53 research outputs found

    Keeping calm in the face of change: towards optimisation of FRP by reasoning about change

    Get PDF
    Functional Reactive Programming (FRP) is an approach to reactive programming where systems are structured as networks of functions operating on signals (time-varying values). FRP is based on the synchronous data-flow paradigm and supports both (an approximation to) continuous-time and discrete-time signals (hybrid systems).What sets FRP apart from most other languages for similar applications is its support for systems with dynamic structure and for higher-order reactive constructs. This paper contributes towards advancing the state of the art of FRP implementation by studying the notion of signal change and change propagation in a setting of structurally dynamic networks of n-ary signal functions operating on mixed continuous-time and discrete-time signals. We first define an ideal denotational semantics (time is truly continuous) for this kind of FRP, along with temporal properties, expressed in temporal logic, of signals and signal functions pertaining to change and change propagation. Using this framework, we then show how to reason about change; specifically, we identify and justify a number of possible optimisations, such as avoiding recomputation of unchanging values. Note that due to structural dynamism, and the fact that the output of a signal function may change because time is passing even if the input is unchanging, the problem is significantly more complex than standard change propagation in networks with static structure

    Pharmacogenetics of Bleeding and Thromboembolic Events in Direct Oral Anticoagulant Users

    Get PDF
    Publisher Copyright: © 2021 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and TherapeuticsThis study aimed to analyze associations between genetic variants and the occurrence of clinical outcomes in dabigatran, apixaban, and rivaroxaban users. This was a retrospective real-world study linking genotype data of three Finnish biobanks with national register data on drug dispensations and healthcare encounters. We investigated several single-nucleotide variants (SNVs) in the ABCG2, ABCB1, CES1, and CYP3A5 genes potentially associated with bleeding or thromboembolic events in direct oral anticoagulant (DOAC) users based on earlier research. We used Cox regression models to compare the incidence of clinical outcomes between carriers and noncarriers of the SNVs or haplotypes. In total, 1,806 patients on apixaban, dabigatran, or rivaroxaban were studied. The ABCB1 c.3435C>T (p.Ile1145=, rs1045642) SNV (hazard ratio (HR) 0.42, 95% confidence interval (CI), 0.18-0.98, P = 0.044) and 1236T-2677T-3435T (rs1128503-rs2032582-rs1045642) haplotype (HR 0.44, 95% CI, 0.20-0.95, P = 0.036) were associated with a reduced risk for thromboembolic outcomes, and the 1236C-2677G-3435C (HR 2.55, 95% CI, 1.03-6.36, P = 0.044) and 1236T-2677G-3435C (HR 5.88, 95% CI, 2.35-14.72, P A (rs4148738) SNV associated with a lower risk for bleeding events (HR 0.37, 95% CI, 0.16-0.89, P = 0.025) in apixaban users. ABCB1 variants are potential factors affecting thromboembolic events in rivaroxaban users and bleeding events in apixaban users. Studies with larger numbers of patients are warranted for comprehensive assessment of the pharmacogenetic associations of DOACs and their relevance for clinical practice.Peer reviewe

    Dual-Affinity Re-Targeting proteins direct T cell-mediated cytolysis of latently HIV-infected cells

    Get PDF
    Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell-mediated clearance of HIV-1-infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity-mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected-patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals

    Severe Asthma Standard-of-Care Background Medication Reduction With Benralizumab: ANDHI in Practice Substudy

    Full text link
    peer reviewedBackground: The phase IIIb, randomized, parallel-group, placebo-controlled ANDHI double-blind (DB) study extended understanding of the efficacy of benralizumab for patients with severe eosinophilic asthma. Patients from ANDHI DB could join the 56-week ANDHI in Practice (IP) single-arm, open-label extension substudy. Objective: Assess potential for standard-of-care background medication reductions while maintaining asthma control with benralizumab. Methods: Following ANDHI DB completion, eligible adults were enrolled in ANDHI IP. After an 8-week run-in with benralizumab, there were 5 visits to potentially reduce background asthma medications for patients achieving and maintaining protocol-defined asthma control with benralizumab. Main outcome measures for non–oral corticosteroid (OCS)-dependent patients were the proportions with at least 1 background medication reduction (ie, lower inhaled corticosteroid dose, background medication discontinuation) and the number of adapted Global Initiative for Asthma (GINA) step reductions at end of treatment (EOT). Main outcomes for OCS-dependent patients were reductions in daily OCS dosage and proportion achieving OCS dosage of 5 mg or lower at EOT. Results: For non–OCS-dependent patients, 53.3% (n = 208 of 390) achieved at least 1 background medication reduction, increasing to 72.6% (n = 130 of 179) for patients who maintained protocol-defined asthma control at EOT. A total of 41.9% (n = 163 of 389) achieved at least 1 adapted GINA step reduction, increasing to 61.8% (n = 110 of 178) for patients with protocol-defined EOT asthma control. At ANDHI IP baseline, OCS dosages were 5 mg or lower for 40.4% (n = 40 of 99) of OCS-dependent patients. Of OCS-dependent patients, 50.5% (n = 50 of 99) eliminated OCS and 74.7% (n = 74 of 99) achieved dosages of 5 mg or lower at EOT. Conclusions: These findings demonstrate benralizumab's ability to improve asthma control, thereby allowing background medication reduction. © 202
    corecore