846 research outputs found

    Superconductivity in SrFe_(2-x)Co_xAs_2: Internal Doping of the Iron Arsenide Layers

    Full text link
    In the electron doped compounds SrFe_(2-x)Co_xAs_2 superconductivity with T_c up to 20 K is observed for 0.2 < x < 0.4. Results of structure determination, magnetic susceptibility, electrical resistivity, and specific heat are reported. The observation of bulk superconductivity in all thermodynamic properties -- despite strong disorder in the Fe-As layer -- favors an itinerant picture in contrast to the cuprates and renders a p- or d-wave scenario unlikely. DFT calculations find that the substitution of Fe by Co (x > 0.3) leads to the suppression of the magnetic ordering present in SrFe_2As_2 due to a rigid down-shift of the Fe-3d_(x^2-y^2) related band edge in the density of states.Comment: 5 pages, 3 figure

    Early diagenetic vivianite [Fe-3(PO4)(2) center dot 8H(2)O] in a contaminated freshwater sediment and insights into zinc uptake: a mu-EXAFS, mu-XANES and Raman study

    Get PDF
    The sediments in the Salford Quays, a heavily-modified urban water body, contain high levels of organic matter, Fe, Zn and nutrients as a result of past contaminant inputs. Vivianite [Fe3(PO4)2 · 8H2O] has been observed to have precipitated within these sediments during early diagenesis as a result of the release of Fe and P to porewaters. These mineral grains are small (<100 μm) and micron-scale analysis techniques (SEM, electron microprobe, μ-EXAFS, μ-XANES and Raman) have been applied in this study to obtain information upon the structure of this vivianite and the nature of Zn uptake in the mineral. Petrographic observations, and elemental, X-ray diffraction and Raman spectroscopic analysis confirms the presence of vivianite. EXAFS model fitting of the FeK-edge spectra for individual vivianite grains produces Fe–O and Fe–P co-ordination numbers and bond lengths consistent with previous structural studies of vivianite (4O atoms at 1.99–2.05 Å; 2P atoms at 3.17–3.25 Å). One analysed grain displays evidence of a significant Fe3+ component, which is interpreted to have resulted from oxidation during sample handling and/or analysis. EXAFS modelling of the Zn K-edge data, together with linear combination XANES fitting of model compounds, indicates that Zn may be incorporated into the crystal structure of vivianite (4O atoms at 1.97 Å; 2P atoms at 3.17 Å). Low levels of Zn sulphate or Zn-sorbed goethite are also indicated from linear combination XANES fitting and to a limited extent, the EXAFS fitting, the origin of which may either be an oxidation artifact or the inclusion of Zn sulphate into the vivianite grains during precipitation. This study confirms that early diagenetic vivianite may act as a sink for Zn, and potentially other contaminants (e.g. As) during its formation and, therefore, forms an important component of metal cycling in contaminated sediments and waters. Furthermore, for the case of Zn, the EXAFS fits for Zn phosphate suggest this uptake is structural and not via surface adsorption

    Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94929/1/wrcr10188.pd

    Visualization and exploratory analysis of epidemiologic data using a novel space time information system

    Full text link
    Abstract Background Recent years have seen an expansion in the use of Geographic Information Systems (GIS) in environmental health research. In this field GIS can be used to detect disease clustering, to analyze access to hospital emergency care, to predict environmental outbreaks, and to estimate exposure to toxic compounds. Despite these advances the inability of GIS to properly handle temporal information is increasingly recognised as a significant constraint. The effective representation and visualization of both spatial and temporal dimensions therefore is expected to significantly enhance our ability to undertake environmental health research using time-referenced geospatial data. Especially for diseases with long latency periods (such as cancer) the ability to represent, quantify and model individual exposure through time is a critical component of risk estimation. In response to this need a STIS – a Space Time Information System has been developed to visualize and analyze objects simultaneously through space and time. Results In this paper we present a "first use" of a STIS in a case-control study of the relationship between arsenic exposure and bladder cancer in south eastern Michigan. Individual arsenic exposure is reconstructed by incorporating spatiotemporal data including residential mobility and drinking water habits. The unique contribution of the STIS is its ability to visualize and analyze residential histories over different temporal scales. Participant information is viewed and statistically analyzed using dynamic views in which values of an attribute change through time. These views include tables, graphs (such as histograms and scatterplots), and maps. In addition, these views can be linked and synchronized for complex data exploration using cartographic brushing, statistical brushing, and animation. Conclusion The STIS provides new and powerful ways to visualize and analyze how individual exposure and associated environmental variables change through time. We expect to see innovative space-time methods being utilized in future environmental health research now that the successful "first use" of a STIS in exposure reconstruction has been accomplished.http://deepblue.lib.umich.edu/bitstream/2027.42/112824/1/12942_2004_Article_41.pd

    Next generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: insights from the Black Death

    Get PDF
    Current policies to reduce lead pollution in the air are based on the assumption that pre-industrial levels of lead in the air were negligible, safe or non-existent. This trans-disciplinary article shows that this is not the case, using ‘next-generation’ laser technology in climate science, in combination with detailed historical and archaeological records in as many as 7 languages, from all over Europe. We show that lead levels in the air have been elevated for the past 2000 years, except for a single 4-year period. This 4-year period corresponds with the largest known pandemic ever to ravage western Europe (the Black Death), resulting in a 40-50% reduction in population. This unprecedented historic population collapse was accompanied by dramatic economic collapse that halted lead mining and smelting, and related emissions in the air. This trans-disciplinary study is a collaboration led by Harvard University and the Climate Change Institute at the University of Maine, and researchers from the University of Heidelberg (Germany) and the University of Nottingham (UK). It uses next-generation technology and expertise in history, climate science, archaeology and toxicology, brought to bear in a highly detailed contribution to planetary health, with crucial implications for public health and environmental policy, and the history of human exposure to lead

    Cadmium concentrations in recent snow and firn layers in the Canadian arctic

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47997/1/128_2004_Article_BF00195499.pd

    Skeletal concentrations of lead, cadmium, zinc, and silver in ancient North American Pecos Indians.

