ′(x)|+ |f |, f ∈ S1(R),
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which implies the continuity of the norm (6) for higher dimensions.
By Lemma 6, for each j = 1, ..., d, we obtain

(
∫

R

dx
(

f1,j(x)(MH1,j
11[0,t])(x)− f2,j(x)(MH2,j

11[0,s])(x)
)

)2

≤ 2

(
∫

R

dx f1,j(x)(MH1,j
11[0,t])(x)

)2

+ 2

(
∫

R

dx f2,j(x)(MH2,j
11[0,s])(x)

)2

≤ 2t2C2
H1,j

‖f1,j‖2 + 2s2C2
H2,j

‖f2,j‖2,

and thus, for all z ∈ C and all f ∈ S2d(R),

∣

∣S(δ(N)(BH1(t)−BH2(s)))(zf)
∣

∣

≤
(

1√
2π

)d d
∏

j=1

1√
t2H1,j + s2H2,j

expN

(

|z|2C2
H1,H2

t2 + s2

t2H(1) + s2H(2)
‖f‖2

)

with CH1,H2 := max{CH1,j
, CH2,j

: j = 1, ..., d} and

H(1) :=







H̄1 = max
j=1,...,d

H1,j, 0 < t ≤ 1

min
j=1,...,d

H1,j , t > 1
, H(2) :=







H̄2 = max
j=1,...,d

H2,j , 0 < s ≤ 1

min
j=1,...,d

H2,j, s > 1
.

Therefore, for 0 < t, s ≤ 1 one has

t2 + s2

t2H(1) + s2H(2)
=

t2 + s2

t2H̄1 + s2H̄2
≤ 1,

and thus

expN

(

|z|2C2
H1,H2

t2 + s2

t2H̄1 + s2H̄2
‖f‖2

)

≤
(

t2 + s2

t2H̄1 + s2H̄2

)N

e|z|
2C2

H1,H2
‖f‖2 ;

while either for t > 1 or for s > 1 one finds

expN

(

|z|2C2
H1,H2

t2 + s2

t2H(1) + s2H(2)
‖f‖2

)

≤
(

t2 + s2

t2H(1) + s2H(2)

)N

e
|z|2C2

H1,H2

(

t2+s2

t
2H(1)+s

2H(2)
+N

)

‖f‖2

.

12



As a consequence, independently of T being smaller or greater than 1 there
is always a function C = C(t, s) > 0 bounded on [0, T ]2 such that

∣

∣S(δ(N)(BH1(t)−BH2(s)))(zf)
∣

∣

≤
(

1√
2π

)d d
∏

j=1

1√
t2H1,j + s2H2,j

(

t2 + s2

t2H(1) + s2H(2)

)N

e|z|
2C2

H1,H2
C(t,s)‖f‖2 .(7)

The proof then amounts to prove the integrability on [0, T ]2 of the expression

d
∏

j=1

1√
t2H1,j + s2H2,j

(

t2 + s2

t2H(1) + s2H(2)

)N

appearing in (7). For this purpose one observes that due to the singular
point at the origin this expression is integrable on [0, T ]2 if and only if it
is integrable on [0, 1]2. As shown in the Appendix (Lemma 14), this occurs
whenever

2max{H̄1, H̄2}
(

N +
d

2
− 1

2min{H̄1, H̄2}

)

− 2N < 1.

The proof is then completed by an application of Corollary 4. �

As a consequence, one may derive the chaos expansion for the (truncated)

local times L
(N)
H1,H2

.

Proposition 8 Under the conditions of Theorem 7, L
(N)
H1,H2

has the chaos
expansion

L
(N)
H1,H2

(~ω1, ~ω2) =
∑

m

∑

k

〈: ~ω⊗m

1 : ⊗ : ~ω⊗k

2 :, FH1,H2,m,k〉

where the kernel functions FH1,H2,m,k are given by

FH1,H2,m,k =
(

1

π

)
d
2 (−1)

m+3k
2

(

m+k

2

)

!

