178 research outputs found

    A Systematic Review of How Multiple Stressors From an Extreme Event Drove Ecosystem-Wide Loss of Resilience in an Iconic Seagrass Community

    Get PDF
    A central question in contemporary ecology is how climate change will alter ecosystem structure and function across scales of space and time. Climate change has been shown to alter ecological patterns from individuals to ecosystems, often with negative implications for ecosystem functions and services. Furthermore, as climate change fuels more frequent and severe extreme climate events (ECEs) like marine heatwaves (MHWs), such acute events become increasingly important drivers of rapid ecosystem change. However, our understanding of ECE impacts is hampered by limited collection of broad scale in situ data where such events occur. In 2011, a MHW known as the Ningaloo Niño bathed the west coast of Australia in waters up to 4°C warmer than normal summer temperatures for almost 2 months over 1000s of kilometers of coastline. We revisit published and unpublished data on the effects of the Ningaloo Niño in the seagrass ecosystem of Shark Bay, Western Australia (24.6–26.6° S), at the transition zone between temperate and tropical seagrasses. Therein we focus on resilience, including resistance to and recovery from disturbance across local, regional and ecosystem-wide spatial scales and over the past 8 years. Thermal effects on temperate seagrass health were severe and exacerbated by simultaneous reduced light conditions associated with sediment inputs from record floods in the south-eastern embayment and from increased detrital loads and sediment destabilization. Initial extensive defoliation of Amphibolis antarctica, the dominant seagrass, was followed by rhizome death that occurred in 60–80% of the bay\u27s meadows, equating to decline of over 1,000 km2 of meadows. This loss, driven by direct abiotic forcing, has persisted, while indirect biotic effects (e.g., dominant seagrass loss) have allowed colonization of some areas by small fast-growing tropical species (e.g., Halodule uninervis). Those biotic effects also impacted multiple consumer populations including turtles and dugongs, with implications for species dynamics, food web structure, and ecosystem recovery. We show multiple stressors can combine to evoke extreme ecological responses by pushing ecosystems beyond their tolerance. Finally, both direct abiotic and indirect biotic effects need to be explicitly considered when attempting to understand and predict how ECEs will alter marine ecosystem dynamics

    A survey among dermatologists: diagnostics of superficial fungal infections - what is used and what is needed to initiate therapy and assess efficacy?

    Get PDF
    BACKGROUND: Superficial fungal infections are common. It is important to confirm the clinical diagnosis by mycological laboratory methods before initiating systemic antifungal treatment, especially as antifungal sensitivity and in vitro susceptibility may differ between different genera and species. For many years, the gold standard for diagnosis of superficial fungal infections has been direct fungal detection in the clinical specimen (microscopy) supplemented by culturing. Lately, newer molecular based methods for fungal identification have been developed. OBJECTIVE: This study was initiated to focus on the current usage of mycological diagnostics for superficial fungal infections by dermatologists. It was designed to investigate whether it was necessary to differentiate between initial diagnostic tests and those used at treatment follow-up in specific superficial fungal infections. METHODS: An online questionnaire was distributed among members of the EADV mycology Task Force and other dermatologists with a special interest in mycology and nail disease. RESULTS: The survey was distributed to 62 dermatologists of whom 38 (61%) completed the whole survey, 7 (11%) partially completed and 17 (27%) did not respond. Nearly, all respondents (82-100%) said that ideally they would use the result of direct microscopy (or histology) combined with a genus/species directed treatment of onychomycosis, dermatophytosis, Candida- and Malassezia-related infections. The majority of the dermatologists used a combination of clinical assessment and direct microscopy for treatment assessment and the viability of the fungus was considered more important at this visit than when initiating the treatment. Molecular based methods were not available for all responders. CONCLUSION: The available diagnostic methods are heterogeneous and their usage differs between different practices as well as between countries. The survey confirmed that dermatologists find it important to make a mycological diagnosis, particularly prior to starting oral antifungal treatment in order to confirm the diagnose and target the therapy according to genus and species

    A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology

    Get PDF
    Changing scale, for example the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interaction

    FMR1 premutation and full mutation molecular mechanisms related to autism

    Get PDF
    Fragile X syndrome (FXS) is caused by an expanded CGG repeat (>200 repeats) in the 5′ un-translated portion of the fragile X mental retardation 1 gene (FMR1) leading to a deficiency or absence of the FMR1 protein (FMRP). FMRP is an RNA-binding protein that regulates the translation of a number of other genes that are important for synaptic development and plasticity. Furthermore, many of these genes, when mutated, have been linked to autism in the general population, which may explain the high comorbidity that exists between FXS and autism spectrum disorders (ASD). Additionally, premutation repeat expansions (55 to 200 CGG repeats) may also give rise to ASD through a different molecular mechanism that involves a direct toxic effect of FMR1 mRNA. It is believed that RNA toxicity underlies much of the premutation-related involvement, including developmental concerns like autism, as well as neurodegenerative issues with aging such as the fragile X-associated tremor ataxia syndrome (FXTAS). RNA toxicity can also lead to mitochondrial dysfunction, which is common in older premutation carriers both with and without FXTAS. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in idiopathic autism. Research regarding dysregulation of neurotransmitter systems caused by the lack of FMRP in FXS, including metabotropic glutamate receptor 1/5 (mGluR1/5) pathway and GABA pathways, has led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism

