48 research outputs found

    Alteration Reaction and Mass Transfer via Fluids with Progress of Fracturing along the Median Tectonic Line, Mie Prefecture, Southwest Japan

    Get PDF
    We have analyzed mass transfer in the cataclasite samples collected from the Median Tectonic Line, southwest Japan, in which the degree of fracturing is well correlated with the bulk rock chemical compositions determined by the X-ray fluorescence (XRF) analysis. The results of “isocon” analysis indicate not only a large volume increase up to 110% but also the two-stage mass transfer during cataclasis. At the first stage from the very weakly to weakly fractured rocks, the weight percents of SiO2, Na2O, and K2O increase, while those of TiO2, FeO, MnO, MgO, and CaO decrease. At the second stage from the weakly to moderately and strongly fractured rocks, the trend of mass transfer is reversed. The principal component analysis reveals that the variation of chemical compositions in the cataclasite samples can be mostly interpreted by the mass transfer via fluids and by the difference in chemical composition in the protolith rocks to lesser degree. Finally, the changes in the modal composition of minerals with increasing cataclasis analyzed by the X-ray diffraction (XRD) with the aid of “RockJock” software clearly elucidate that the mass transfer of chemical elements was caused by dissolution and precipitation of minerals via fluids in the cataclasite samples

    Megathrust shear modulated by Albite Metasomatism in subduction mélanges

    Get PDF
    Aseismic megathrust slip downdip of the seismogenic zone is accommodated by either steady creep or episodic slow slip events (SSEs). However, the geological conditions defining the rheology of megathrust slip remain elusive. We examined exhumed subduction mélanges on Kyushu, Japan, which deformed at ∼370–500°C under greenschist to epidote‐amphibolite facies conditions, comparable to warm‐slab environments. The mélanges recorded fluid release and viscous shear localization associated with metasomatic reactions between juxtaposed metapelitic and metabasaltic rocks. Metasomatic reactions caused albitization of metapelite, resulting in depth‐dependent changes to megathrust rheology. In a mélange deformed at ∼370°C, very fine grained reaction products (metasomatic albite) facilitated grain boundary diffusion creep at stresses of ∼45 MPa, less than those in the surrounding metabasalt. Mineralogical and chemical changes during metasomatic reactions, and their field content, imply an onset of albite metasomatism at ∼350°C. Albite metasomatism therefore potentially contributed to decreased megathrust strength around the inferred thermally controlled base of the seismogenic zone. In a mélange deformed near the mantle wedge corner at ∼500°C, metasomatic reactions promoted local quartz vein formation and localized viscous shear at slow slip strain rates, during which the coarse‐grained metasomatic albite behaved as relatively rigid blocks in a viscous matrix. We suggest that albite metasomatism can facilitate changes in a megathrust slip mode with depth and may explain why slip mode changes from creep to SSEs with tremor with increasing depth

    A case of HER-2-positive recurrent breast cancer showing a clinically complete response to trastuzumab-containing chemotherapy after primary treatment of triple-negative breast cancer

    Get PDF
    We report a case of HER-2-positive recurrent breast cancer showing a clinically complete response to trastuzumab-containing chemotherapy 6 years after primary treatment of triple-negative breast cancer. The primary tumor was negative for HER-2 as determined by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) (1+, and ratio, 1.1), but examination of the recurrent lymph node metastasis showed positivity for HER-2 by FISH (ratio, 5.2). No lesions were detected in either her left breast or in other organs, and the patient was diagnosed as having HER-2-positive recurrent disease. Combination chemotherapy using weekly paclitaxel and trastuzumab was initiated, and a clinically complete response was achieved. This report suggests the benefit of routine evaluation of HER-2 status in recurrent breast cancer with the introduction of HER-2-targeting agents

    The method of lesson study based on the structure of the subject: the case of primary social studies classroom

    Get PDF
    This study presents the case study of the lesson study in a primary social studies classroom in Japan. The result indicates to propose a new method of social studies lesson study. While previous method tended to pay less attention to the context of school and children because of the focus of generalization, this study highlights the reality of diverse children in a classroom settings. Throughout the study, we compared the two items: The structure of the subject, namely, triangle relation of goals, contents, and methods and learner 's learning structure. Comparing the two items, we could see the effect of the process of teaching and learning on the children. It means that we can propose the new method by focusing on the reality of the classroom

    Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    Get PDF
    <p>During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.</p

    Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Get PDF
    International audienceFault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging‐wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP‐2). We present observational evidence for extensive fracturing and high hanging‐wall hydraulic conductivity (∼10−9 to 10−7 m/s, corresponding to permeability of ∼10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP‐2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging‐wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off‐fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation

    In-situ permeability of fault zones estimated by hydraulic tests and continuous groundwater-pressure observations

    No full text
    Abstract In-situ permeability of the Median Tectonic Line (MTL) fault zone in Mie Prefecture, southwest Japan, was estimated using hydraulic tests and groundwater pressure observations in two boreholes. The screen depths in Holes 1 and 2 are located, respectively, in a major strand of the MTL fault zone within the Sambagawa metamorphic rocks and a branching fault developed in the hanging wall of the MTL within the Ryoke mylonite. The estimated permeability at Hole 1 ranges from 5.3 × 10−17 to 5.0 × 10−16 m2, and that at Hole 2 ranges from 4.4 × 10−16 to 1.5 × 10−15 m2. We also measured the permeability of the protolith close to the screened depth of Hole 1 (3.4 × 10−19 and 3.7 × 10−19 m2) and Hole 2 (3.1 × 10−19 and 6.2 × 10−19 m2). The permeability of the fault zone was found to be more than 100 and 700 times higher than the protolith permeability at Holes 1 and 2, respectively. The permeability data for Holes 1 and 2 are consistent with previously reported permeability data for samples from an MTL outcrop. The permeability observed in this study reflects the complex fault zone permeability structure of the MTL fault zone
    corecore