10 research outputs found

    Heat girdling does not affect xylem integrity : an in vivo magnetic resonance imaging study in the tomato peduncle

    No full text
    Heat girdling is a method to estimate the relative contribution of phloem vs xylem water flow to fruit growth. The heat girdling process is assumed to destroy all living tissues, including the phloem, without affecting xylem conductivity. However, to date, the assumption that xylem is not affected by heat girdling remains unproven. In this study, we used in vivo magnetic resonance imaging (MRI) velocimetry to test if heat girdling can cause xylem vessels to embolize or affect xylem water flow characteristics in the peduncle of tomato (Solanum lycopersicum cv Dirk). Anatomical and MRI data indicated that, at the site of girdling, all living tissues were disrupted, but that the functionality of the xylem remained unchanged. MRI velocimetry showed that the volume flow through the secondary xylem was not impeded by heat girdling in either the short or the long term (up to 91 h after girdling). This study provides support for the hypothesis that in the tomato peduncle the integrity and functionality of the xylem remain unaffected by heat girdling. It therefore confirms the validity of the heat girdling technique as a means to estimate relative contributions of xylem and phloem water flow to fruit growth

    Agroecological transformation for sustainable food systems : Insight on France-CGIAR research

    No full text
    This 26th dossier d’Agropolis is devoted to research and partnerships in agroecology. The French Commission for International Agricultural Research (CRAI) and Agropolis International, on behalf of CIRAD, INRAE and IRD and in partnership with CGIAR, has produced this new issue in the ‘Les dossiers d’Agropolis international’ series devoted to agroecology. This publication has been produced within the framework of the Action Plan signed by CGIAR and the French government on February 4th 2021 to strengthen French collaboration with CGIAR, where agroecology is highlighted as one of the three key priorities (alongside climate change, nutrition and food systems)

    Tapping the potential of grafting to improve the performance of vegetable cropping systems in sub-Saharan Africa. A review

    No full text
    corecore