61 research outputs found

    Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pre-pubertal girls

    Get PDF
    The limited available evidence suggests that endurance training does not influence the pulmonary oxygen uptake (V(O)(2)) kinetics of pre-pubertal children. We hypothesised that, in young trained swimmers, training status-related adaptations in the V(O)(2) and heart rate (HR) kinetics would be more evident during upper body (arm cranking) than during leg cycling exercise. Eight swim-trained (T; 11.4 +/- 0.7 years) and eight untrained (UT; 11.5 +/- 0.6 years) girls completed repeated bouts of constant work rate cycling and upper body exercise at 40% of the difference between the gas exchange threshold and peak V(O)(2). The phase II V(O)(2) time constant was significantly shorter in the trained girls during upper body exercise (T: 25 +/- 3 vs. UT: 37 +/- 6 s; P < 0.01), but no training status effect was evident in the cycle response (T: 25 +/- 5 vs. UT: 25 +/- 7 s). The V(O)(2) slow component amplitude was not affected by training status or exercise modality. The time constant of the HR response was significantly faster in trained girls during both cycle (T: 31 +/- 11 vs. UT: 47 +/- 9 s; P < 0.01) and upper body (T: 33 +/- 8 vs. UT: 43 +/- 4 s; P < 0.01) exercise. The time constants of the phase II V(O)(2)and HR response were not correlated regardless of training status or exercise modality. This study demonstrates for the first time that swim-training status influences upper body V(O)(2) kinetics in pre-pubertal children, but that cycle ergometry responses are insensitive to such differences

    Longitudinal investigation of training status and cardiopulmonary responses in pre- and early-pubertal children

    Get PDF
    PurposeThe presence of a maturational threshold that modulates children’s physiological responses to exercise training continues to be debated, not least due to a lack of longitudinal evidence to address this question. The purpose of this study was to investigate the interaction between swim-training status and maturity in nineteen trained (T, 10 ± 1 years, −2.4 ± 1.9 years pre-peak height velocity, 8 boys) and fifteen untrained (UT, 10 ± 1 years, −2.3 ± 0.9 years pre-peak height velocity, 5 boys) children, at three annual measurements.MethodsIn addition to pulmonary gas exchange measurements, stroke volume (SV) and cardiac output ( Q˙) were estimated by thoracic bioelectrical impedance during incremental ramp exercise.ResultsAt baseline and both subsequent measurement points, trained children had significantly (P < 0.05) higher peak oxygen uptake (year 1 T 1.75 ± 0.34 vs. UT 1.49 ± 0.22; year 2 T 2.01 ± 0.31 vs. UT 1.65 ± 0.08; year 3 T 2.07 ± 0.30 vs. UT 1.77 ± 0.16 l min−1) and Q˙ (year 1 T 15.0 ± 2.9 vs. UT 13.2 ± 2.2; year 2 T 16.1 ± 2.8 vs. UT 13.8 ± 2.9; year 3 T 19.3 ± 4.4 vs. UT 16.0 ± 2.7 l min−1). Furthermore, the SV response pattern differed significantly with training status, demonstrating the conventional plateau in UT but a progressive increase in T. Multilevel modelling revealed that none of the measured pulmonary or cardiovascular parameters interacted with maturational status, and the magnitude of the difference between T and UT was similar, irrespective of maturational status.ConclusionThe results of this novel longitudinal study challenge the notion that differences in training status in young people are only evident once a maturational threshold has been exceeded

    Speckle Tracking Echocardiography for the Assessment of the Athlete's Heart: Is It Ready for Daily Practice?

    Get PDF
    PURPOSE OF REVIEW: To describe the use of speckle tracking echocardiography (STE) in the biventricular assessment of athletes' heart (AH). Can STE aid differential diagnosis during pre-participation cardiac screening (PCS) of athletes? RECENT FINDINGS: Data from recent patient, population and athlete studies suggest potential discriminatory value of STE, alongside standard echocardiographic measurements, in the early detection of clinically relevant systolic dysfunction. STE can also contribute to subsequent prognosis and risk stratification. Despite some heterogeneity in STE data in athletes, left ventricular global longitudinal strain (GLS) and right ventricular longitudinal strain (RV É›) indices can add to differential diagnostic protocols in PCS. STE should be used in addition to standard echocardiographic tools and be conducted by an experienced operator with significant knowledge of the AH. Other indices, including left ventricular circumferential strain and twist, may provide insight, but further research in clinical and athletic populations is warranted. This review also raises the potential role for STE measures performed during exercise as well as in serial follow-up as a method to improve diagnostic yield

    Left and right ventricular longitudinal strain-volume/area relationships in elite athletes.

