743 research outputs found

    Continuous multiparametric monitoring of cell metabolism in response to transient overexpression of the sirtuin deacetylase SIRT3

    Get PDF
    The analysis and visualisation of research data in an environment which is most similar to living conditions belong to the most challenging claims of present scientific research endeavours. To date, the effect of protein function on cell metabolism is most commonly assessed from a series of end point analyses, which finally allows an approximate estimation on how a specific effect takes its course. In the study presented herein, we demonstrate how the combination of transient transfection and a biosensor chip system gives the opportunity to analyse the effect of a specific protein on cell metabolism in living cells through real-time monitoring of metabolically relevant parameters, such as oxygen consumption, acidification rate and cell adhesion. In addition, this method allows online monitoring of the time course of metabolic changes due to changes in expression levels of metabolic regulative proteins from the time of transfection to maximum overexpression. The methodology presented herein was assessed for the transient overexpression of the sirtuin deacetylase SIRT3, a mitochondrial key element in the regulation of energy metabolism, metabolic disease, cancer and ageing

    Interphase Nucleo-Cytoplasmic Shuttling and Localization of SIRT2 during Mitosis

    Get PDF
    The human NAD+-dependent protein deacetylase SIRT2 resides predominantly in the cytoplasm where it functions as a tubulin deacetylase. Here we report that SIRT2 maintains a largely cytoplasmic localization during interphase by active nuclear export in a Crm1-dependent manner. We identified a functional, leptomycin B-sensitive, nuclear export signal sequence within SIRT2. During the cell cycle, SIRT2 becomes enriched in the nucleus and is associated with mitotic structures, beginning with the centrosome during prophase, the mitotic spindle during metaphase, and the midbody during cytokinesis. Cells overexpressing wild-type or a catalytically inactive SIRT2 exhibit an increase in multinucleated cells. The findings suggest a novel mechanism of regulating SIRT2 function by nucleo-cytoplasmic shuttling, as well as a role for SIRT2 in the nucleus during interphase and throughout mitosis

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    A study protocol to investigate the relationship between dietary fibre intake and fermentation, colon cell turnover, global protein acetylation and early carcinogenesis: the FACT study

    Get PDF
    Background: A number of studies, notably EPIC, have shown a descrease in colorectal cancer risk associated with increased fibre consumption. Whilst the underlying mechanisms are likely to be multifactorial, production of the short-chain fatty-acid butyrate fro butyratye is frequently cited as a major potential contributor to the effect. Butyrate inhibits histone deacetylases, which work on a wide range of proteins over and above histones. We therefore hypothesized that alterations in the acetylated proteome may be associated with a cancer risk phenotype in the colorectal mucosa, and that such alterations are candidate biomarkers for effectiveness of fibre interventions in cancer prevention. Methods an design: There are two principal arms to this study: (i) a cross-sectional study (FACT OBS) of 90 subjects recruited from gastroenterology clinics and; (ii) an intervention trial in 40 subjects with an 8 week high fibre intervention. In both studies the principal goal is to investigate a link between fibre intake, SCFA production and global protein acetylation. The primary measure is level of faecal butyrate, which it is hoped will be elevated by moving subjects to a high fibre diet. Fibre intakes will be estimated in the cross-sectional group using the EPIC Food Frequency Questionnaire. Subsidiary measures of the effect of butyrate on colon mucosal function and precancerous phenotype will include measures of apoptosis, apoptotic regulators cell cycle and cell division. Discussion: This study will provide a new level of mechanistic data on alterations in the functional proteome in response to the colon microenvironment which may underwrite the observed cancer preventive effect of fibre. The study may yield novel candidate biomarkers of fibre fermentation and colon mucosal function

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    SIRT2 Ablation Has No Effect on Tubulin Acetylation in Brain, Cholesterol Biosynthesis or the Progression of Huntington's Disease Phenotypes In Vivo