(

1

2

)
m+k+d

2
(

m+ k

m

)
∫ T

0

dt

∫ T

0

ds

d
∏

j=1

(

1

t2H1,j + s2H2,j

)

mj+kj+1

2

·

·
d
⊗

j=1

(

(MH1,j
11[0,t])

⊗mj ⊗ (MH2,j
11[0,s])

⊗kj
)

13



for each m = (m1, . . . , md) and each k = (k1, . . . , kd) such that m + k ≥
2N and all sums mj + kj, j = 1, ..., d, are even numbers. All other kernel
functions FH1,H2,m,k are identically equal to zero.

Proof. According to Corollary 4, the S-transform of the (truncated) local

time L
(N)
H1,H2

is obtained by integrating (5) over [0, T ]2. Hence, given a f =
(f1,1, ..., f1,d, f2,1, ..., f2,d) ∈ S2d(R) one has

SL
(N)
H1,H2

(f)

=

(

1√
2π

)d ∫ T

0

dt

∫ T

0

ds
d
∏

j=1

1√
t2H1,j + s2H2,j

·

·
∞
∑

n=N

(−1)n

2nn!

∑

n1,··· ,nd
n1+···+nd=n

n!

n1! · · ·nd!

d
∏

j=1

(

1

t2H1,j + s2H2,j

)nj

·

·
(
∫

R

dx
(

f1,j(x)(MH1,j
11[0,t])(x)− f2,j(x)(MH2,j

11[0,s])(x)
)

)2nj

(8)

with (8) being equal to

∑

mj,kj
mj+kj=2nj

(−1)kj
(

2nj

mj

)(
∫

R

dx f1,j(x)(MH1,j
11[0,t])(x)

)mj

·

·
(
∫

R

dx f2,j(x)(MH2,j
11[0,s])(x)

)kj

.

From these calculations follow the equality

SL
(N)
H1,H2

(f) =

(

1

π

)
d
2
∫ T

0

dt

∫ T

0

ds
∞
∑

n=N

∑

n1,··· ,nd
n1+···+nd=n

∑

m1,...,md,k1,...,kd
mj+kj=2nj,j=1,...,d







d
∏

j=1

(−1)
mj+3kj

2

(

mj+kj
2

)

!

(

1

2(t2H1,j + s2H2,j)

)

mj+kj+1

2







·

·
{

d
∏

j=1

(

mj + kj
mj

)(
∫

R

dx f1,j(x)(MH1,j
11[0,t])(x)

)mj

·

·
(
∫

R

dx f2,j(x)(MH2,j
11[0,s])(x)

)kj
}

,

14



which is equivalent to

(

1

π

)
d
2
∫ T

0

dt

∫ T

0

ds
∑

m,k
m+k≥2N

mj+kj even,j=1,...,d

(−1)
m+3k

2

(

m+k

2

)

!

(

1

2

)
m+k+d

2
(

m+ k

m

)

·

·
d
∏

j=1

(

1

t2H1,j + s2H2,j

)

mj+kj+1

2
(
∫

R

dx f1,j(x)(MH1,j
11[0,t])(x)

)mj

(∫

R

dx f2,j(x)(MH2,j
11[0,s])(x)

)kj

.

Comparing with the general form of the chaos expansion
∑

m

∑

k

〈: ~ω⊗m

1 : ⊗ : ~ω⊗k

2 :, FH1,H2,m,k〉,

one concludes that the kernels FH1,H2,m,k vanish whenever either there is a
j = 1, ..., d such that mj + kj is an odd number or m+ k < 2N , while for all
other cases

FH1,H2,m,k =
(

1

π

)
d
2 (−1)

m+3k
2

(

m+k

2

)

!

(

1

2

)
m+k+d

2
(

m+ k

m

)
∫ T

0

dt

∫ T

0

ds
d
∏

j=1

(

1

t2H1,j + s2H2,j

)

mj+kj+1

2

·

·
d
⊗

j=1

(

(MH1,j
11[0,t])

⊗mj ⊗ (MH2,j
11[0,s])

⊗kj
)

.

�

Theorem 7 shows that for d = 1 or d = 2 all intersection local times LH1,H2

are well-defined for all possible Hurst multiparameters H1, H2 in (0, 1)d. For
d > 2, intersection local times are well-defined only for 1/H̄1 + 1/H̄2 > d.
Under these conditions, Proposition 8 in addition yields

Eµ(LH1,H2) = FH1,H2,0,0 =

(

1√
2π

)d ∫ T

0

dt

∫ T

0

ds
d
∏

j=1

1√
t2H1,j + s2H2,j

.