    Get PDF
    We propose a novel ultrasound approach with the primary aim of establishing the temporal relationship of structure and function in athletes of varying sporting demographics. 92 male athletes were studied [Group IA, (low static-low dynamic) (n = 20); Group IC, (low static-high dynamic) (n = 25); Group IIIA, (high static-low dynamic) (n = 21); Group IIIC, (high static-high dynamic) (n = 26)]. Conventional echocardiography of both the left ventricles (LV) and right ventricles (RV) was undertaken. An assessment of simultaneous longitudinal strain and LV volume/RV area was provided. Data was presented as derived strain for % end diastolic volume/area. Athletes in group IC and IIIC had larger LV end diastolic volumes compared to athletes in groups IA and IIIA (50 ± 6 and 54 ± 8 ml/(m(2))(1.5) versus 42 ± 7 and 43 ± 2 ml/(m(2))(1.5) respectively). Group IIIC also had significantly larger mean wall thickness (MWT) compared to all groups. Athletes from group IIIC required greater longitudinal strain for any given % volume which correlated to MWT (r = 0.4, p < 0.0001). Findings were similar in the RV with the exception that group IIIC athletes required lower strain for any given % area. There are physiological differences between athletes with the largest LV and RV in athletes from group IIIC. These athletes also have greater resting longitudinal contribution to volume change in the LV which, in part, is related to an increased wall thickness. A lower longitudinal contribution to area change in the RV is also apparent in these athletes

    Relationship between cardiac deformation parameters measured by cardiovascular magnetic resonance and aerobic fitness in endurance athletes

    Get PDF
    Background: Athletic training leads to remodelling of both left and right ventricles with increased myocardial mass and cavity dilatation. Whether changes in cardiac strain parameters occur in response to training is less well established. In this study we investigated the relationship in trained athletes between cardiovascular magnetic resonance (CMR) derived strain parameters of cardiac function and fitness. Methods: 35 endurance athletes and 35 age and sex matched controls underwent CMR at 3.0T including cine imaging in multiple planes and tissue tagging by spatial modulation of magnetization (SPAMM). CMR data were analysed quantitatively reporting circumferential strain and torsion from tagged images and left and right ventricular longitudinal strain from feature tracking of cine images. Athletes performed a maximal ramp-incremental exercise test to determine the lactate threshold (LT) and maximal oxygen uptake (V̇O2max). Results: LV circumferential strain at all levels, LV twist and torsion, LV late diastolic longitudinal strain rate, RV peak longitudinal strain and RV early and late diastolic longitudinal strain rate were all lower in athletes than controls. On multivariable linear regression only LV torsion (beta=-0.37, P=0.03) had a significant association with LT. Only RV longitudinal late diastolic strain rate (beta=-0.35, P=0.03) had a significant association with V̇O2max. Conclusions: This cohort of endurance athletes had lower LV circumferential strain, LV torsion and biventricular diastolic strain rates than controls. Increased LT, which is a major determinant of performance in endurance athletes, was associated with decreased LV torsion. Further work is needed to understand the mechanisms by which this occurs

    Left ventricular twist mechanics during incremental cycling and knee extension exercise in healthy men