    Get PDF
    Bone samples of 14 prehistoric North American Pecos Indians from circa 1400 A.D. were analyzed for lead, cadmium, zinc, and silver by graphite furnace atomic absorption spectrometry to establish the baseline levels of these elements in an ancient North American population. Measurements of outer and inner bone fractions indicate the former were contaminated postmortem for lead, zinc, and cadmium. The contamination-adjusted average (mean +/- SD) level of lead (expressed as the ratio of atomic lead to atomic calcium) in bones of the Indians was 8.4 +/- 4.4 x 10(-7)), which was similar to ratios in bones of ancient Peruvians (0.9 to 7.7 x 10(-7)) and significantly lower than ratios in bones of modern adults in England and the United States (210 to 350 x 10(-7]. The adjusted average concentrations (microgram per gram dry weight) of biologic cadmium, silver, and zinc in the Pecos Indian bones were 0.032 +/- 0.013, 0.094 +/- 0.044, and 130 +/- 66, as compared to concentrations of 1.8, 0.01 to 0.44, and 75 to 170 in the bones of modern people, respectively. Therefore, cadmium concentrations in Pecos Indian bones are also approximately 50-fold lower than those of contemporary humans. These data support earlier findings that most previously reported natural concentrations of lead in human tissues are erroneously high and indicate that natural concentrations of cadmium are also between one and two orders of magnitude lower than contemporary concentrations

    Historical trends of airborne trace metals in Detroit from 1971 to 1992

    Full text link
    Ambient concentrations of particulate Fe, Zn, Ph, Ni, Cr, Cd and Hg were measured at nine sites located in the metropolitan area of Detroit from 1971 to 1992. The ambient concentrations of all the trace metals were found to be generally higher at industrial and commercial sites. The concentrations show significant variations between residential and commercial areas and between residential and industrial areas; however, no significant variation was found between the industrial and commercial settings. The spatial variation of trace metal levels within the urban area was influenced by the frequency distribution of the wind direction as well as type and location of emission sources. The ambient concentrations of the trace metals during the decade of 1971–1981 declined by 37–88%. In the 1980s many of the trace metals reversed this trend with the exception of Fe and Pb which continued to decline at annual rates of 2% and 9.8%, respectively. The sharp decrease in Pb concentrations during the 1980s, reflected the significant reduction of Pb content in gasoline from 0.28 g/liter in the 1982 to 0.026 g/liter in the 1989. The ambient concentrations of Zn, Ni, Cr, Cd and Hg showed an upward trend during the 1980s with an annual rate in the range of 0.6% to 10.6%. The long-term trends of selected U.S. market parameters, analyzed as potential long-term indicators of emission sources activityies, were consistent with the changes of ambient concentrations, the correlation coefficient being in the range of 0.58 to 0.84 for most of the trace metals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43917/1/11270_2004_Article_BF00157419.pd

    Thallium and cadmium in recent snow and firn layers in the Canadian Arctic by atomic fluorescence and absorption spectrometries

    Full text link
    Compared to the Antarctic and Greenland, the Canadian Arctic has seen extremely few trace metal studies on snow and ice. Surface, subsurface and depth samples of snow and firns were collected from the Agassiz Ice Cap, Ellesmere Island, Canada using clean room practices. Results for Tl (directly determined by LEAFS) and Cd (determined by GFAAS) are reported. To our knowledge, the thallium depth profile presented here is the first one so far reported for both polar systems, Greenland or other places. Tl concentrations peak in the winter-spring periods, when the Arctic atmosphere is loaded with foreign pollutants and suspended particulates which sometime severely reduce the visibility, creating a phenomenon commonly known as the Arctic haze. These results are in general accordance with the historical Arctic air pollution and acidity/conductivity data on ice cores. Surface concentrations of Tl range from 0.3 to 0.9 pg/g, which is a few times higher than those found in Antarctica. Cadmium shows seasonal characteristics similar to Tl although there is not a definite correlation between the two. However, there could be two predominant origins of metals which were deposited in the snow: Eurasian origin in January–April corresponding to high level metals (main deposition), and a less definite origin in May–December corresponding to low level metals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46458/1/216_1996_Article_63550332.pd

    Effect of arsenic-phosphorus interaction on arsenic-induced oxidative stress in chickpea plants

    Get PDF
    Arsenic-induced oxidative stress in chickpea was investigated under glasshouse conditions in response to application of arsenic and phosphorus. Three levels of arsenic (0, 30 and 60 mg kg−1) and four levels of P (50, 100, 200, and 400 mg kg−1) were applied to soil-grown plants. Increasing levels of both arsenic and P significantly increased arsenic concentrations in the plants. Shoot growth was reduced with increased arsenic supply regardless of applied P levels. Applied arsenic induced oxidative stress in the plants, and the concentrations of H2O2 and lipid peroxidation were increased. Activity of superoxide dismutase (SOD) and concentrations of non-enzymatic antioxidants decreased in these plants, but activities of catalase (CAT) and ascorbate peroxidase (APX) were significantly increased under arsenic phytotoxicity. Increased supply of P decreased activities of CAT and APX, and decreased concentrations of non-enzymatic antioxidants, but the high-P plants had lowered lipid peroxidation. It can be concluded that P increased uptake of arsenic from the soil, probably by making it more available, but although plant growth was inhibited by arsenic the P may have partially protected the membranes from arsenic-induced oxidative stress
    • …
    corecore