37 research outputs found

    An evaluation tool for FKBP12-dependent and -independent mTOR inhibitors using a combination of FKBP-mTOR fusion protein, DSC and NMR

    Get PDF
    Mammalian target of rapamycin (mTOR), a large multidomain protein kinase, regulates cell growth and metabolism in response to environmental signals. The FKBP rapamycin-binding (FRB) domain of mTOR is a validated therapeutic target for the development of immunosuppressant and anticancer drugs but is labile and insoluble. Here we designed a fusion protein between FKBP12 and the FRB domain of mTOR. The fusion protein was successfully expressed in Escherichia coli as a soluble form, and was purified by a simple two-step chromatographic procedure. The fusion protein exhibited increased solubility and stability compared with the isolated FRB domain, and facilitated the analysis of rapamycin and FK506 binding using differential scanning calorimetry (DSC) and solution nuclear magnetic resonance (NMR). DSC enabled the rapid observation of protein–drug interactions at the domain level, while NMR gave insights into the protein–drug interactions at the residue level. The use of the FKBP12–FRB fusion protein combined with DSC and NMR provides a useful tool for the efficient screening of FKBP12-dependent as well as -independent inhibitors of the mTOR FRB domain

    Surface-Associated Plasminogen Binding of Cryptococcus neoformans Promotes Extracellular Matrix Invasion

    Get PDF
    BACKGROUND:The fungal pathogen Cryptococcus neoformans is a leading cause of illness and death in persons with predisposing factors, including: malignancies, solid organ transplants, and corticosteroid use. C. neoformans is ubiquitous in the environment and enters into the lungs via inhalation, where it can disseminate through the bloodstream and penetrate the central nervous system (CNS), resulting in a difficult to treat and often-fatal infection of the brain, called meningoencephalitis. Plasminogen is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by cancer cells during metastasis and several pathogenic species of bacteria have been found to manipulate the host plasminogen system to facilitate invasion of tissues during infection by modifying the activation of this process through the binding of plasminogen at their surface. METHODOLOGY:The invasion of the brain and the central nervous system by penetration of the protective blood-brain barrier is a prerequisite to the establishment of meningoencephalitis by the opportunistic fungal pathogen C. neoformans. In this study, we examined the ability of C. neoformans to subvert the host plasminogen system to facilitate tissue barrier invasion. Through a combination of biochemical, cell biology, and proteomic approaches, we have shown that C. neoformans utilizes the host plasminogen system to cross tissue barriers, providing support for the hypothesis that plasminogen-binding may contribute to the invasion of the blood-brain barrier by penetration of the brain endothelial cells and underlying matrix. In addition, we have identified the cell wall-associated proteins that serve as plasminogen receptors and characterized both the plasminogen-binding and plasmin-activation potential for this significant human pathogen. CONCLUSIONS:The results of this study provide evidence for the cooperative role of multiple virulence determinants in C. neoformans pathogenesis and suggest new avenues for the development of anti-infective agents in the prevention of fungal tissue invasion