    Get PDF
    Purpose: The objective of the present study was to investigate left ventricular (LV) twist mechanics in response to incremental cycling and isometric knee extension exercises. Methods: Twenty-six healthy male participants (age = 30.42 ± 6.17 years) were used to study peak twist mechanics at rest and during incremental semi-supine cycling at 30 and 60% work rate maximum (W) and during short duration (15 s contractions) isometric knee extension at 40 and 75% maximum voluntary contraction (MVC), using two-dimensional speckle tracking echocardiography. Results: Data presented as mean ± standard deviation or median (interquartile range). LV twist increased from rest to 30% W (13.21° ± 4.63° to 20.04° ± 4.76°, p  0.05), whilst twisting velocity increased (rest 89.15° ± 21.77° s to 75% MVC 124.32° ± 34.89° s, p  0.05) then increased from 40 to 75% MVC [−98.44 (43.54)° s to −138.42 (73.29)° s, p < 0.01]. Apical rotations and rotational velocities were greater than basal during all conditions and intensities (all p < 0.01). Conclusion: Cycling increased LV twist to 30% W which then remained unchanged thereafter, whereas twisting velocities showed further increases to greater intensities. A novel finding is that LV twist was unaffected by incremental knee extension, yet systolic and diastolic twisting velocities augmented with isometric exercise

    Left ventricular speckle tracking-derived cardiac strain and cardiac twist mechanics in athletes: a systematic review and meta-analysis of controlled studies

    Get PDF
    Background: The athlete’s heart is associated with physiological remodeling as a consequence of repetitive cardiac loading. The effect of exercise training on left ventricular (LV) cardiac strain and twist mechanics are equivocal, and no meta-analysis has been conducted to date. Objective: The objective of this systematic review and meta-analysis was to review the literature pertaining to the effect of different forms of athletic training on cardiac strain and twist mechanics and determine the influence of traditional and contemporary sporting classifications on cardiac strain and twist mechanics. Methods: We searched PubMed/MEDLINE, Web of Science, and ScienceDirect for controlled studies of aged-matched male participants aged 18–45 years that used two-dimensional (2D) speckle tracking with a defined athlete sporting discipline and a control group not engaged in training programs. Data were extracted independently by two reviewers. Random-effects meta-analyses, subgroup analyses, and meta-regressions were conducted. Results: Our review included 13 studies with 945 participants (controls n = 355; athletes n = 590). Meta-analyses showed no athlete–control differences in LV strain or twist mechanics. However, moderator analyses showed greater LV twist in high-static low-dynamic athletes (d = –0.76, 95% confidence interval [CI] –1.32 to –0.20; p < 0.01) than in controls. Peak untwisting velocity (PUV) was greater in high-static low-dynamic athletes (d = –0.43, 95% CI –0.84 to –0.03; p < 0.05) but less than controls in high-static high-dynamic athletes (d = 0.79, 95% CI 0.002–1.58; p = 0.05). Elite endurance athletes had significantly less twist and apical rotation than controls (d = 0.68, 95% CI 0.19–1.16, p < 0.01; d = 0.64, 95% CI 0.27–1.00, p = 0.001, respectively) but no differences in basal rotation. Meta-regressions showed LV mass index was positively associated with global longitudinal (b = 0.01, 95% CI 0.002–0.02; p < 0.05), whereas systolic blood pressure was negatively associated with PUV (b = –0.06, 95% CI –0.13 to –0.001; p = 0.05). Conclusion: Echocardiographic 2D speckle tracking can identify subtle physiological differences in adaptations to cardiac strain and twist mechanics between athletes and healthy controls. Differences in speckle tracking echocardiography-derived parameters can be identified using suitable sporting categorizations

    Aerobic training protects cardiac function during advancing age: a meta-analysis of four decades of controlled studies

    Get PDF
    In contrast to younger athletes, there is comparatively less literature examining cardiac structure and function in older athletes. However, a progressive accumulation of studies during the past four decades offers a body of literature worthy of systematic scrutiny. We conducted a systematic review, meta-analysis and meta-regression of controlled echocardiography studies comparing left ventricular (LV) structure and function in aerobically trained older athletes (> 45 years) with age-matched untrained controls, in addition to investigating the influence of chronological age. statistic. , 95% CI 0.05-1.86, p = 0.04). Meta-regression for chronological age identified that athlete-control differences, in the main, are maintained during advancing age. Athletic older men have larger cardiac dimensions and enjoy more favourable cardiac function than healthy, non-athletic counterparts. Notably, the athlete groups maintain these effects during chronological ageing
    • …
    corecore