Informally speaking, for 1/H̄1 + 1/H̄2 ≤ d with d > 2, the local times
only become well-defined once subtracted the divergent terms. This “renor-
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malization” procedure motivates the study of a regularization. As a compu-
tationally simple regularization we discuss

LH1,H2,ε :=

∫ T

0

dt

∫ T

0

ds δε(BH1(t)−BH2(s)), ε > 0,

where

δε(BH1(t)−BH2(s)) :=

(

1√
2πε

)d

e−
(BH1

(t)−BH2
(s))2

2ε .

Theorem 9 Let ε > 0 be given. For all H1, H2 ∈ (0, 1)d and all dimensions
d ≥ 1 the intersection local time LH1,H2,ε is a Hida distribution with kernel
functions given by

FH1,H2,ε,m,k =

(

1

π

) d
2 (−1)

m+3k
2

(

m+k

2

)

!

(

1

2

)
m+k+d

2
(

m+ k

m

)

∫ T

0

dt

∫ T

0

ds

d
∏

j=1

(

1

ε+ t2H1,j + s2H2,j

)

mj+kj+1

2
d
⊗

j=1

(

(MH1,j
11[0,t])

⊗mj⊗(MH2,j
11[0,s])

⊗kj
)

for all m = (m1, ..., md),k = (k1, ..., kd) ∈ Nd
0 such that all sums mi+kj, j =

1, ..., d, are even numbers, and FH1,H2,ε,m,k ≡ 0 if at least one of the sums mi+

ki is an odd number. Moreover, if max{H̄1, H̄2}
(

N + d
2
− 1

2min{H̄1,H̄2}

)

<

N + 1
2
, then when ε tends to zero the (truncated) intersection local time

L
(N)
H1,H2,ε

converges strongly in (S)∗ to the (truncated) local time L
(N)
H1,H2

.

Proof. As before, the first part of the proof follows from the Corollary 4
with respect to the Lebesgue measure on [0, T ]2. By the definition of the
S-transform, for all f = (f1,1, ..., f1,d, f2,1, ..., f2,d) ∈ S2d(R) one finds

Sδε(BH1(t)−BH2(s))(f)

=

d
∏

j=1

1
√

2π(ε+ t2H1,j + s2H2,j )
·

·e−
1
2

∑d
j=1

1

ε+t
2H1,j+s

2H2,j
(
∫

R
dx (f1,j(x)(MH1,j

11[0,t])(x)−f2,j(x)(MH2,j
11[0,s])(x)))

2

,
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which is measurable. Hence, similarly to the proof of Theorem 7, an appli-
cation of Lemma 6 yields for all z ∈ C and all f ∈ S2d(R)

|S(δε(BH1(t)−BH2(s)))(zf)|

≤
d
∏

j=1

1
√

2π(ε+ t2H1,j + s2H2,j )
e
|z|2C2

H1,H2

t2+s2

ε+t
2H(1)+s

2H(2)
‖f‖2

with t2+s2

ε+t
2H(1)+s

2H(2)
bounded on [0, T ]2 and

∏d
j=1

1√
2π(ε+t2H1,j+s2H2,j )

integrable

on [0, T ]2. By Corollary 4, one may then conclude that LH1,H2,ε ∈ (S)∗ and,
moreover, for every f = (f1,1, ..., f1,d, f2,1, ..., f2,d) ∈ S2d(R),

SLH1,H2,ε(f) =

∫ T

0

dt

∫ T

0

ds Sδε(BH1(t)−BH2(s))(f)

=

(

1

π

)
d
2
∫ T

0

dt

∫ T

0

ds
∑

m,k

mj+kj even,j=1,...,d

(−1)
m+3k

2

(

m+k

2

)

!

(

1

2

)
m+k+d

2
(

m+ k

m

)

·

·
d
∏

j=1

(

1

ε+ t2H1,j + s2H2,j

)

mj+kj+1

2
(
∫

R

dx f1,j(x)(MH1,j
11[0,t])(x)

)mj

(
∫

R

dx f2,j(x)(MH2,j
11[0,s])(x)

)kj

.

