17 research outputs found

    Plasmodium vivax Tryptophan-Rich Antigen PvTRAg33.5 Contains Alpha Helical Structure and Multidomain Architecture

    Get PDF
    Tryptophan-rich proteins from several malarial parasites have been identified where they play an important role in host-parasite interaction. Structural characterization of these proteins is needed to develop them as therapeutic targets. Here, we describe a novel Plasmodium vivax tryptophan-rich protein named PvTRAg33.5. It is expressed by blood stage(s) of the parasite and its gene contains two exons. The exon 1 encodes for a 23 amino acids long putative signal peptide which is likely to be cleaved off whereas the exon 2 encodes for the mature protein of 252 amino acids. The mature protein contains B-cell epitopes which were recognized by the human immune system during P.vivax infection. The PvTRAg33.5 contains 24 (9.5%) tryptophan residues and six motifs whose patterns were similar among tryptophan-rich proteins. The modeled structure of the PvTRAg33.5 consists of a multidomain architecture which is stabilized by the presence of large number of tryptophan residues. The recombinant PvTRAg33.5 showed predominantly α helical structure and alpha helix to beta sheet transition at pH below 4.5. Protein acquires an irreversible non-native state at temperature more than 50°C at neutral pH. Its secondary and tertiary structures remain stable in the presence of 35% alcohol but these structures are destabilized at higher alcohol concentrations due to the disturbance of hydrophobic interactions between tryptophanyl residues. These structural changes in the protein might occur during its translocation to interact with other proteins at its final destination for biological function such as erythrocyte invasion

    The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential?

    Get PDF

    A research agenda for malaria eradication: basic science and enabling technologies.

    Get PDF
    Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences

    Impact of Epstein-Barr virus co-infection on natural acquired Plasmodium vivax antibody response

    No full text
    BACKGROUND: The simultaneous infection of Plasmodium falciparum and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt's Lymphoma (eBL) in children living in P. falciparum holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to P. vivax, the most widespread human malaria parasite. METHODOLOGY/PRINCIPAL FINDINGS: The study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term P. vivax exposed individuals living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of balf-5 gene) was persistently detected in the peripheral blood (PersVDNA, n = 27), and an age-matched malaria-exposed group whose EBV-DNA could never be detected during the follow-up (NegVDNA, n = 29). During the follow-up period, the serological detection of EBV antibodies to lytic/ latent viral antigens showed that IgG antibodies to viral capsid antigen (VCA-p18) were significantly different between groups (PersVDNA > NegVDNA). A panel of blood-stage P. vivax antigens covering a wide range of immunogenicity confirmed that in general PersVDNA group showed low levels of antibodies as compared with NegVDNA. Interestingly, more significant differences were observed to a novel DBPII immunogen, named DEKnull-2, which has been associated with long-term neutralizing antibody response. Differences between groups were less pronounced with blood-stage antigens (such as MSP1-19) whose levels can fluctuate according to malaria transmission. CONCLUSIONS/SIGNIFICANCE: In a proof-of-concept study we provide evidence that a persistent detection of EBV-DNA in peripheral blood of adults in a P. vivax semi-immune population may impact the long-term immune response to major malaria vaccine candidates

    Cross-species immune recognition between plasmodium vivax duffy binding protein antibodies and the plasmodium falciparum surface antigen VAR2CSA

    No full text
    Background In pregnancy, Plasmodium falciparum parasites express the surface antigen VAR2CSA, which mediates adherence of red blood cells to chondroitin sulfate A (CSA) in the placenta. VAR2CSA antibodies are generally acquired during infection in pregnancy and are associated with protection from placental malaria. We observed previously that men and children in Colombia also had antibodies to VAR2CSA, but the origin of these antibodies was unknown. Here, we tested whether infection with Plasmodium vivax is an alternative mechanism of acquisition of VAR2CSA antibodies. Methods We analyzed sera from nonpregnant Colombians and Brazilians exposed to P. vivax and monoclonal antibodies raised against P. vivax Duffy binding protein (PvDBP). Cross-reactivity to VAR2CSA was characterized by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry, and antibodies were tested for inhibition of parasite binding to CSA. Results Over 50% of individuals had antibodies that recognized VAR2CSA. Affinity-purified PvDBP human antibodies and a PvDBP monoclonal antibody recognized VAR2CSA, showing that PvDBP can give rise to cross-reactive antibodies. Importantly, the monoclonal antibody inhibited parasite binding to CSA, which is the primary in vitro correlate of protection from placental malaria. Conclusions These data suggest that PvDBP induces antibodies that functionally recognize VAR2CSA, revealing a novel mechanism of cross-species immune recognition to falciparum malaria

    Cross-species immune recognition between Plasmodium vivax Duffy binding protein antibodies and the Plasmodium falciparum surface antigen VAR2CSA

    No full text
    Background. In pregnancy, Plasmodium falciparum parasites express the surface antigen VAR2CSA, which mediates adherence of red blood cells to chondroitin sulfate A (CSA) in the placenta. VAR2CSA antibodies are generally acquired during infection in pregnancy and are associated with protection from placental malaria. We observed previously that men and children in Colombia also had antibodies to VAR2CSA, but the origin of these antibodies was unknown. Here, we tested whether infection with Plasmodium vivax is an alternative mechanism of acquisition of VAR2CSA antibodies. Methods. We analyzed sera from nonpregnant Colombians and Brazilians exposed to P. vivax and monoclonal antibodies raised against P. vivax Duffy binding protein (PvDBP). Cross-reactivity to VAR2CSA was characterized by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry, and antibodies were tested for inhibition of parasite binding to CSA. Results. Over 50% of individuals had antibodies that recognized VAR2CSA. Affinity-purified PvDBP human antibodies and a PvDBP monoclonal antibody recognized VAR2CSA, showing that PvDBP can give rise to cross-reactive antibodies. Importantly, the monoclonal antibody inhibited parasite binding to CSA, which is the primary in vitro correlate of protection from placental malaria. Conclusions. These data suggest that PvDBP induces antibodies that functionally recognize VAR2CSA, revealing a novel mechanism of cross-species immune recognition to falciparum malaria
    corecore