4 research outputs found

    Reproductive isolation between two populations of Aglaoctenus lagotis , a funnel-web wolf spider

    Get PDF
    Aglaoctenus lagotis (Lycosidae: Sosippinae) is a spider that, in contrast to the predominant wandering habit of the family, constructs funnel webs. The species is widely distributed throughout the Neotropics and is credited with high levels of intraspecific variation. Here, we evaluate whether reproductive isolating barriers operate between some populations of A. lagotis. We used heterotypic encounters between individuals from two distant localities: southern Uruguay (SU) and Central Argentina (CA). Additionally, we used spiders from an ntermediate locality, western Uruguay (WU), where both forms of the species overlap (SU.WU was used to describe individuals from WU reminiscent of those from SU; and CA.WU was used to describe individuals from WU reminiscent of those from CA). No copulations occurred between SU and CA individuals, whereas a single and atypical copulation occurred between SU.WU and CA.WU individuals. Attacks (only by females on males) were rare. In tests of choice based on silk cues, SU males did not prefer homotypic cues but almost did not court CA females, whereas CA males preferred homotypic cues but usually courted heterotypic females. These findings, with a previously reported temporal asynchrony between populations, suggest the occurrence of reproductive isolation between both spider forms and a speciation process favoured by the wide distribution and plasticity of the species.Fil: González Pérez, María de la Macarena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; ArgentinaFil: Peretti, Alfredo Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; ArgentinaFil: Costa, Fernando G.. Instituto de Investigaciones Biológicas "Clemente Estable"; Urugua

    Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes

    No full text
    Theory suggests that speciation is possible without physical isolation of populations (hereafter, nonallopatric speciation), but recent nonallopatric models need the support of irrefutable empirical examples. We collected snails (Littorina saxatilis) from three areas on the NW coast of Spain to investigate the population genetic structure of two ecotypes. Earlier studies suggest that these ecotypes may represent incipient species: a large, thick-shelled 'RB' ecotype living among the barnacles in the upper intertidal zone and a small, thin-shelled 'SU' ecotype living among the mussels in the lower intertidal zone only 10-30 m away. The two ecotypes overlap and hybridize in a midshore zone only 1-3 m wide. Three different types of molecular markers [allozymes, mitochondrial DNA (mtDNA) and microsatellites] consistently indicated partial reproductive isolation between the RB and the SU ecotypes at a particular site. However, each ecotype was related more closely to the other ecotype from the same site than to the same ecotype from another site further along the Galician coast (25-77 km away). These findings supported earlier results based solely on allozyme variation and we could now reject the possibility that selection produced these patterns. The patterns of genetic variation supported a nonallopatric model in which the ecotypes are formed independently at each site by parallel evolution and where the reproductive barriers are a byproduct of divergent selection for body size. We argue that neither our laboratory hybridization experiments nor our molecular data are compatible with a model based on allopatric ecotype formation, secondary overlap and introgression
    corecore