363 research outputs found

    Spitzer observations of the HH 1/2 system. The discovery of the counterjet

    Get PDF
    We present unpublished Spitzer IRAC observations of the HH 1/2 young stellar outow processed with a high angular resolution deconvolution algorithm, that produces sub-arcsecond (~ 0.6 - 0.8”) images. In the resulting mid-infrared images, the optically invisible counterjet is detected for the first time. The counterjet is approximately half as bright as the jet at 4.5 µm (the IRAC band that best traces young stellar outows) and has a length of ~ 10”. The NW optical jet itself can be followed back in the mid-IR to the position of the exciting VLA 1 source. An analysis of the IRAC colors indicates that the jet/counterjet emission is dominated by collisionally excited H_2 pure rotational lines arising from a medium with a neutral Hydrogen gas density of ~ 1000-2000 cm^(-3) and a temperature ~ 1500 K. The observed jet/counterjet brightness asymmetry is consistent with an intrinsically symmetric outow with extinction from a dense, circumstellar structure of ~ 6” size (along the outow axis), and with a mean visual extinction, A_V ~ 11 mag

    New Variable Jet Models for HH 34

    Get PDF
    We consider newly derived proper motions of the HH 34 jet to reconstruct the evolution of this outflow. We first extrapolate ballistic trajectories for the knots (starting from their present-day positions and velocities) and find that at ~1000 yr in the future most of them will merge to form a larger-mass structure. This mass structure will be formed close to the present-day position of the HH 34S bow shock. We then carry out a fit to the ejection velocity versus time reconstructed from the observed proper motions (assuming that the past motion of the knots was ballistic) and use this fit to compute axisymmetric jet simulations. We find that the intensity maps predicted from these simulations do indeed match reasonably well the [S II] structure of HH 34 observed in Hubble Space Telescope images

    Dust Abundance and Properties in the Nearby Dwarf Galaxies NGC 147 and NGC 185

    Get PDF
    We present new mid- to far-infrared images of the two dwarf compact elliptical galaxies that are satellites of M31, NGC 185, and NGC 147, obtained with the Spitzer Space Telescope. Spitzer's high sensitivity and spatial resolution enable us for the first time to look directly into the detailed spatial structure and properties of the dust in these systems. The images of NGC 185 at 8 and 24 μm display a mixed morphology characterized by a shell-like diffuse emission region surrounding a central concentration of more intense infrared emission. The lower resolution images at longer wavelengths show the same spatial distribution within the central 50" but beyond this radius, the 160 μm emission is more extended than that at 24 and 70 μm. On the other hand, the dwarf galaxy NGC 147, located only a small distance away from NGC 185, shows no significant infrared emission beyond 24 μm and therefore its diffuse infrared emission is mainly stellar in origin. For NGC 185, the derived dust mass based on the best fit to the spectral energy distribution is 1.9 × 10^3 M_⊙, implying a gas mass of 3.0 × 10^5 M_⊙. These values are in agreement with those previously estimated from infrared as well as CO and H I observations and are consistent with the predicted mass return from dying stars based on the last burst of star formation 1 × 10^9 yr ago. Based on the 70-160 μm flux density ratio, we estimate a temperature for the dust of ~17 K. For NGC 147, we obtain an upper limit for the dust mass of 4.5 × 10^2 M_⊙ at 160 μm (assuming a temperature of ~20 K), a value consistent with the previous upper limit derived using Infrared Space Observatory observations of this galaxy. In the case of NGC 185, we also present full 5-38 μm low-resolution (R ~ 100) spectra of the main emission regions. The Infrared Spectrograph spectra of NGC 185 show strong polycyclic aromatic hydrocarbons emission, deep silicate absorption features and H_2 pure rotational line ratios consistent with having the dust and molecular gas inside the dust cloud being impinged by the far-ultraviolet radiation field of a relatively young stellar population. Therefore, based on its infrared spectral properties, NGC 185 shows signatures of recent star formation (a few ×10^8 yr ago), although its current star formation rate is quite low

    Spitzer/IRS investigation of MIPSGAL 24 microns compact bubbles

    Get PDF
    The MIPSGAL 24 μ\mum Galactic Plane Survey has revealed more than 400 compact-extended objects. Less than 15% of these MIPSGAL bubbles (MBs) are known and identified as evolved stars. We present Spitzer observations of 4 MBs obtained with the InfraRed Spectrograph to determine the origin of the mid-IR emission. We model the mid-IR gas lines and the dust emission to infer physical conditions within the MBs and consequently their nature. Two MBs show a dust-poor spectrum dominated by highly ionized gas lines of [\ion{O}{4}], [\ion{Ne}{3}], [\ion{Ne}{5}], [\ion{S}{3}] and [\ion{S}{4}]. We identify them as planetary nebulae with a density of a few 103 cm3^3\ \rm{cm^{-3}} and a central white dwarf of 200,000\gtrsim 200,000 K. The mid-IR emission of the two other MBs is dominated by a dust continuum and lower-excitation lines. Both of them show a central source in the near-IR (2MASS and IRAC) broadband images. The first dust-rich MB matches a Wolf-Rayet star of 60,000\sim 60,000 K at 7.5 kpc with dust components of 170\sim170 and 1750\sim1750 K. Its mass is about $10^{-3}\ \rm{M_\odot}anditsmasslossisabout and its mass loss is about 10^{-6}\ \rm{M_\odot/yr}. The second dust-rich MB has recently been suggested as a Be/B[e]/LBV candidate. The gas lines of [\ion{Fe}{2}] as well as hot continuum components (\sim300and and \sim1250K)arisefromtheinsideoftheMBwhileitsoutershellemitsacolderdustcomponent( K) arise from the inside of the MB while its outer shell emits a colder dust component (\sim75K).ThedistancetotheMBremainshighlyuncertain.Itsmassisabout K). The distance to the MB remains highly uncertain. Its mass is about 10^{-3}\ \rm{M_\odot}anditsmasslossisabout and its mass loss is about 10^{-5}\ \rm{M_\odot/yr}$.Comment: accepted for publication in Ap