As in the proof of Proposition 8, it follows from the latter expression that
the kernels FH1,H2,ε,m,k appearing in the chaos expansion of LH1,H2,ε vanish
if at least one of the mi + ki in m + k = (m1 + k1, ..., md + kd) is an odd
number, otherwise they are given by

FH1,H2,ε,m,k =

(

1

π

)
d
2 (−1)

m+3k
2

(

m+k

2

)

!

(

1

2

)
m+k+d

2
(

m+ k

m

)

∫ T

0

dt

∫ T

0

ds
d
∏

j=1

(

1

ε+ t2H1,j + s2H2,j

)

mj+kj+1

2
d
⊗

j=1

(

(MH1,j
11[0,t])

⊗mj⊗(MH2,j
11[0,s])

⊗kj
)

.

To complete the proof amounts to check the convergence. For this purpose
we shall use Corollary 3. Since

SL
(N)
H1,H2,ε

(f) =

∫ T

0

dt

∫ T

0

ds Sδ(N)
ε (BH1(t)−BH2(s))(f),
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for every z ∈ C and every f ∈ S2d(R), a similar procedure used to prove
Theorem 7 yields

∣

∣

∣
SL

(N)
H1,H2,ε

(zf)
∣

∣

∣
≤

∫ T

0

dt

∫ T

0

ds
∣

∣Sδ(N)
ε (BH1(t)−BH2(s))(zf)

∣

∣

≤
(

1√
2π

)d

e|z|
2‖f‖2C2

H1,H2
supt,s∈[0,T ] C(t,s) ·

·
∫ T

0

dt

∫ T

0

ds
d
∏

j=1

1√
t2H1,j + s2H2,j

(

t2 + s2

t2H(1) + s2H(2)

)N

,

showing the boundedness condition. Furthermore, we have
∣

∣Sδ(N)
ε (BH1(t)−BH2(s))(f)

∣

∣ ≤
(

1√
2π

)d d
∏

j=1

1√
t2H1,j + s2H2,j

(

t2 + s2

t2H(1) + s2H(2)

)N

eC
2
H1,H2

‖f‖2 supt,s∈[0,T ] C(t,s),

which allows the use of the Lebesgue dominated convergence theorem to infer
the other condition needed for the application of Corollary 3. �

Given any pair of Hurst multiparameters H1, H2 ∈ (0, 1)d, d ≥ 1, such
that d < 1/H̄1+1/H̄2, according to the convergence result stated in Theorem
9, for any f ∈ S2d(R) fixed, the SLH1,H2,ε(f) converges to SLH1,H2(f). This
fact combined with the characterization result of the convergence in (L2)
in terms of the S-transform, recalled in Proposition 10, allows to improve
the previous statements concerning the intersection local times (Theorem 11
below). In particular, this theorem extends the results obtained in [NOL07]
to different and more general Hurst multiparameters.

Proposition 10 Let (Φn)n∈N be a sequence in (L2) and Φ ∈ (L2). The
following two assertions are equivalent:

(i) (Φn)n∈N converges in (L2) to Φ;

(ii) the sequence (‖Φn‖)n∈N converges to ‖Φ‖ and, for all f ∈ S2d(R), (SΦn(f))n∈N
converges to SΦ(f).

Here ‖ · ‖ denotes the norm defined on (L2).

Theorem 11 For any pair of Hurst multiparameters H1, H2 ∈ (0, 1)d, d ≥ 1,
such that d < 1/H̄1 + 1/H̄2, the intersection local times LH1,H2 as well as all
LH1,H2,ε, ε > 0, exist in (L2), and the sequence of LH1,H2,ε converges in (L2)
to LH1,H2 as ε tends to zero.

