342 research outputs found

    ATP7A is a novel target of retinoic acid receptor ÎČ2 in neuroblastoma cells

    Get PDF
    Increased retinoic acid receptor ÎČ (RARÎČ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARÎČ2 expression is a common feature of many human cancers, suggesting that RARÎČ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARÎČ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARÎČ2 protein alone was sufficient for the growth inhibitory effects of RARÎČ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARÎČ2. The ectopic overexpression of the RARÎČ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARÎČ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor ÎČ and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism

    Fermi Gamma-ray Imaging of a Radio Galaxy

    Get PDF
    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton scattered relic radiation from the cosmic microwave background (CMB), with additional contribution at higher energies from the infrared-to-optical extragalactic background light (EBL). These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, and a promising method to probe the cosmic relic photon fields.Comment: 27 pages, includes Supplementary Online Material; corresponding authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar

    Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi

    Full text link
    We report the detection of high-energy gamma-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with gamma-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter

    Fermi Large Area Telescope observations of PSR J1836+5925

    Full text link
    The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1×1034\times10^{34} erg s−1^{-1}, and a large off-peak emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the off-peak emission indicate it is likely magnetospheric. Analysis of recent XMM observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk

    First parallax measurements toward a 6.7 GHZ methanol maser with the Australian long baseline array - Distance to G 339.884-1.259

    Get PDF
    © 2015. The American Astronomical Society. All rights reserved. We have conducted the first parallax and proper motion measurements of 6.7 GHz methanol maser emission using the Australian Long Baseline Array. The parallax of G 339.8841.259 measured from five epochs of observations is 0.48 ± 0.08 mas, corresponding to a distance of - 2.1+0.4 -0.3 kpc, placing it in the Scutum spiral arm. This is consistent (within the combined uncertainty) with the kinematic distance estimate for this source at 2.5 ± 0.5 kpc using the latest Solar and Galactic rotation parameters. We find from the Lyman continuum photon flux that the embedded core of the young star is of spectral type B1, demonstrating that luminous 6.7 GHz methanol masers can be associated with high-mass stars toward the lower end of the mass range

    Resolve and eco: the halo mass-dependent shape of galaxy stellar and baryonic mass functions

    Get PDF
    In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass Mbary ∌ 10^9.1 M⊙, probing the gas-rich dwarf regime below Mbary ∌ 10^10 M⊙. The second, ECO, covers a ~40× larger volume (containing RESOLVE-A) and is complete to Mbary ~10^9.4 M⊙. To construct the SMF and BMF we implement a new “cross-bin sampling” technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the “plateau” feature starting below Mstar ~10^10 M⊙ that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ~10^10 M⊙, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Moreover, we assign group halo masses by abundance matching, finding that the SMF and BMF separated into four physically motivated halo mass regimes reveal complex structure underlying the simple shape of the overall MFs. In particular, the satellite MFs are depressed below the central galaxy MF “humps” in groups with mass < 10^13.5 M⊙ yet rise steeply in clusters. Our results suggest that satellite destruction and/or stripping are active from the point of nascent group formation. We show that the key role of groups in shaping MFs enables reconstruction of a given survey’s SMF or BMF based on its group halo mass distribution

    A systematic review of different models of home and community care services for older persons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Costs and consumer preference have led to a shift from the long-term institutional care of aged older people to home and community based care. The aim of this review is to evaluate the outcomes of case managed, integrated or consumer directed home and community care services for older persons, including those with dementia.</p> <p>Methods</p> <p>A systematic review was conducted of non-medical home and community care services for frail older persons. MEDLINE, PsycINFO, CINAHL, AgeLine, Scopus and PubMed were searched from 1994 to May 2009. Two researchers independently reviewed search results.</p> <p>Results</p> <p>Thirty five papers were included in this review. Evidence from randomized controlled trials showed that case management improves function and appropriate use of medications, increases use of community services and reduces nursing home admission. Evidence, mostly from non-randomized trials, showed that integrated care increases service use; randomized trials reported that integrated care does not improve clinical outcomes. The lowest quality evidence was for consumer directed care which appears to increase satisfaction with care and community service use but has little effect on clinical outcomes. Studies were heterogeneous in methodology and results were not consistent.</p> <p>Conclusions</p> <p>The outcomes of each model of care differ and correspond to the model's focus. Combining key elements of all three models may maximize outcomes.</p
    • 

    corecore