1,635 research outputs found

    Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke

    Get PDF
    Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement

    CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast

    Get PDF
    Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I

    The development of intermittent multiphase fluid flow pathways through a porous rock

    Get PDF
    storage and natural gas production. However, due to experimental limitations, it has not been possible to identify why intermittency occurs at subsurface conditions and what the implications are for upscaled flow properties such as relative permeability. We address these questions with observations of nitrogen and brine flowing at steady-state through a carbonate rock. We overcome previous imaging limitations with high-speed (1s resolution), synchrotron-based X-ray micro-computed tomography combined with pressure measurements recorded while controlling fluid flux. We observe that intermittent fluid transport allows the non-wetting phase to flow through a more ramified network of pores, which would not be possible with connected pathway flow alone for the same flow rate. The volume of fluid intermittently fluctuating increases with capillary number, with the corresponding expansion of the flow network minimising the role of inertial forces in controlling flow even as the flow rate increases. Intermittent pathway flow sits energetically between laminar and turbulent through connected pathways. While a more ramified flow network favours lowered relative permeability, intermittency is more dissipative than laminar flow through connected pathways, and the relative permeability remains unchanged for low capillary numbers where the pore geometry controls the location of intermittency. However, as the capillary number increases further, the role of pore structure in controlling intermittency decreases which corresponds to an increase in relative permeability. These observations can serve as the basis of a model for the causal links between intermittent fluid flow, fluid distribution throughout the pore space, and the upscaled manifestation in relative permeability

    Testing in the incremental design and development of complex products

    Get PDF
    Testing is an important aspect of design and development which consumes significant time and resource in many companies. However, it has received less research attention than many other activities in product development, and especially, very few publications report empirical studies of engineering testing. Such studies are needed to establish the importance of testing and inform the development of pragmatic support methods. This paper combines insights from literature study with findings from three empirical studies of testing. The case studies concern incrementally developed complex products in the automotive domain. A description of testing practice as observed in these studies is provided, confirming that testing activities are used for multiple purposes depending on the context, and are intertwined with design from start to finish of the development process, not done after it as many models depict. Descriptive process models are developed to indicate some of the key insights, and opportunities for further research are suggested

    Survival of immature Anopheles arabiensis (Diptera: Culicidae) in aquatic habitats in Mwea rice irrigation scheme, central Kenya

    Get PDF
    BACKGROUND: The survivorship and distribution of Anopheles arabiensis larvae and pupae was examined in a rice agro-ecosystem in Mwea Irrigation Scheme, central Kenya, from August 2005 to April 2006, prior to implementation of larval control programme. METHODS: Horizontal life tables were constructed for immatures in semi-field condition. The time spent in the various immature stages was determined and survival established. Vertical life tables were obtained from five paddies sampled by standard dipping technique. RESULTS: Pre-adult developmental time for An. arabiensis in the trays in the experimental set up in the screen house was 11.85 days from eclosion to emergence. The mean duration of each instar stage was estimated to be 1.40 days for first instars, 2.90 days for second instars, 1.85 days for third instars, 3.80 days for fourth instars and 1.90 days for pupae. A total of 590 individuals emerged into adults, giving an overall survivorship from L1 to adult emergence of 69.4%. A total of 4,956 An. arabiensis immatures were collected in 1,400 dips throughout the sampling period. Of these, 55.9% were collected during the tillering stage, 42.5% during the transplanting period and 1.6% during the land preparation stage. There was a significant difference in the An. arabiensis larval densities among the five stages. Also there was significant variation in immature stage composition for each day's collection in each paddy. These results indicate that the survival of the immatures was higher in some paddies than others. The mortality rate during the transplanting was 99.9% and at tillering was 96.6%, while the overall mortality was 98.3%. CONCLUSION: The survival of An. arabiensis immatures was better during the tillering stage of rice growth. Further the survival of immatures in rice fields is influenced by the rice agronomic activities including addition of nitrogenous fertilizers and pesticides. For effective integrated vector management, the application of larvicides should target An. arabiensis larvae at the tillering stage (early vegetative stage of rice) when their survival in the aquatic habitats is high to significantly reduce them and the larvicides should be long-lasting to have a significant impact on the malaria vector productivity on the habitats

    Variation in haemodynamic monitoring for major surgery in European nations: secondary analysis of the EuSOS dataset.