18



Proof. According to the previous considerations, the proof amounts to show
that LH1,H2 , LH1,H2,ε ∈ (L2), for all ε > 0, and that the convergence (in ε) of
their (L2)-norms holds. For this purpose we begin by showing that the sums

∑

m

∑

k

m!k! |FH1,H2,ε,m,k|2(L2
2d(R))

⊗(m+k) ,
∑

m

∑

k

m!k! |FH1,H2,m,k|2(L2
2d(R))

⊗(m+k) ,

(9)
converge, where FH1,H2,ε,m,k and FH1,H2,m,k are the kernels given by Theorem
9 and Proposition 8, respectively. By (2), this will prove that LH1,H2,ε, LH1,H2 ∈
(L2) with ‖LH1,H2,ε‖2 given by the first sum appearing in (9) and ‖LH1,H2‖2
by the second one.

Similar calculations done to prove Theorem 9 yield

∑

m

∑

k

m!k! |FH1,H2,ε,m,k|2(L2
2d(R))

⊗(m+k)

=
∑

m

∑

k

m!k!

(

1

2π

)d
(−1)m+3k

((

m+k

2

)

!
)2

(

1

2

)m+k (
m+ k

m

)2

∫ T

0

dt

∫ T

0

ds

∫ T

0

dt′
∫ T

0

ds′
d
∏

j=1

(

1
√

(ε+ t2H1,j + s2H2,j )(ε+ t′2H1,j + s′2H2,j )

)mj+kj+1

·〈MH1,j
11[0,t],MH1,j

11[0,t′]〉mj〈MH2,j
11[0,s],MH2,j

11[0,s′]〉kj ,

with the inner products being equal to

〈MH1,j
11[0,t],MH1,j

11[0,t′]〉 =
1

2

(

t2H1,j + t′
2H1,j − |t− t′|2H1,j

)

,

〈MH2,j
11[0,s],MH2,j

11[0,s′]〉 =
1

2

(

s2H2,j + s′
2H2,j − |s− s′|2H2,j

)

,

for each j = 1, . . . , d,

=

(

1

2π

)d ∫ T

0

dt

∫ T

0

ds

∫ T

0

dt′
∫ T

0

ds′
d
∏

j=1

1
√

(ε+ t2H1,j + s2H2,j )(ε+ t′2H1,j + s′2H2,j )

∞
∑

n=0

1

4nn!

∑

n1,··· ,nd
n1+···+nd=n

n!

n1! . . . nd!

d
∏

j=1

(2nj)!

nj !

(

1

(ε+ t2H1,j + s2H2,j )(ε+ t′2H1,j + s′2H2,j )

)nj

·
(

1

2

(

t2H1,j + t′
2H1,j − |t− t′|2H1,j + s2H2,j + s′

2H2,j − |s− s′|2H2,j

)

)2nj

.
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Concerning the integrand function, observe that using the following equalities
for the Gamma function,

(2n!)

n!
=

22n√
π
Γ

(

n +
1

2

)

,

Γ

(

n +
1

2

)

= Γ

(

1

2

) n−1
∏

i=0

(

1

2
+ i

)

=
√
π

n−1
∏

i=0

(

1

2
+ i

)

,

one may rewrite it as

d
∏

j=1

1
√

(ε+ t2H1,j + s2H2,j )(ε+ t′2H1,j + s′2H2,j )
·

·
∞
∑

n=0

∑

n1,··· ,nd
n1+···+nd=n

d
∏

j=1

Γ
(

nj +
1
2

)

√
πnj !

(

1

(ε+ t2H1,j + s2H2,j )(ε+ t′2H1,j + s′2H2,j )

)nj

·
(

1

2

(

t2H1,j + t′
2H1,j − |t− t′|2H1,j + s2H2,j + s′

2H2,j − |s− s′|2H2,j

)

)2nj

=
d
∏

j=1

1
√

(ε+ t2H1,j + s2H2,j )(ε+ t′2H1,j + s′2H2,j )

∞
∑

n=0

∑

n1,··· ,nd
n1+···+nd=n

d
∏

j=1

1

nj!