    Get PDF
    Huntington's disease (HD) is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. The molecular pathogenesis of HD is complex and many mechanisms and cellular processes have been proposed as potential sites of therapeutic intervention. However, prior to embarking on drug development initiatives, it is essential that therapeutic targets can be validated in mammalian models of HD. Previous studies in invertebrate and cell culture HD models have suggested that inhibition of SIRT2 could have beneficial consequences on disease progression. SIRT2 is a NAD[superscript +]-dependent deacetylase that has been proposed to deacetylate α-tubulin, histone H4 K16 and to regulate cholesterol biogenesis – a pathway which is dysregulated in HD patients and HD mouse models. We have utilized mice in which SIRT2 has been reduced or ablated to further explore the function of SIRT2 and to assess whether SIRT2 loss has a beneficial impact on disease progression in the R6/2 mouse model of HD. Surprisingly we found that reduction or loss of SIRT2 had no effect on the acetylation of α-tubulin or H4K16 or on cholesterol biosynthesis in the brains of wild type mice. Equally, genetic reduction or ablation of SIRT2 had no effect on HD progression as assessed by a battery of physiological and behavioural tests. Furthermore, we observed no change in aggregate load or levels of soluble mutant huntingtin transprotein. Intriguingly, neither the constitutive genetic loss nor acute pharmacological inhibition of SIRT2 affected the expression of cholesterol biosynthesis enzymes in the context of HD. Therefore, we conclude that SIRT2 inhibition does not modify disease progression in the R6/2 mouse model of HD and SIRT2 inhibition should not be prioritised as a therapeutic option for HD.American Parkinson Disease Association, Inc. (Fellowship)Johnson & Johnson. Pharmaceutical Research & Development (Fellowship

    Altered sirtuin expression is associated with node-positive breast cancer

    Get PDF
    Sirtuins are genes implicated in cellular and organismal ageing. Consequently, they are speculated to be involved in diseases of ageing including cancer. Various cancers with widely differing prognosis have been shown to have differing and characteristic expression of these genes; however, the relationship between sirtuin expression and cancer progression is unclear. In order to correlate cancer progression and sirtuin expression, we have assessed sirtuin expression as a function of primary cell ageing and compared sirtuin expression in normal, ‘nonmalignant' breast biopsies to breast cancer biopsies using real-time polymerase chain reaction (PCR). Levels of SIRT7 expression were significantly increased in breast cancer (P<0.0001). Increased levels of SIRT3 and SIRT7 transcription were also associated with node-positive breast cancer (P<0.05 and P<0.0001, respectively). This study has demonstrated differential sirtuin expression between nonmalignant and malignant breast tissue, with consequent diagnostic and therapeutic implications

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Association between Frequency Domain Heart Rate Variability and Unplanned Readmission to Hospital in Geriatric Patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An accurate prediction of unplanned readmission (UR) after discharge from hospital can facilitate physician's decision making processes for providing better quality of care in geriatric patients. The objective of this study was to explore the association of cardiac autonomic functions as measured by frequency domain heart rate variability (HRV) and 14-day UR in geriatric patients.</p> <p>Methods</p> <p>Patients admitted to the geriatric ward of a regional hospital in Chiayi county in Taiwan were followed prospectively from July 2006 to June 2007. Those with invasive tubes and those who were heavy smokers, heavy alcohol drinkers, on medications that might influence HRV, or previously admitted to the hospital within 30 days were excluded. Cardiac autonomic functions were evaluated by frequency domain indices of HRV. Multiple logistic regression was used to assess the association between UR and HRV indices adjusted for age and length of hospitalization.</p> <p>Results</p> <p>A total of 78 patients met the inclusion criteria and 15 of them were readmitted within 14 days after discharge. The risk of UR was significantly higher in patients with lower levels of total power (OR = 1.39; 95% CI = 1.04-2.00), low frequency power (LF) (OR = 1.22; 95% CI = 1.03-1.49), high frequency power (HF) (OR = 1.27; 95% CI = 1.02-1.64), and lower ratios of low frequency power to high frequency power (LF/HF ratio) (OR = 1.96; 95% CI = 1.07-3.84).</p> <p>Conclusion</p> <p>This is the first study to evaluate the association between frequency domain heart rate variability and the risk of UR in geriatric patients. Frequency domain heart rate variability indices measured on admission were significantly associated with increased risk of UR in geriatric patients. Additional studies are required to confirm the value and feasibility of using HRV indices on admission as a non-invasive tool to assist the prediction of UR in geriatric patients.</p
    • …
    corecore