    Proper Motions of Young Stellar Outflows in the Mid-Infrared with Spitzer. II. HH 377/Cep E

    Get PDF
    We have used multiple mid-infrared observations at 4.5 micron obtained with the Infrared Array Camera, of the compact (~1.4 arcmin) young stellar bipolar outflow Cep E to measure the proper motion of its brightest condensations. The images span a period of ~6 yr and have been reprocessed to achieve a higher angular resolution (~0.8 arcsec) than their normal beam (2 arcsec). We found that for a distance of 730 pc, the tangential velocities of the North and South outflow lobes are 62+/-29 and 94+/-6 km/s respectively, and moving away from the central source roughly along the major axis of the flow. A simple 3D hydrodynamical simulation of the H2 gas in a precessing outflow supports this idea. Observations and model confirm that the molecular Hydrogen gas, traced by the pure rotational transitions, moves at highly supersonic velocities without being dissociated. This suggests either a very efficient mechanism to reform H2 molecules along these shocks or the presence of some other mechanism (e.g. strong magnetic field) that shields the H2 gas.Comment: Accepted for publication in New Journal of Physics (Special Issue article

    A 100 pc Elliptical and Twisted Ring of Cold and Dense Molecular Clouds Revealed by Herschel Around the Galactic Center

    Get PDF
    Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a ~3 × 10^7 M_☉ ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40° with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x_2 orbits predicted for the barred Galactic potential. Sgr A⋆ is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data

    The ultraviolet spectrum of HH 24A and its relation to optical spectra

    Get PDF
    The spectrum of the brightest part (HH 24A) of the complex Herbig-Haro object HH 24 in the short wavelength UV range was studied. The object is of special interest since it is known that in the optical range the continuum is due to dust scattered light originating in a young stellar object while the shock excited emission lines are formed in HH 24A itself. The spectrum shows only a continuum or a quasi-continuum and is not comparable to that of the typical high excitation object like HH1 or HH2 nor to that of a low excitation object like HH3 or HH47

    Distinguishing between HII regions and planetary nebulae with Hi-GAL, WISE, MIPSGAL, and GLIMPSE

    Get PDF
    Context. H II regions and planetary nebulae (PNe) both emit at radio and infrared (IR) wavelengths, and angularly small H II regions can be mistaken for PNe. This problem of classification is most severe for H II regions in an early evolutionary stage, those that are extremely distant, or those that are both young and distant. Previous work has shown that H II regions and PNe can be separated based on their infrared colors. Aims. Using data from the Herschel Hi-GAL survey, as well as WISE and the Spitzer MIPSGAL and GLIMPSE surveys, we wish to establish characteristic IR colors that can be used to distinguish between H II regions and PNe. Methods. We perform aperture photometry measurements for a sample of 126 H II regions and 43 PNe at wavelengths from 8.0 μm to 500 μm. Results. We find that H II regions and PNe have distinct IR colors. The most robust discriminating color criteria are [F_(12)/F_8] 1.3, and [F_(160)/F_(24)] > 0.8 (or alternately [F_(160)/F_(22)] > 0.8), where the brackets indicate the log of the flux ratio. All three of these criteria are individually satisfied by over 98% of our sample of H II regions and by ~10% of our sample of PNe. Combinations of these colors are more robust in separating the two populations; for example all H II regions and no PNe satisfy [F_(12)/F_8] 0.8. When applied to objects of unknown classification, these criteria prove useful in separating the two populations. The dispersion in color is relatively small for H II regions; this suggests that any evolution in these colors with time for H II regions must be relatively modest. The spectral energy distributions (SEDs) of H II regions can be separated into “warm” and “cold” components. The “cold” component is well-fit by a grey-body of temperature 25 K. The SEDs of nearly two-thirds of our sample of H II regions peak at 160 μm and one third peak at 70 μm. For PNe, 67% of the SEDs peak at 70 μm, 23% peak at either 22 μm or 24 μm, and 9% (two sources) peak at 160 μm

    The infrared and molecular environment surrounding the Wolf-Rayet star WR130

    Get PDF
    We present a study of the molecular CO gas and mid/far infrared radiation arising from the environment surrounding the Wolf-Rayet (W-R) star 130. We use the multi-wavelength data to analyze the properties of the dense gas and dust, and its possible spatial correlation with that of Young Stellar Objects (YSOs). We use CO J=1-0 data from the FCRAO survey as tracer of the molecular gas, and mid/far infrared data from the recent WISE and Herschel space surveys to study the dust continuum radiation and to identify a population of associated candidate YSOs. The spatial distribution of the molecular gas shows a ring-like structure very similar to that observed in the HI gas, and over the same velocity interval. The relative spatial distribution of the HI and CO components is consistent with a photo-dissociation region. We have identified and characterized four main and distinct molecular clouds that create this structure. Cold dust is coincident with the dense gas shown in the CO measurements. We have found several cYSOs that lie along the regions with the highest gas column density, and suggest that they are spatially correlated with the shell. These are indicative of regions of star formation induced by the strong wind and ionization of the WR star.Comment: 15 pages, 12 figures, 6 Tables. Accepted for publication in MNRA
    corecore