(

nj−1
∏

i=0

(

1

2
+ i

)

)

·

·
d
∏

j=1

(

t2H1,j + t′2H1,j − |t− t′|2H1,j + s2H2,j + s′2H2,j − |s− s′|2H2,j

)2nj

4nj(ε+ t2H1,j + s2H2,j )nj(ε+ t′2H1,j + s′2H2,j )nj
. (10)

Hence, taking into account that for any 0 ≤ t, t′, s, s′ ≤ T and for any
j = 1, . . . , d

0 ≤

(

t2H1,j + t′2H1,j − |t− t′|2H1,j + s2H2,j + s′2H2,j − |s− s′|2H2,j

)2

4(ε+ t2H1,j + s2H2,j )(ε+ t′2H1,j + s′2H2,j )
< 1,

one recognizes that the sum in (10) is indeed the Taylor expansion of the
function

d
∏

j=1





√

1−
(

t2H1,j + t′2H1,j − |t− t′|2H1,j + s2H2,j + s′2H2,j − |s− s′|2H2,j
)2

4(ε+ t2H1,j + s2H2,j )(ε+ t′2H1,j + s′2H2,j )





−1

,
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and thus

∑

m

∑

k

m!k! |FH1,H2,ε,m,k|2(L2
2d(R))

⊗(m+k)

=

(

1

2π

)d ∫ T

0

dt

∫ T

0

ds

∫ T

0

dt′
∫ T

0

ds′
d
∏

j=1

(

(ε+t2H1,j+s2H2,j )(ε+t′
2H1,j+s′

2H2,j )

−1

4

(

t2H1,j+ t′
2H1,j−|t− t′|2H1,j+s2H2,j+s′

2H2,j−|s− s′|2H2,j

)2
)− 1

2

.

Independently of the dimension d and the Hurst multiparameters under con-
sideration, clearly such a multiple integral is always finite.

Concerning the second sum in (9), first we note that the expression of the
kernels FH1,H2,m,k coincides with FH1,H2,ε,m,k for ε = 0. Thus, one may apply
the previous scheme, just replacing ε by zero, with the slight difference that
in this case one has

0 <

(

t2H1,j + t′2H1,j − |t− t′|2H1,j + s2H2,j + s′2H2,j − |s− s′|2H2,j

)2

4(t2H1,j + s2H2,j )(t′2H1,j + s′2H2,j )
< 1,

only for 0 < t, t′, s, s′ ≤ T such that t 6= t′ and s 6= s′. Thus, only for
0 < t, t′, s, s′ ≤ T such that t 6= t′ and s 6= s′ the sum corresponding to the
sum in (10) converges. As a result, in this case we obtain

∑

m

∑

k

m!k! |FH1,H2,m,k|2(L2
2d(R))

⊗(m+k)

= 4

(

1

2π

)d ∫ T

0

dt

∫ t

0

dt′
∫ T

0

ds

∫ s

0

ds′
d
∏

j=1

(

(t2H1,j+s2H2,j)(t′
2H1,j+s′

2H2,j )

−1

4

(

t2H1,j+ t′
2H1,j−(t− t′)2H1,j+s2H2,j+s′

2H2,j−(s− s′)2H2,j

)2
)− 1

2

.

Due to the existence of singular points, an additional analysis is now needed
in order to show the convergence of this multiple integral. As before, it is
enough to consider the case T = 1.
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As a first step we use the fact that for each j = 1, . . . , d fixed one has

(t2H1,j+s2H2,j)(t′
2H1,j+s′

2H2,j ) (11)

−1

4

(

t2H1,j+ t′
2H1,j−|t− t′|2H1,j+s2H2,j+s′

2H2,j−|s− s′|2H2,j

)2

≥ t2H1,j t′
2H1,j − 1

4

(

t2H1,j + t′
2H1,j − |t− t′|2H1,j

)2

(12)

+s2H2,js′
2H2,j − 1

4

(

s2H2,j + s′
2H2,j − |s− s′|2H2,j

)2

, (13)

with the advantage that, in contrast to (11), (12) as well as (13) only depend
of a unique Hurst parameter. Moreover, (12) and (13) are both of the type

ϕH(u, v) := u2Hv2H − 1

4

(

u2H + v2H − |u− v|2H
)2

,

which, as a function of u and v, is an homogeneous function of order 4H .
Therefore, for every 0 < v < u < 1 one has

u2Hv2H − 1

4

(

u2H + v2H − (u− v)2H
)2

= u4H

[

(v

u

)2H

− 1

4

(

1 +
(v

u

)2H

−
(

1− v

u

)2H
)2
]

,

where, for v/u ∈ (0, 1) fixed, the expression between the square brackets is a
decreasing function of H ∈ (0, 1).