    Get PDF
    BACKGROUND: The use of cardiac output monitoring may improve patient outcomes after major surgery. However, little is known about the use of this technology across nations. METHODS: This is a secondary analysis of a previously published observational study. Patients aged 16 years and over undergoing major non-cardiac surgery in a 7-day period in April 2011 were included into this analysis. The objective is to describe prevalence and type of cardiac output monitoring used in major surgery in Europe. RESULTS: Included in the analysis were 12,170 patients from the surgical services of 426 hospitals in 28 European nations. One thousand four hundred and sixteen patients (11.6 %) were exposed to cardiac output monitoring, and 2343 patients (19.3 %) received a central venous catheter. Patients with higher American Society of Anesthesiologists (ASA) scores were more frequently exposed to cardiac output monitoring (ASA I and II, 643 patients [8.6 %]; ASA III-V, 768 patients [16.2 %]; p < 0.01) and central venous catheter (ASA I and II, 874 patients [11.8 %]; ASA III-V, 1463 patients [30.9 %]; p < 0.01). In elective surgery, 990 patients (10.8 %) were exposed to cardiac output monitoring, in urgent surgery 252 patients (11.7 %) and in emergency surgery 173 patients (19.8 %). A central venous catheter was used in 1514 patients (16.6 %) undergoing elective, in 480 patients (22.2 %) undergoing urgent and in 349 patients (39.9 %) undergoing emergency surgery. Nine hundred sixty patients (7.9 %) were monitored using arterial waveform analysis, 238 patients (2.0 %) using oesophageal Doppler ultrasound, 55 patients (0.5 %) using a pulmonary artery catheter and 44 patients (2.0 %) using other technologies. Across nations, cardiac output monitoring use varied from 0.0 % (0/249 patients) to 27.5 % (19/69 patients), whilst central venous catheter use varied from 5.6 % (7/125 patients) to 43.2 % (16/37 patients). CONCLUSIONS: One in ten patients undergoing major surgery is exposed to cardiac output monitoring whilst one in five receives a central venous catheter. The use of both technologies varies widely across Europe. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01203605. Date of registration: 15.09.2010

    Purinergic signaling microenvironments: An introduction

    Get PDF
    The common theme of this introductory article and the minireviews that follow in this special issue is the concept of microenvironments within tissues and surrounding cells that would be ideal signaling venues for a biologically active purinergic ligand. Collectively, the editors/authors and the other contributing authors agree that nucleotides and nucleosides would be most potent within a confined system. A talented cadre of purinergics has been solicited to discuss purinergic signaling in his or her favorite microenvironment within a given organ or tissue. We are gratified by the large number of original articles that also have successfully navigated the peer review process and are part of this special issue. These concepts are not simply purinergic, but the idea of maximal potency in a tissue microenvironment and surrounding specialized cells within a tissue pertains to any autacoid or paracrine agonist

    Cave spiders choose optimal environmental factors with respect to the generated entropy when laying their cocoon

    Get PDF
    The choice of a suitable area to spiders where to lay eggs is promoted in terms of Darwinian fitness. Despite its importance, the underlying factors behind this key decision are generally poorly understood. Here, we designed a multidisciplinary study based both on in-field data and laboratory experiments focusing on the European cave spider Meta menardi (Araneae, Tetragnathidae) and aiming at understanding the selective forces driving the female in the choice of the depositional area. Our in-field data analysis demonstrated a major role of air velocity and distance from the cave entrance within a particular cave in driving the female choice. This has been interpreted using a model based on the Entropy Generation Minimization - EGM - method, without invoking best fit parameters and thanks to independent lab experiments, thus demonstrating that the female chooses the depositional area according to minimal level of thermo-fluid-dynamic irreversibility. This methodology may pave the way to a novel approach in understanding evolutionary strategies for other living organisms

    Cognitive ability and physical health:A Mendelian randomization study

    Get PDF
    Causes of the association between cognitive ability and health remain unknown, but may reflect a shared genetic aetiology. This study examines the causal genetic associations between cognitive ability and physical health. We carried out two-sample Mendelian randomization analyses using the inverse-variance weighted method to test for causality between later life cognitive ability, educational attainment (as a proxy for cognitive ability in youth), BMI, height, systolic blood pressure, coronary artery disease, and type 2 diabetes using data from six independent GWAS consortia and the UK Biobank sample (N = 112 151). BMI, systolic blood pressure, coronary artery disease and type 2 diabetes showed negative associations with cognitive ability; height was positively associated with cognitive ability. The analyses provided no evidence for casual associations from health to cognitive ability. In the other direction, higher educational attainment predicted lower BMI, systolic blood pressure, coronary artery disease, type 2 diabetes, and taller stature. The analyses indicated no causal association from educational attainment to physical health. The lack of evidence for causal associations between cognitive ability, educational attainment, and physical health could be explained by weak instrumental variables, poorly measured outcomes, or the small number of disease cases
    corecore