24 research outputs found

    Results and Consequences of Magnet Test and Cosmic Challenge of the CMS Barrel Muon Alignment System

    Get PDF
    In the last year - as part of the first test of the CMS experiment at CERN [1] called Magnet Test and Cosmic Challenge (MTCC) - about 25% of the barrel muon position monitoring system was built and operated. The configuration enabled us to test all the elements of the system and its function in real conditions. The correct operation of the system has been demonstrated. About 500 full measurement cycles have been recorded. In the paper the setup –including the read-out and control - is described and the first preliminary results are presented

    Theory of traveling filaments in bistable semiconductor structures

    Full text link
    We present a generic nonlinear model for current filamentation in semiconductor structures with S-shaped current-voltage characteristics. The model accounts for Joule self-heating of a current density filament. It is shown that the self-heating leads to a bifurcation from static to traveling filament. Filaments start to travel when increase of the lattice temperature has negative impact on the cathode-anode transport. Since the impact ionization rate decreases with temperature, this occurs for a wide class of semiconductor systems whose bistability is due to the avalanche impact ionization. We develop an analytical theory of traveling filaments which reveals the mechanism of filament motion, find the condition for bifurcation to traveling filament, and determine the filament velocity.Comment: 13 pages, 5 figure

    Molecular Photovoltaics in Nanoscale Dimension

    Get PDF
    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures

    On The Cardinality of Closed Subsets

    No full text
    corecore