As a consequence,

∑

m

∑

k

m!k! |FH1,H2,m,k|2(L2
2d(R))

⊗(m+k)

≤ 4

(

1

2π

)d ∫ 1

0

dt

∫ t

0

dt′
∫ 1

0

ds

∫ s

0

ds′
(

t2H̄1t′
2H̄1 − 1

4

(

t2H̄1 + t′
2H̄1 − (t− t′)2H̄1

)2

+ s2H̄2s′
2H̄2 − 1

4

(

s2H̄2 + s′
2H̄2 − (s− s′)2H̄2

)2
)− d

2

. (14)

Now the proof follows closely the one in [NOL07, Proof of Lemma 4],
based on the fact that

λ− d
2 =

1

Γ(d
2
)

∫ +∞

0

dz e−λzz
d
2
−1,
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which allows to rewrite the multiple integral in (14) as

1

Γ(d
2
)

∫ +∞

0

dz z
d
2
−1

(∫ 1

0

dt

∫ t

0

ds e−zϕH̄1
(t,s)

)(∫ 1

0

dt

∫ t

0

ds e−zϕH̄2
(t,s)

)

.

(15)
Since

∀ z ∈ [0, 1] ,

∫ 1

0

dt

∫ t

0

ds e−zϕH̄i
(t,s) < +∞, i = 1, 2,

the convergence of the integral (15) then will follow from the convergence of
the integral

∫ +∞

1

dz z
d
2
−1

(
∫ 1

0

dt

∫ t

0

ds e−zϕH̄1
(t,s)

)(
∫ 1

0

dt

∫ t

0

ds e−zϕH̄2
(t,s)

)

.

As in [NOL07, Proof of Lemma 4], the homogeneity property of ϕH̄1
and

ϕH̄2
yields

∫ +∞

1

dz z
d
2
−1

(
∫ 1

0

dt

∫ t

0

ds e−zϕH̄1
(t,s)

)(
∫ 1

0

dt

∫ t

0

ds e−zϕH̄2
(t,s)

)

=

∫ +∞

1

dz z
d
2
−1− 1

2H̄1
− 1

2H̄2





∫ z
1

4H̄1

0

dx

∫ x

0

dy e−ϕH̄1
(x,y)









∫ z
1

4H̄2

0

dx

∫ x

0

dy e−ϕH̄2
(x,y)



 ,

where a double change of coordinates leads for each i = 1, 2 to

∫ z
1

4H̄i

0

dx

∫ x

0

dy e−ϕH̄i
(x,y)

≤ 1

4H̄i

∫ π/4

0

dθ (ϕH̄i
(cos θ, sin θ))

− 1
2H̄i γ

(

1

2H̄i

, 22H̄izϕH̄i
(cos θ, sin θ)

)

.

Here γ is the lower incomplete gamma function, that is,

γ(α, x) :=

∫ x

0

dy e−yyα−1, α > 0,

which, as shown in [NOL07, Lemma 2], is bounded by

γ(α, x) ≤ K(α)xǫ, K(α) := max

{

1

α
,Γ(α)

}

,
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for all x > 0 and for every 0 < ǫ < α.
Hence, for all 0 < ǫ < 1

2max{H̄1,H̄2}
one finally obtains

∫ +∞

1

dz z
d
2
−1

(
∫ 1

0

dt

∫ t

0

ds e−zϕH̄1
(t,s)

)(
∫ 1

0

dt

∫ t

0

ds e−zϕH̄2
(t,s)

)

≤ 22ǫ(H̄1+H̄2)

16H̄1H̄2

K

(

1

2H̄1

)

K

(

1

2H̄2

)
∫ +∞

1

dz z
d
2
−1− 1

2H̄1
− 1

2H̄2
+2ǫ · (16)

·
(

∫ π/4

0

dθ (ϕH̄1
(cos θ, sin θ))

ǫ− 1
2H̄1

)(

∫ π/4

0

dθ (ϕH̄2
(cos θ, sin θ))

ǫ− 1
2H̄2

)

.

