4 research outputs found

    In utero exposure to low doses of environmental pollutants disrupts fetal ovarian development in sheep

    Get PDF
    Epidemiological studies of the impact of environmental chemicals on reproductive health demonstrate consequences of exposure but establishing causative links requires animal models using ‘real life’ in utero exposures. We aimed to determine whether prolonged, low-dose, exposure of pregnant sheep to a mixture of environmental chemicals affects fetal ovarian development. Exposure of treated ewes (n = 7) to pollutants was maximized by surface application of processed sewage sludge to pasture. Control ewes (n = 10) were reared on pasture treated with inorganic fertilizer. Ovaries and blood were collected from fetuses (n = 15 control and n = 8 treated) on Day 110 of gestation for investigation of fetal endocrinology, ovarian follicle/oocyte numbers and ovarian proteome. Treated fetuses were 14% lighter than controls but fetal ovary weights were unchanged. Prolactin (48% lower) was the only measured hormone significantly affected by treatment. Treatment reduced numbers of growth differentiation factor (GDF9) and induced myeloid leukaemia cell differentiation protein (MCL1) positive oocytes by 25–26% and increased pro-apoptotic BAX by 65% and 42% of protein spots in the treated ovarian proteome were differently expressed compared with controls. Nineteen spots were identified and included proteins involved in gene expression/transcription, protein synthesis, phosphorylation and receptor activity. Fetal exposure to environmental chemicals, via the mother, significantly perturbs fetal ovarian development. If such effects are replicated in humans, premature menopause could be an outcome

    Complex patch geometry promotes species coexistence through a reverse competition-colonization trade-off

    No full text
    Explaining the maintenance of diverse species assemblages is a central goal of ecology and conservation. Recent coexistence mechanisms highlight the role of dispersal as a source of the differences that allow similar species to coexist. Here, we propose a new mechanism for species coexistence that is based on dispersal differences, and on the geometry of the habitat patch. In a finite habitat patch with complex boundaries, species with different dispersal abilities will arrange themselves in stable, concentric patterns of dominance. Species with superior competitive and dispersal abilities will dominate the interior of the patch, with inferior species at the periphery. We demonstrate and explain the mechanism on a simple one-dimensional domain, and then on two-dimensional habitat patches with realistic geometries. Finally, we use metrics from landscape ecology to demonstrate that habitat patches with more complex geometries can more easily support coexistence. The factors that underpin this new coexistence mechanism-different dispersal abilities and habitat patches with complex geometries-are common to many marine and terrestrial ecosystems, and it is therefore possible that the mechanism is a common factor supporting diverse species assemblages
    corecore