15 research outputs found

    Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans.

    Get PDF
    Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B6, B9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease

    Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans

    Get PDF
    Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B-6, B-9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease.Peer reviewe

    Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila

    Get PDF
    Increased cellular degradation by autophagy is a feature of many interventions that delay ageing. We report here that increased autophagy is necessary for reduced insulin-like signalling (IIS) to extend lifespan in Drosophila and is sufficient on its own to increase lifespan. We first established that the well-characterised lifespan extension associated with deletion of the insulin receptor substrate chico was completely abrogated by downregulation of the essential autophagy gene Atg5. We next directly induced autophagy by over-expressing the major autophagy kinase Atg1 and found that a mild increase in autophagy extended lifespan. Interestingly, strong Atg1 up-regulation was detrimental to lifespan. Transcriptomic and metabolomic approaches identified specific signatures mediated by varying levels of autophagy in flies. Transcriptional upregulation of mitochondrial-related genes was the signature most specifically associated with mild Atg1 upregulation and extended lifespan, whereas short-lived flies, possessing strong Atg1 overexpression, showed reduced mitochondrial metabolism and up-regulated immune system pathways. Increased proteasomal activity and reduced triacylglycerol levels were features shared by both moderate and high Atg1 overexpression conditions. These contrasting effects of autophagy on ageing and differential metabolic profiles highlight the importance of fine-tuning autophagy levels to achieve optimal healthspan and disease prevention

    Host-Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy.

    Get PDF
    Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT

    Data from: Revisiting Santa Rosalia to unfold a degeneracy of classic models of speciation

    No full text
    Many classic models of speciation incorporate assortative mating based on mating groups, such as plants with different flowering times, and they investigate whether an ecological trait under disruptive natural selection becomes genetically associated with the selectively neutral mating trait. It is well known that this genetic association is potently destroyed by recombination. In this note, we point out a more fundamental difficulty: if a “knife-edge” symmetry assumption of previous models is violated, then the mating trait is no longer neutral and sexual selection eliminates the polymorphism in the mating locus. This result strengthens the growing consensus that magic traits are the more likely route to nonallopatric speciation. We expand the model assuming also ecological selection on the mating trait and investigate the conditions for natural selection to overcome sexual selection and maintain mating polymorphism; we find that the combination of natural and sexual selection can cause also bistability of allele frequencies

    Norvaisas_Kisdi_Mathematica

    No full text
    The zip file contains three Mathematica notebooks, which were used to produce the figures as indicated in the file names. The notebooks are briefly annotated and are based on the equations given in the paper

    HydraScreen: A Generalizable Structure-Based Deep Learning Approach to Drug Discovery

    No full text
    We propose HydraScreen, a deep-learning framework for safe and robust accelerated drug discovery. HydraScreen utilizes a state-of-the-art 3D convolutional neural network, designed for the effective representation of molecular structures and interactions in protein-ligand binding. We design an end-to-end pipeline for high-throughput screening and lead optimization, targeting applications in structure-based drug design. We assess our approach using established public benchmarks based on the CASF 2016 core set, achieving top-tier results in affinity and pose prediction (Pearson\u27s r = 0.86, RMSE = 1.15, Top-1 = 0.95). We introduce a novel approach for interaction profiling, aimed at detecting potential biases within both the model and datasets. This approach not only enhances interpretability but also reinforces the impartiality of our methodology. Finally, we demonstrate HydraScreen\u27s ability to generalize effectively across novel proteins and ligands through a temporal split. We also provide insights into potential avenues for future development aimed at enhancing the robustness of machine learning scoring functions. HydraScreen, accessible at https://hydrascreen.ro5.ai, provides a user-friendly GUI and a public API, facilitating easy-access assessment of protein–ligand complexes
    corecore