Concerning the integral in z, clearly it converges provided ǫ < H̄1+H̄2−dH̄1H̄2

4H̄1H̄2
,

being H̄1+H̄2−dH̄1H̄2

4H̄1H̄2
always a positive number, because d < 1/H̄1 + 1/H̄2.

These facts combined mean that in (16) one shall fix a

0 < ǫ < min

{

1

2max{H̄1, H̄2}
,
H̄1 + H̄2 − dH̄1H̄2

4H̄1H̄2

}

.

For such a ǫ fixed, also both integrals in θ converge, cf. [NOL07, Proof of
Lemma 4], and thus (16) converges.

In this way we have shown that, on the one hand, LH1,H2 ∈ (L2), and,
on the other hand, that one may apply a Lebesgue dominated convergence
argument to infer the convergence in ε of ‖LH1,H2,ε‖2 to ‖LH1,H2‖2. �

Remark 12 Under the conditions of Theorem 11, one has

min

{

1

2max{H̄1, H̄2}
,
H̄1 + H̄2 − dH̄1H̄2

4H̄1H̄2

}

=
H̄1 + H̄2 − dH̄1H̄2

4H̄1H̄2

whenever d ≥ 1
min{H̄1,H̄2}

− 1
max{H̄1,H̄2}

, while for d < 1
min{H̄1,H̄2}

− 1
max{H̄1,H̄2}

,

min

{

1

2max{H̄1, H̄2}
,
H̄1 + H̄2 − dH̄1H̄2

4H̄1H̄2

}

=
1

2max{H̄1, H̄2}
.

Appendix

Lemma 13 Let 0 < H1 < H2 < 1 be given. The integral
∫ 1

0

dt

∫ 1

0

ds
(t2 + s2)N

(t2H1 + s2H2)N+ d
2

is finite if and only if 2H2

(

N + d
2

)

< 1 + 2N + H2

H1
.
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Proof. Through the change of variables t = u
H2
H1 one obtains

∫ 1

0

dt

∫ 1

0

ds
(t2 + s2)N

(t2H1 + s2H2)N+ d
2

=
H2

H1

N
∑

n=0

(

N

n

)∫ 1

0

du

∫ 1

0

ds
u
2n

H2
H1 s2(N−n)

(u2H2 + s2H2)N+ d
2

u
H2
H1

−1
, (17)

where each double integral appearing in (17) is finite if and only if the
integrand function is integrable on the unit ball B1(0) ⊂ R2. For each
n = 0, 1, ..., N a polar change of coordinates yields

∫

B1(0)

duds
u
2n

H2
H1 s2(N−n)

(u2H2 + s2H2)N+ d
2

u
H2
H1

−1

=

∫ 2π

0

dθ
cos

(2n+1)
H2
H1

−1
θ · sin2(N−n) θ

(

cos2H2 θ + sin2H2 θ
)N+ d

2

∫ 1

0

dr
1

r
2H2(N+ d

2
)−(2n+1)

H2
H1

−2(N−n)
,

which is finite if and only if the integral in r converges, that is, if and only
if 2H2(N + d

2
) − (2n + 1)H2

H1
− 2(N − n) < 1. This shows that a necessary

and sufficient condition for the convergence of the sum in (17) is given by
2H2(N + d

2
)− 2N − H2

H1
< 1. �

Lemma 14 Given Hi = (Hi,1, ..., Hi,d) ∈ (0, 1)d, i = 1, 2, assume that H̄1 <
H̄2. Then

∫ 1

0

dt

∫ 1

0

ds
d
∏

j=1

1√
t2H1,j + s2H2,j

(

t2 + s2

t2H̄1 + s2H̄2

)N

< ∞

whenever 2H̄2

(

N + d
2

)

< 1 + 2N + H̄2

H̄1
.

Proof. Since in [0, 1]2 the following inequality holds

d
∏

j=1

1√
t2H1,j + s2H2,j

(

t2 + s2

t2H̄1 + s2H̄2

)N

≤ (t2 + s2)
N

(

t2H̄1 + s2H̄2
)N+ d

2

,

the proof reduces to an application of the previous lemma. �
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