1,154 research outputs found

    LAMINAR FORCED CONVECTION IN HORIZONTAL CHANNEL WITH HEAT GENERATION PLATES COOLED BY WATER

    Get PDF
    This paper describes the study of the behavior of two-dimensional and parallel horizontal flat plates with uniform internal heat generation subjected to laminar forced convection of water. The governing equations are solved numerically using the finite volume technique with Power-Law interpolating scheme and the SIMPLE algorithm. After the simulations the temperature and velocity fields were obtained for various plates spacing and fluid inlet velocities, as well as the Nusselt number values

    Alteration of beta-cell constitutive NO synthase activity is involved in the abnormal insulin response to arginine in a new rat model of type 2 diabetes.

    Get PDF
    We have previously obtained a new type 2 diabetic syndrome in adult rats given streptozotocin and nicotinamide, characterized by reduced beta-cell mass, partially preserved insulin response to glucose and tolbutamide and excessive responsiveness to arginine. We have also established that the neuronal isoform of constitutive NO synthase (nNOS) is expressed in beta-cells and modulates insulin secretion. In this study, we explored the kinetics of glucose- and arginine-stimulated insulin release in perifused isolated islets as well as the effect of N-omega-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, to get insight into the possible mechanisms responsible for the arginine hypersensitivity observed in vitro in this and other models of type 2 diabetes. A reduced first phase and a blunted second phase of insulin secretion were observed upon glucose stimulation of diabetic islets, confirming previous data in the isolated perfused rat pancreas. Exposure of diabetic islets to 10 mM arginine, in the presence of 2.8 mM glucose, elicited a remarkable monophasic increment in insulin release, which peaked at 639 +/- 31 pg/islet/min as compared to 49 +/- 18 pg/islet/min in control islets (P << 0.01). The addition of L-NAME to control islets markedly enhanced the insulin response to arginine, as expected from the documented inhibitory effect exerted by nNOS activity in normal beta-cells, whereas it did not further modify the insulin secretion in diabetic islets, thus implying the occurrence of a defective nNOS activity in these islets. A reduced expression of nNOS mRNA was found in the majority but not in all diabetic islet preparations and therefore cannot totally account for the absence of L-NAME effect, that might also be ascribed to post-transcriptional mechanisms impairing nNOS catalytic activity. In conclusion, our results provide for the first time evidence that functional abnormalities of type 2 experimental diabetes, such as the insulin hyper-responsiveness to arginine, could be due to an impairment of nNOS expression and/or activity in beta-cell

    Comparison between Airway Responses to High versus Low Molecular Weight Compounds in Occupational Asthma

    Get PDF
    Occupational asthma (OA) is a heterogeneous disease, and the characteristics of the sensitizer responsible for OA may induce different clinical, functional, and biological manifestations. We examined the characteristics of 74 patients with OA induced by low molecular weight compounds (LMWC) or by high molecular weight compounds (HMWC) and diagnosed by specific inhalation challenge (SIC). Patients with OA induced by LMWC had a longer occupational exposure before the beginning of symptoms, a lower sputum eosinophilia, and a higher prevalence of late airway response (LAR), in comparison with patients with OA induced by HMWC. Pulmonary function tended to be poorer and atopy tended to be less frequent in LMWC-induced OA than in HMWC-induced OA. These data confirm and extend previous observations showing that the characteristics of the specific sensitizer inducing OA may determine different clinical, functional, and biological features, probably related to the difference pathogenetic mechanisms underlying these different types of OA

    Comportamento do Stylosanthes humilis no Nordeste do Brasil (nota PrƩvia).

    Get PDF
    Fatores determinantes das plantas raquiticas na Bahia

    9q34.3 microduplications lead to neurodevelopmental disorders through EHMT1 overexpression

    Get PDF
    Both copy number losses and gains occur within subtelomeric 9q34 region without common breakpoints. The microdeletions cause Kleefstra syndrome (KS), whose responsible gene is EHMT1. A 9q34 duplication syndrome (9q34 DS) had been reported in literature, but it has never been characterized by a detailed molecular analysis of the gene content and endpoints. To the best of our knowledge, we report on the first patient carrying the smallest 9q34.3 duplication containing EHMT1 as the only relevant gene. We compared him with 21 reported patients described here as carrying 9q34.3 duplications encompassing the entire gene and extending within ~\u20093 Mb. By surveying the available clinical and molecular cytogenetic data, we were able to discover that similar neurodevelopmental disorders (NDDs) were shared by patient carriers of even very differently sized duplications. Moreover, some facial features of the 9q34 DS were more represented than those of KS. However, an accurate in silico analysis of the genes mapped in all the duplications allowed us to support EHMT1 as being sufficient to cause a NDD phenotype. Wider patient cohorts are needed to ascertain whether the rearrangements have full causative role or simply confer the susceptibility to NDDs and possibly to identify the cognitive and behavioral profile associated with the increased dosage of EHMT1

    Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrettā€™s oesophagus

    Get PDF
    OBJECTIVES: Current models of clonal expansion in human Barrett's oesophagus are based upon heterogenous, flow-purified biopsy analysis taken at multiple segment levels. Detection of identical mutation fingerprints from these biopsy samples led to the proposal that a mutated clone with a selective advantage can clonally expand to fill an entire Barrett's segment at the expense of competing clones (selective sweep to fixation model). We aimed to assess clonality at a much higher resolution by microdissecting and genetically analysing individual crypts. The histogenesis of Barrett's metaplasia and neo-squamous islands has never been demonstrated. We investigated the oesophageal gland squamous ducts as the source of both epithelial sub-types. METHODS: Individual crypts across Barrett's biopsy and oesophagectomy blocks were dissected. Determination of tumour suppressor gene loss of heterozygosity patterns, p16 and p53 point mutations were carried out on a crypt-by-crypt basis. Cases of contiguous neo-squamous islands and columnar metaplasia with oesophageal squamous ducts were identified. Tissues were isolated by laser capture microdissection and genetically analysed. RESULTS: Individual crypt dissection revealed mutation patterns that were masked in whole biopsy analysis. Dissection across oesophagectomy specimens demonstrated marked clonal heterogeneity, with multiple independent clones present. We identified a p16 point mutation arising in the squamous epithelium of the oesophageal gland duct, which was also present in a contiguous metaplastic crypt, whereas neo-squamous islands arising from squamous ducts were wild-type with respect to surrounding Barrett's dysplasia. CONCLUSIONS: By studying clonality at the crypt level we demonstrate that Barrett's heterogeneity arises from multiple independent clones, in contrast to the selective sweep to fixation model of clonal expansion previously described. We suggest that the squamous gland ducts situated throughout the oesophagus are the source of a progenitor cell that may be susceptible to gene mutation resulting in conversion to Barrett's metaplastic epithelium. Additionally, these data suggest that wild-type ducts may be the source of neo-squamous islands

    Peripheral ENO1-specific T cells mirror the intratumoral immune response and their presence is a potential prognostic factor for pancreatic adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with an average survival of 4-6 months following diagnosis. Surgical resection is the only treatment with curative intent, but resectable PDAC patients are in the minority. Also, unlike other neoplasms, PDAC is resistant to conventional and targeted chemotherapy. Innovative treatments, such as immunotherapy, can be very important and the study of the immune response is fundamental. We previously demonstrated that PDAC patients show tumor-infiltrating T cells specific to a-enolase (ENO1), a glycolytic enzyme over expressed by pancreatic tumor cells, which plays an important role in promoting cell migration and cancer metastasis. In the present study, we evaluate the functional anticancer proprieties of ENO1-specific T cells isolated from the peripheral blood of PDAC patients. Furthermore, comparing the T cell receptor repertoire of ENO1-specific peripheral and infiltrating tumor T cells from the same patient suggests that ENO1-specific T cells, despite having a different functional profile, can recirculate from the tumor to the periphery. Finally, of clinical relevance, the presence of peripheral ENO1-specific T cells has a prognostic value and significantly correlates with a longer survival

    A Genome-Wide Screening and SNPs-to-Genes Approach to Identify Novel Genetic Risk Factors Associated with Frontotemporal Dementia

    Get PDF
    Frontotemporal dementia (FTD) is the second most prevalent form of early onset dementia after Alzheimerā€™s disease (AD). We performed a case-control association study in an Italian FTD cohort (n = 530) followed by the novel SNPs-to-genes approach and functional annotation analysis. We identified two novel potential loci for FTD. Suggestive SNPs reached p-values ~10-7 and OR > 2.5 (2p16.3) and 1.5 (17q25.3). Suggestive alleles at 17q25.3 identified a disease-associated haplotype causing decreased expression of -cis genes such as RFNG and AATK involved in neuronal genesis and differentiation, and axon outgrowth, respectively. We replicated this locus through the SNPs-to-genes approach. Our functional annotation analysis indicated significant enrichment for functions of the brain (neuronal genesis, differentiation and maturation), the synapse (neurotransmission and synapse plasticity), and elements of the immune system, the latter supporting our recent international FTD-GWAS. This is the largest genome-wide study in Italian FTD to date. Although our results are not conclusive, we set the basis for future replication studies and identification of susceptible molecular mechanisms involved in FTD pathogenesis
    • ā€¦
    corecore