    Ендокринна функція підшлункової залози при гострому панкреатиті

    No full text
    Introduction Among the organs of internal secretion pancreas has a special place thanks to active exocrine function and a wide range of physiological actions of produced hormones. Violations of endocrine pancreas arises in 6.5-38 % of patients with acute pancreatitis. However, there is still no clear understanding of the pathogenetic mechanisms of hormonal dysfunction of the pancreas in acute pancreatitis, there is no uniform algorithms for its correction.Aim of the research was to study the endocrine function of pancreas in acute pancreatitis. To define the role of endocrine pancreatic function in the etiology and pathogenesis of the acute pancreatitis. To assess the prospects of the use of pancreatic hormones in the treatment and predicting the outcomes of acute pancreatitis.Materials and methods of the research Survey of publications in specialized periodical medical journals, PubMed sources developed by the National Center for Biotechnology Information. Search in PubMed was carried out in the following databases: MEDLINE, Pre MEDLINE.Results of the research. In a significant proportion of patients who recovered from acute pancreatitis, exocrine and endocrine functional impairments were found. This finding was not detected only in patients after severe acute pancreatitis. Routine evaluation of pancreatic function after acute pancreatitis should be considered. The comparative analysis of the synthetic analogues (somatostatin, calcitonin, leu-enkefalin-dalargin) influence on the glucose metabolism of rats in acute pancreatitis of was made. Physiological reaction of beta-cells is preserved in infusion of somatostatin. However, infusion of calcitonin results in the distortion of counterregulatory action of insulin and glucagon. It was detected that pancreatic renin-angiotensin system is markedly activated in the experimental rat models of chronic hypoxia and acute pancreatitis. The activation of the pancreatic renin-angiotensin system by chronic hypoxia and experimental pancreatitis could play role in the physiology and pathophysiology of the pancreas. The significant changes of pancreatic renin-angiotensin system may have clinical relevance in acute pancreatitis and hypoxia-induced injury in the pancreas. Detection of the pancreatic polypeptide level, oral glucose tolerance test assesses the state of the pancreas after acute pancreatitis in the long term.Conclusions:The biggest impact in the hormonal secretion of pancreatic islet has pancreatic renin-angiotensin system. Permissive factor for pancreatic endocrine dysfunction is chronic hypoxia due to violation of organ perfusion.Endocrine function of the pancreas are more affected after resection treatment of acute pancreatitis.Serological tests of pancreatic polypeptide promising for early diagnosis and prediction of the outcome of acute pancreatitis.Описана эндокринная функция поджелудочной железы при остром панкреатите.Описали  ендокринну функцію підшлункової залози при гострому панкреатиті.

    ENDOCRINE PANCREATIC FUNCTION IN ACUTE PANCREATITIS

    No full text
    Introduction Among the organs of internal secretion pancreas has a special place thanks to active exocrine function and a wide range of physiological actions of produced hormones. Violations of endocrine pancreas arises in 6.5-38 % of patients with acute pancreatitis. However, there is still no clear understanding of the pathogenetic mechanisms of hormonal dysfunction of the pancreas in acute pancreatitis, there is no uniform algorithms for its correction. Aim of the research was to study the endocrine function of pancreas in acute pancreatitis. To define the role of endocrine pancreatic function in the etiology and pathogenesis of the acute pancreatitis. To assess the prospects of the use of pancreatic hormones in the treatment and predicting the outcomes of acute pancreatitis. Materials and methods of the research Survey of publications in specialized periodical medical journals, PubMed sources developed by the National Center for Biotechnology Information. Search in PubMed was carried out in the following databases: MEDLINE, Pre MEDLINE. Results of the research. In a significant proportion of patients who recovered from acute pancreatitis, exocrine and endocrine functional impairments were found. This finding was not detected only in patients after severe acute pancreatitis. Routine evaluation of pancreatic function after acute pancreatitis should be considered. The comparative analysis of the synthetic analogues (somatostatin, calcitonin, leu-enkefalin-dalargin) influence on the glucose metabolism of rats in acute pancreatitis of was made. Physiological reaction of beta-cells is preserved in infusion of somatostatin. However, infusion of calcitonin results in the distortion of counterregulatory action of insulin and glucagon. It was detected that pancreatic renin-angiotensin system is markedly activated in the experimental rat models of chronic hypoxia and acute pancreatitis. The activation of the pancreatic renin-angiotensin system by chronic hypoxia and experimental pancreatitis could play role in the physiology and pathophysiology of the pancreas. The significant changes of pancreatic renin-angiotensin system may have clinical relevance in acute pancreatitis and hypoxia-induced injury in the pancreas. Detection of the pancreatic polypeptide level, oral glucose tolerance test assesses the state of the pancreas after acute pancreatitis in the long term. Conclusions: The biggest impact in the hormonal secretion of pancreatic islet has pancreatic renin-angiotensin system. Permissive factor for pancreatic endocrine dysfunction is chronic hypoxia due to violation of organ perfusion. Endocrine function of the pancreas are more affected after resection treatment of acute pancreatitis. Serological tests of pancreatic polypeptide promising for early diagnosis and prediction of the outcome of acute pancreatitis
    corecore