9,974 research outputs found

    Radiative Transfer and Radiative driving of Outflows in AGN and Starbursts

    Full text link
    To facilitate the study of black hole fueling, star formation, and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behavior in all of the relevant limits (dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to UV/optical; optically thick to IR) and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ULIRGs with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.Comment: 25 pages, 17 figures, submitted to MNRA

    Galaxy size trends as a consequence of cosmology

    Get PDF
    We show that recently documented trends in galaxy sizes with mass and redshift can be understood in terms of the influence of underlying cosmic evolution; a holistic view which is complimentary to interpretations involving the accumulation of discreet evolutionary processes acting on individual objects. Using standard cosmology theory, supported with results from the Millennium simulations, we derive expected size trends for collapsed cosmic structures, emphasising the important distinction between these trends and the assembly paths of individual regions. We then argue that the observed variation in the stellar mass content of these structures can be understood to first order in terms of natural limitations of cooling and feedback. But whilst these relative masses vary by orders of magnitude, galaxy and host radii have been found to correlate linearly. We explain how these two aspects will lead to galaxy sizes that closely follow observed trends and their evolution, comparing directly with the COSMOS and SDSS surveys. Thus we conclude that the observed minimum radius for galaxies, the evolving trend in size as a function of mass for intermediate systems, and the observed increase in the sizes of massive galaxies, may all be considered an emergent consequence of the cosmic expansion.Comment: 14 pages, 13 figures. Accepted by MNRA

    The clustering and bias of radio-selected AGN and star-forming galaxies in the COSMOS field

    Get PDF
    Dark matter haloes in which galaxies reside are likely to have a significant impact on their evolution. We investigate the link between dark matter haloes and their constituent galaxies by measuring the angular two-point correlation function of radio sources, using recently released 3 GHz imaging over $\sim 2 \ \mathrm{deg}^2oftheCOSMOSfield.WesplittheradiosourcepopulationintoStarFormingGalaxies(SFGs)andActiveGalacticNuclei(AGN),andfurtherseparatetheAGNintoradiativelyefficientandinefficientaccreters.Restrictingouranalysisto of the COSMOS field. We split the radio source population into Star Forming Galaxies (SFGs) and Active Galactic Nuclei (AGN), and further separate the AGN into radiatively efficient and inefficient accreters. Restricting our analysis to z<1,wefindSFGshaveabias,, we find SFGs have a bias, b = 1.5 ^{+0.1}_{-0.2},atamedianredshiftof, at a median redshift of z=0.62.Ontheotherhand,AGNaresignificantlymorestronglyclusteredwith. On the other hand, AGN are significantly more strongly clustered with b = 2.1\pm 0.2atamedianredshiftof0.7.ThissupportstheideathatAGNarehostedbymoremassivehaloesthanSFGs.WealsofindlowaccretionrateAGNaremoreclustered( at a median redshift of 0.7. This supports the idea that AGN are hosted by more massive haloes than SFGs. We also find low-accretion rate AGN are more clustered (b = 2.9 \pm 0.3)thanhighaccretionrateAGN() than high-accretion rate AGN (b = 1.8^{+0.4}_{-0.5})atthesameredshift() at the same redshift (z \sim 0.7),suggestingthatlowaccretionrateAGNresideinhighermasshaloes.ThissupportspreviousevidencethattherelativelyhotgasthatinhabitsthemostmassivehaloesisunabletobeeasilyaccretedbythecentralAGN,causingthemtobeinefficient.WealsofindevidencethatlowaccretionrateAGNappeartoresideinhalomassesof), suggesting that low-accretion rate AGN reside in higher mass haloes. This supports previous evidence that the relatively hot gas that inhabits the most massive haloes is unable to be easily accreted by the central AGN, causing them to be inefficient. We also find evidence that low-accretion rate AGN appear to reside in halo masses of M_{h} \sim 3-4 \times 10^{13}h^{-1}MM_{\odot}atallredshifts.Ontheotherhand,theefficientaccretersresideinhaloesof at all redshifts. On the other hand, the efficient accreters reside in haloes of M_{h} \sim 1-2 \times 10^{13}h^{-1}MM_{\odot}atlowredshiftbutcanresideinrelativelylowermasshaloesathigherredshifts.Thiscouldbeduetotheincreasedprevalenceofcoldgasinlowermasshaloesat at low redshift but can reside in relatively lower mass haloes at higher redshifts. This could be due to the increased prevalence of cold gas in lower mass haloes at z \ge 1comparedto compared to z<1$.Comment: 20 pages, 10 figures, 1 table, accepted by MNRA

    Magnetic Field Structure around Low-Mass Class 0 Protostars: B335, L1527 and IC348-SMM2

