3,499 research outputs found

    Social Aspects of the Nuclear Power Controversy

    Get PDF
    The responses to the introduction of nuclear power are examined and the underlying processes interpreted from a sociological viewpoint. The social dynamics of "para-scientific" controversies are reviewed; the nuclear power controversy is viewed from this perspective. Social movements for greater participation in the decision-making process are discussed and the role of the "scientist-activist" is developed. The differing time perspectives emerging in the nuclear controversy are reviewed

    Abundance analysis for long-period variables II. RGB and AGB stars in the globular cluster 47\,Tuc

    Full text link
    Asymptotic giant branch (AGB) stars play a key role in the enrichment of galaxies with heavy elements. Due to their large amplitude variability, the measurement of elemental abundances is a highly challenging task that has not been solved in a satisfactory way yet. Following our previous work we use hydrostatic and dynamical model atmospheres to simulate observed high-resolution near-infrared spectra of 12 variable and non-variable red giants in the globular cluster 47 Tuc. The 47 Tuc red giants are independently well-characterized in important parameters (mass, metallicity, luminosity). The principal aim was to compare synthetic spectra based on the dynamical models with observational spectra of 47 Tuc variables. Assuming that the abundances are unchanged on the upper giant branch in these low-mass stars, our goal is to estimate the impact of atmospheric dynamics on the abundance determination. We present new measurements of the C/O and 12C/13C ratio for 5 non-variable red giants in 47Tuc. The equivalent widths measured for our 7 variable stars strongly differ from the non-variable stars and cannot be reproduced by either hydrostatic or dynamical model atmospheres. Nevertheless, the dynamical models fit the observed spectra of long-period variables much better than any hydrostatic model. For some spectral features, the variations in the line intensities predicted by dynamical models over a pulsation cycle give similar values as a sequence of hydrostatic models with varying temperature and constant surface gravity.Comment: 16 pages, 12 figures; accepted for publication in A&

    Initiator proteins for the assembly of the 50S subunit from Escherichia coli ribosomes.

    Full text link

    Abundance analysis for long period variables. Velocity effects studied with O-rich dynamic model atmospheres

    Full text link
    (abbreviated) Measuring the surface abundances of AGB stars is an important tool for studying the effects of nucleosynthesis and mixing in the interior of low- to intermediate mass stars during their final evolutionary phases. The atmospheres of AGB stars can be strongly affected by stellar pulsation and the development of a stellar wind, though, and the abundance determination of these objects should therefore be based on dynamic model atmospheres. We investigate the effects of stellar pulsation and mass loss on the appearance of selected spectral features (line profiles, line intensities) and on the derived elemental abundances by performing a systematic comparison of hydrostatic and dynamic model atmospheres. High-resolution synthetic spectra in the near infrared range were calculated based on two dynamic model atmospheres (at various phases during the pulsation cycle) as well as a grid of hydrostatic COMARCS models. Equivalent widths of a selection of atomic and molecular lines were derived in both cases and compared with each other. In the case of the dynamic models, the equivalent widths of all investigated features vary over the pulsation cycle. A consistent reproduction of the derived variations with a set of hydrostatic models is not possible, but several individual phases and spectral features can be reproduced well with the help of specific hydrostatic atmospheric models. In addition, we show that the variations in equivalent width that we found on the basis of the adopted dynamic model atmospheres agree qualitatively with observational results for the Mira R Cas over its light cycle. The findings of our modelling form a starting point to deal with the problem of abundance determination in strongly dynamic AGB stars (i.e., long-period variables).Comment: 13 pages, 22 figures, accepted for publication in A&

    (Quantum) Space-Time as a Statistical Geometry of Lumps in Random Networks

    Full text link
    In the following we undertake to describe how macroscopic space-time (or rather, a microscopic protoform of it) is supposed to emerge as a superstructure of a web of lumps in a stochastic discrete network structure. As in preceding work (mentioned below), our analysis is based on the working philosophy that both physics and the corresponding mathematics have to be genuinely discrete on the primordial (Planck scale) level. This strategy is concretely implemented in the form of \tit{cellular networks} and \tit{random graphs}. One of our main themes is the development of the concept of \tit{physical (proto)points} or \tit{lumps} as densely entangled subcomplexes of the network and their respective web, establishing something like \tit{(proto)causality}. It may perhaps be said that certain parts of our programme are realisations of some early ideas of Menger and more recent ones sketched by Smolin a couple of years ago. We briefly indicate how this \tit{two-story-concept} of \tit{quantum} space-time can be used to encode the (at least in our view) existing non-local aspects of quantum theory without violating macroscopic space-time causality.Comment: 35 pages, Latex, under consideration by CQ

    (Quantum) Space-Time as a Statistical Geometry of Fuzzy Lumps and the Connection with Random Metric Spaces

    Get PDF
    We develop a kind of pregeometry consisting of a web of overlapping fuzzy lumps which interact with each other. The individual lumps are understood as certain closely entangled subgraphs (cliques) in a dynamically evolving network which, in a certain approximation, can be visualized as a time-dependent random graph. This strand of ideas is merged with another one, deriving from ideas, developed some time ago by Menger et al, that is, the concept of probabilistic- or random metric spaces, representing a natural extension of the metrical continuum into a more microscopic regime. It is our general goal to find a better adapted geometric environment for the description of microphysics. In this sense one may it also view as a dynamical randomisation of the causal-set framework developed by e.g. Sorkin et al. In doing this we incorporate, as a perhaps new aspect, various concepts from fuzzy set theory.Comment: 25 pages, Latex, no figures, some references added, some minor changes added relating to previous wor

    Machine learning for automatic prediction of the quality of electrophysiological recordings

    Get PDF
    The quality of electrophysiological recordings varies a lot due to technical and biological variability and neuroscientists inevitably have to select “good” recordings for further analyses. This procedure is time-consuming and prone to selection biases. Here, we investigate replacing human decisions by a machine learning approach. We define 16 features, such as spike height and width, select the most informative ones using a wrapper method and train a classifier to reproduce the judgement of one of our expert electrophysiologists. Generalisation performance is then assessed on unseen data, classified by the same or by another expert. We observe that the learning machine can be equally, if not more, consistent in its judgements as individual experts amongst each other. Best performance is achieved for a limited number of informative features; the optimal feature set being different from one data set to another. With 80–90% of correct judgements, the performance of the system is very promising within the data sets of each expert but judgments are less reliable when it is used across sets of recordings from different experts. We conclude that the proposed approach is relevant to the selection of electrophysiological recordings, provided parameters are adjusted to different types of experiments and to individual experimenters
    • …
    corecore