91 research outputs found

    Similarities and differences in interaction of K(+) and Na(+) with condensed ordered DNA. A molecular dynamics computer simulation study

    Get PDF
    Four 20 ns molecular dynamics simulations have been performed with two counterions, K(+) or Na(+), at two water contents, 15 or 20 H(2)O per nucleotide. A hexagonal simulation cell comprised of three identical DNA decamers [d(5′-ATGCAGTCAG) × d(5′-TGACTGCATC)] with periodic boundary condition along the DNA helix was used. The simulation setup mimics the DNA state in oriented DNA fibers or in crystals of DNA oligomers. Variation of counterion nature and water content do not alter averaged DNA structure. K(+) and Na(+) binding to DNA are different. K(+) binds to the electronegative sites of DNA bases in the major and the minor grooves, while Na(+) interacts preferentially with the phosphate groups. Increase of water causes a shift of both K(+) and Na(+) from the first hydration shell of O1P/O2P and of the DNA bases in the minor groove with lesser influence for the cation binding to the bases in the major groove. Mobility of both water and cations in the K–DNA systems is faster than in the Na–DNA systems: Na(+) organizes and immobilizes water structure around itself and near DNA while for K(+) water is less organized and more dynamic

    Metal Ion-Induced Lateral Aggregation of Filamentous Viruses fd and M13

    Get PDF
    We report a detailed comparison between calculations of inter-filament interactions based on Monte-Carlo simulations and experimental features of lateral aggregation of bacteriophages fd and M13 induced by a number of divalent metal ions. The general findings are consistent with the polyelectrolyte nature of the virus filaments and confirm that the solution electrostatics account for most of the experimental features observed. One particularly interesting discovery is resolubilization for bundles of either fd or M13 viruses when the concentration of the bundle-inducing metal ion Mg2+ or Ca2+ is increased to large (\u3e100 mM) values. In the range of Mg2+ or Ca2+ concentrations where large bundles of the virus filaments are formed, the optimal attractive interaction energy between the virus filaments is estimated to be on the order of 0.01 kT per net charge on the virus surface when a recent analytical prediction to the experimentally defined conditions of resolubilization is applied. We also observed qualitatively distinct behavior between the alkali-earth metal ions and the divalent transition metal ions in their action on the charged viruses. The understanding of metal ions-induced reversible aggregation based on solution electrostatics may lead to potential applications in molecular biology and medicine

    Hydrophobic interactions control the self-assembly of DNA and cellulose

    Get PDF
    Desoxyribosenucleic acid, DNA, and cellulose molecules self-assemble in aqueous systems. This aggregation is the basis of the important functions of these biological macromolecules. Both DNA and cellulose have significant polar and nonpolar parts and there is a delicate balance between hydrophilic and hydrophobic interactions. The hydrophilic interactions related to net charges have been thoroughly studied and are well understood. On the other hand, the detailed roles of hydrogen bonding and hydrophobic interactions have remained controversial. It is found that the contributions of hydrophobic interactions in driving important processes, like the double-helix formation of DNA and the aqueous dissolution of cellulose, are dominating whereas the net contribution from hydrogen bonding is small. In reviewing the roles of different interactions for DNA and cellulose it is useful to compare with the self-assembly features of surfactants, the simplest case of amphiphilic molecules. Pertinent information on the amphiphilic character of cellulose and DNA can be obtained from the association with surfactants, as well as on modifying the hydrophobic interactions by additives.PTDC/ASP-SIL/30619/2017, UIDB/05183/2020, UIDB00102/2020, CEECIND/01014/2018, 2015-04290, 942-2015-251, MOE2019-T3-1-012info:eu-repo/semantics/publishedVersio

    Molecular dynamics simulation of multivalent ion mediated DNA attraction

    Full text link
    All atom molecular dynamics simulations with explicit water were done to study the interaction between two parallel double-stranded DNA molecules in the presence of the multivalent counterions putrescine (2+), spermidine (3+), spermine (4+) and cobalt hexamine (3+). The inter-DNA interaction potential is obtained with the umbrella sampling technique. The attractive force is rationalized in terms of the formation of ion bridges, i.e. multivalent ions which are simultaneously bound to the two opposing DNA molecules. The lifetime of the ion bridges is short on the order of a few nanoseconds.Comment: 4 pages, 5 figures, to be published in Physical Review Letter

    A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation

    Get PDF
    We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear ε-oligo(l-lysines), (denoted εKn, n = 3–10, 31; n is the number of lysines equal to the ligand charge) and branched α-substituted homologues of εK10: εYK10, εLK10 (Z = +10); εRK10, εYRK10 and εLYRK10 (Z = +20). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, CKCl). The dependence of EC50 (ligand concentration at the midpoint of DNA condensation) on CKCl shows the existence of a salt-independent regime at low CKCl and a salt-dependent regime with a steep rise of EC50 with increase of CKCl. Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher CKCl. A novel and simple relationship describing the EC50 dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand–DNA complex is derived. For the ε-oligolysines εK3–εK10, the experimental dependencies of EC50 on CKCl and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed

    The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association

    Get PDF
    Understanding the molecular mechanisms behind regulation of chromatin folding through covalent modifications of the histone N-terminal tails is hampered by a lack of accessible chromatin containing precisely modified histones. We study the internal folding and intermolecular self-association of a chromatin system consisting of saturated 12-mer nucleosome arrays containing various combinations of completely acetylated lysines at positions 5, 8, 12 and 16 of histone H4, induced by the cations Na+, K+, Mg2+, Ca2+, cobalt-hexammine3+, spermidine3+ and spermine4+. Histones were prepared using a novel semi-synthetic approach with native chemical ligation. Acetylation of H4-K16, but not its glutamine mutation, drastically reduces cation-induced folding of the array. Neither acetylations nor mutations of all the sites K5, K8 and K12 can induce a similar degree of array unfolding. The ubiquitous K+, (as well as Rb+ and Cs+) showed an unfolding effect on unmodified arrays almost similar to that of H4-K16 acetylation. We propose that K+ (and Rb+/Cs+) binding to a site on the H2B histone (R96-L99) disrupts H4K16 ε-amino group binding to this specific site, thereby deranging H4 tail-mediated nucleosome–nucleosome stacking and that a similar mechanism operates in the case of H4-K16 acetylation. Inter-array self-association follows electrostatic behavior and is largely insensitive to the position or nature of the H4 tail charge modification

    Telomeric chromatin structure

    No full text
    Eukaryotic DNA is packaged into nucleosomes, which further condenses into chromosomes. The telomeres, which form the protective end-capping of chromosomes, play a pivotal role in ageing and cancer. Recently, significant advances have been made in understanding the nucleosomal and telomeric chromatin structure at the molecular level. In addition, recent studies shed light on the nucleosomal organisation at telomeres revealing its ultrastructural organisation, the atomic structure at the nucleosome level, its dynamic properties, and higher-order packaging of telomeric chromatin. Considerable advances have furthermore been made in understanding the structure, function and organisation of shelterin, telomerase and CST complexes. Here we discuss these recent advances in the organisation of telomeric nucleosomes and chromatin and highlight progress in the structural understanding of shelterin, telomerase and CST complexes.Ministry of Education (MOE)Published versionThis work has been supported by the Singapore Ministry of Education (MOE) through Academic Research Fund (AcRF) Tier 2 [MOE2018-T2-1-112]
    corecore