    Full text link
    We report new 350 micron polarization observations of the thermal dust emission from the cores surrounding the low-mass, Class 0 YSOs L1527, IC348-SMM2 and B335. We have inferred magnetic field directions from these observations, and have used them together with results in the literature to determine whether magnetically regulated core-collapse and star-formation models are consistent with the observations. These models predict a pseudo-disk with its symmetry axis aligned with the core magnetic field. The models also predict a magnetic field pinch structure on a scale less than or comparable to the infall radii for these sources. In addition, if the core magnetic field aligns (or nearly aligns) the core rotation axis with the magnetic field before core collapse, then the models predict the alignment (or near alignment) of the overall pinch field structure with the bipolar outflows in these sources. We show that if one includes the distorting effects of bipolar outflows on magnetic fields, then in general the observational results for L1527 and IC348-SMM2 are consistent with these magnetically regulated models. We can say the same for B335 only if we assume the distorting effects of the bipolar outflow on the magnetic fields within the B335 core are much greater than for L1527 and IC348-SMM2. We show that the energy densities of the outflows in all three sources are large enough to distort the magnetic fields predicted by magnetically regulated models.Comment: Accepted for publication in The Astrophysical Journa

    Heating of the molecular gas in the massive outflow of the local ultraluminous-infrared and radio-loud galaxy 4C12.50

    Full text link
    We present a comparison of the molecular gas properties in the outflow vs. in the ambient medium of the local prototype radio-loud and ultraluminous-infrared galaxy 4C12.50 (IRAS13451+1232), using new data from the IRAM Plateau de Bure interferometer and 30m telescope, and the Herschel space telescope. Previous H_2 (0-0) S(1) and S(2) observations with the Spitzer space telescope had indicated that the warm (~400K) molecular gas in 4C12.50 is made up of a 1.4(+-0.2)x10^8 M_sun ambient reservoir and a 5.2(+-1.7)x10^7 M_sun outflow. The new CO(1-0) data cube indicates that the corresponding cold (25K) H_2 gas mass is 1.0(+-0.1)x10^10 M_sun for the ambient medium and <1.3x10^8 M_sun for the outflow, when using a CO-intensity-to-H_2-mass conversion factor alpha of 0.8 M_sun /(K km/s pc^2). The combined mass outflow rate is high, 230-800 M_sun/yr, but the amount of gas that could escape the galaxy is low. A potential inflow of gas from a 3.3(+-0.3)x10^8 M_sun tidal tail could moderate any mass loss. The mass ratio of warm-to-cold molecular gas is >= 30 times higher in the outflow than in the ambient medium, indicating that a non-negligible fraction of the accelerated gas is heated to temperatures at which star formation is inefficient. This conclusion is robust against the use of different alpha factor values, and/or different warm gas tracers (H_2 vs. H_2 plus CO): with the CO-probed gas mass being at least 40 times lower at 400K than at 25K, the total warm-to-cold mass ratio is always lower in the ambient gas than in the entrained gas. Heating of the molecular gas could facilitate the detection of new outflows in distant galaxies by enhancing their emission in intermediate rotational number CO lines.Comment: A&A, in pres

    Identifying dynamical systems with bifurcations from noisy partial observation

    Full text link
    Dynamical systems are used to model a variety of phenomena in which the bifurcation structure is a fundamental characteristic. Here we propose a statistical machine-learning approach to derive lowdimensional models that automatically integrate information in noisy time-series data from partial observations. The method is tested using artificial data generated from two cell-cycle control system models that exhibit different bifurcations, and the learned systems are shown to robustly inherit the bifurcation structure.Comment: 16 pages, 6 figure

    The effects of superconductor-stabilizer interfacial resistance on quench of current-carrying coated conductor

    Full text link
    We present the results of numerical analysis of a model of normal zone propagation in coated conductors. The main emphasis is on the effects of increased contact resistance between the superconducting film and the stabilizer on the speed of normal zone propagation, the maximum temperature rise inside the normal zone, and the stability margins. We show that with increasing contact resistance the speed of normal zone propagation increases, the maximum temperature inside the normal zone decreases, and stability margins shrink. This may have an overall beneficial effect on quench protection quality of coated conductors. We also briefly discuss the propagation of solitons and development of the temperature modulation along the wire.Comment: To be published in Superconductor Science and Technology. This preprint contains one animated figure (Fig. 6(a)). when asked whether you want to play the content, click "Play". Acrobat Reader (Windows and Mac, but not Linux) will play embedded flash movies. In the printed copy Fig. 6(b) will show the temperature profile at gamma t=15
    corecore