5,361 research outputs found

    Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials

    Get PDF
    An ab initio theory for Fano resonances in plasmonic nanostructures and metamaterials is developed using Feshbach formalism. It reveals the role played by the electromagnetic modes and material losses in the system, and enables the engineering of Fano resonances in arbitrary geometries. A general formula for the asymmetric resonance in a non-conservative system is derived. The influence of the electromagnetic interactions on the resonance line shape is discussed and it is shown that intrinsic losses drive the resonance contrast, while its width is mostly determined by the coupling strength between the non-radiative mode and the continuum. The analytical model is in perfect agreement with numerical simulations.Comment: 13 pages, 5 figure

    Development of a meteoroid penetration distributed transducer Third quarterly report

    Get PDF
    Impact calibration tests in development of meteoroid penetration distributed transduce

    Summary of the Bedrock Geology of Dover-Exeter-Portsmouth Region, Southeastern New Hampshire

    Get PDF
    New England Intercollegiate Geological Conference: Southeastern New Hampshire, October 13, and 14, 1956: A - - Paleozoic Tri

    Modulation of social behavior by the agouti pigmentation gene

    Get PDF
    Agouti is a secreted neuropeptide that acts as an endogenous antagonist of melanocortin receptors. Mice and rats lacking agouti (called non-agouti) have dark fur due to a disinhibition of melanocortin signaling and pigment deposition in the hair follicle. Non-agouti animals have also been reported to exhibit altered behavior, despite no evidence for the expression of agouti outside the skin. Here we confirm that non-agouti mice show altered social behavior and uncover expression of agouti in the preputial gland, a sebaceous organ in the urinary tract that secretes molecules involved in social behavior. Non-agouti mice had enlarged preputial glands and altered levels of putative preputial pheromones and surgical removal of the gland reversed the behavioral phenotype. These findings demonstrate the existence of an autologous, out-of-skin pathway for the modulation of social behavio

    Real-Time Description of the Electronic Dynamics for a Molecule close to a Plasmonic Nanoparticle

    Full text link
    The optical properties of molecules close to plasmonic nanostructures greatly differ from their isolated molecule counterparts. To theoretically investigate such systems in a Quantum Chemistry perspective, one has to take into account that the plasmonic nanostructure (e.g., a metal nanoparticle - NP) is often too large to be treated atomistically. Therefore, a multiscale description, where the molecule is treated by an ab initio approach and the metal NP by a lower level description, is needed. Here we present an extension of one such multiscale model [Corni, S.; Tomasi, J. {\it J. Chem. Phys.} {\bf 2001}, {\it 114}, 3739] originally inspired by the Polarizable Continuum Model, to a real-time description of the electronic dynamics of the molecule and of the NP. In particular, we adopt a Time-Dependent Configuration Interaction (TD CI) approach for the molecule, the metal NP is described as a continuous dielectric of complex shape characterized by a Drude-Lorentz dielectric function and the molecule- NP electromagnetic coupling is treated by an equation-of-motion (EOM) extension of the quasi-static Boundary Element Method (BEM). The model includes the effects of both the mutual molecule- NP time-dependent polarization and the modification of the probing electromagnetic field due to the plasmonic resonances of the NP. Finally, such an approach is applied to the investigation of the light absorption of a model chromophore, LiCN, in the presence of a metal NP of complex shape.Comment: This is the final peer-reviewed manuscript accepted for publication of an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Link to the original article: http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b1108

    Two Modes of Magnetization Switching in a Simulated Iron Nanopillar in an Obliquely Oriented Field

    Full text link
    Finite-temperature micromagnetics simulations are employed to study the magnetization-switching dynamics driven by a field applied at an angle to the long axis of an iron nanopillar. A bi-modal distribution in the switching times is observed, and evidence for two competing modes of magnetization-switching dynamics is presented. For the conditions studied here, temperature T=20T = 20 K and the reversal field 3160 Oe at an angle of 75^\circ to the long axis, approximately 70% of the switches involve unstable decay (no free-energy barrier) and 30% involve metastable decay (a free-energy barrier is crossed). The latter are indistinguishable from switches which are constrained to start at a metastable free-energy minimum. Competition between unstable and metastable decay could greatly complicate applications involving magnetization switches near the coercive field.Comment: 19 pages, 7 figure

    Quantum Decoherence at Finite Temperatures

    Get PDF
    We study measures of decoherence and thermalization of a quantum system SS in the presence of a quantum environment (bath) EE. The whole system is prepared in a canonical thermal state at a finite temperature. Applying perturbation theory with respect to the system-environment coupling strength, we find that under common Hamiltonian symmetries, up to first order in the coupling strength it is sufficient to consider the uncoupled system to predict decoherence and thermalization measures of SS. This decoupling allows closed form expressions for perturbative expansions for the measures of decoherence and thermalization in terms of the free energies of SS and of EE. Numerical results for both coupled and decoupled systems with up to 40 quantum spins validate these findings.Comment: 5 pages, 3 figure

    Enhanced graphene nonlinear response through geometrical plasmon focusing

    Get PDF
    We propose a simple approach to couple light into graphene plasmons and focus these excitations at focal spots of a size determined by the plasmon wavelength, thus producing high optical field enhancement that boosts the nonlinear response of the material. More precisely, we consider a graphene structure in which incident light is coupled to its plasmons at the carbon edges and subsequently focused on a spot of size comparable to the plasmon wavelength. We observe large confinement of graphene plasmons, materializing in small, intense focal spots, in which the extraordinary nonlinear response of this material leads to relatively intense harmonic generation. This result shows the potential of plasmon focusing in suitably edged graphene structures to produce large field confinement and nonlinear response without involving elaborated nanostructuring.Peer ReviewedPostprint (published version

    Backaction in metasurface etalons

    Get PDF
    We consider the response of etalons created by a combination of a conventional mirror and a metasurface, composed of a periodic lattice of metal scatterers with a resonant response. This geometry has been used previously for perfect absorption, in so-called Salisbury screens, and for hybridization of localized plasmons with Fabry-Perot resonances. The particular aspect we address is if one can assume an environment-independent reflectivity for the metasurface when calculating the reflectivity of the composite system, as in a standard Fabry-Perot analysis, or whether the fact that the metasurface interacts with its own mirror image renormalizes its response. Using lattice sum theory, we take into account all possible retarded dipole-dipole interactions of scatterers in the metasurface amongst each other, and through the mirror. We show that while a layer-by-layer Fabry-Perot formalism captures the main qualitative features of metasurface etalons, in fact the mirror modifies both the polarizability and reflectivity of the metasurface in a fashion that is akin to Drexhage's modification of the radiative properties of a single dipole.Comment: 10 pages, 5 figure
    corecore