    The T1405N Carbamoyl Phosphate Synthetase Polymorphism Does Not Affect Plasma Arginine Concentrations in Preterm Infants

    Get PDF
    A C-to-A nucleotide transversion (T1405N) in the gene that encodes carbamoyl-phosphate synthetase 1 (CPS1) has been associated with changes in plasma concentrations of L-arginine in term and near term infants but not in adults. In preterm infants homozygosity for the CPS1 Thr1405 variant (CC genotype) was associated with an increased risk of having necrotizing enterocolitis (NEC). Plasma L-arginine concentrations are decreased in preterm infants with NEC.To examine the putative association between the CPS1 T1405N polymorphism and plasma arginine concentrations in preterm infants.Prospective multicenter cohort study. Plasma and DNA samples were collected from 128 preterm infants (<30 weeks) between 6 and 12 hours after birth. Plasma amino acid and CPS1 T1405N polymorphism analysis were performed.Distribution of genotypes did not differ between the preterm (CC:CA:AA = 55.5%:33.6%:10.9%, n = 128) and term infants (CC:CA:AA = 54.2%:35.4%:10.4%, n = 96). There was no association between the CPS1 genotype and plasma L-arginine or L-citrulline concentration, or the ornithine to citrulline ratio, which varies inversely with CPS1 activity. Also the levels of asymmetric dimethylarginine, and symmetric dimethylarginine were not significantly different among the three genotypes.The present study in preterm infants did not confirm the earlier reported association between CPS1 genotype and L-arginine levels in term infants

    Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates

    Get PDF
    Hox genes exert fundamental roles for proper regional specification along the main rostro-caudal axis of animal embryos. They are generally expressed in restricted spatial domains according to their position in the cluster (spatial colinearity)—a feature that is conserved across bilaterians. In jawed vertebrates (gnathostomes), the position in the cluster also determines the onset of expression of Hox genes (a feature known as whole-cluster temporal colinearity (WTC)), while in invertebrates this phenomenon is displayed as a subcluster-level temporal colinearity. However, little is known about the expression profile of Hox genes in jawless vertebrates (cyclostomes); therefore, the evolutionary origin of WTC, as seen in gnathostomes, remains a mystery. Here, we show that Hox genes in cyclostomes are expressed according to WTC during development. We investigated the Hox repertoire and Hox gene expression profiles in three different species—a hagfish, a lamprey and a shark—encompassing the two major groups of vertebrates, and found that these are expressed following a whole-cluster, temporally staggered pattern, indicating that WTC has been conserved during the past 500 million years despite drastically different genome evolution and morphological outputs between jawless and jawed vertebrates

    Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism

    Get PDF
    Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts

    Abnormal Intracellular Accumulation and Extracellular Aβ Deposition in Idiopathic and Dup15q11.2-q13 Autism Spectrum Disorders

    Get PDF
    <div><h3>Background</h3><p>It has been shown that amyloid ß (Aβ), a product of proteolytic cleavage of the amyloid β precursor protein (APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type–specific amount.</p> <h3>Methodology/Principal Findings</h3><p>In the present study, we found that the percentage of amyloid-positive neurons increases in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism spectrum disorder (ASD). In spite of interindividual differences within each examined group, levels of intraneuronal Aβ load were significantly greater in the dup(15) autism group than in either the control or the idiopathic autism group in 11 of 12 examined regions (p<0.0001 for all comparisons; Kruskall-Wallis test). In eight regions, intraneuronal Aβ load differed significantly between idiopathic autism and control groups (p<0.0001). The intraneuronal Aβ was mainly N-terminally truncated. Increased intraneuronal accumulation of Aβ<sub>17–40/42</sub> in children and adults suggests a life-long enhancement of APP processing with α-secretase in autistic subjects. Aβ accumulation in neuronal endosomes, autophagic vacuoles, Lamp1-positive lysosomes and lipofuscin, as revealed by confocal microscopy, indicates that products of enhanced α-secretase processing accumulate in organelles involved in proteolysis and storage of metabolic remnants. Diffuse plaques containing Aβ<sub>1–40/42</sub> detected in three subjects with ASD, 39 to 52 years of age, suggest that there is an age-associated risk of alterations of APP processing with an intraneuronal accumulation of a short form of Aβ and an extracellular deposition of full-length Aβ in nonfibrillar plaques.</p> <h3>Conclusions/Significance</h3><p>The higher prevalence of excessive Aβ accumulation in neurons in individuals with early onset of intractable seizures, and with a high risk of sudden unexpected death in epilepsy in autistic subjects with dup(15) compared to subjects with idiopathic ASD, supports the concept of mechanistic and functional links between autism, epilepsy and alterations of APP processing leading to neuronal and astrocytic Aβ accumulation and diffuse plaque formation.</p> </div

    Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA
    • …
    corecore