33 research outputs found
Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk
Background: A recent association study identified a common variant (rs9790517) at 4q24 to be associated with breast cancer risk. Independent association signals and potential functional variants in this locus have not been explored.
Methods: We conducted a fine-mapping analysis in 55,540 breast cancer cases and 51,168 controls from the Breast Cancer Association Consortium.
Results: Conditional analyses identified two independent association signals among women of European ancestry, represented by rs9790517 [conditional P = 2.51 × 10−4; OR, 1.04; 95% confidence interval (CI), 1.02–1.07] and rs77928427 (P = 1.86 × 10−4; OR, 1.04; 95% CI, 1.02–1.07). Functional annotation using data from the Encyclopedia of DNA Elements (ENCODE) project revealed two putative functional variants, rs62331150 and rs73838678 in linkage disequilibrium (LD) with rs9790517 (r2 ≥ 0.90) residing in the active promoter or enhancer, respectively, of the nearest gene, TET2. Both variants are located in DNase I hypersensitivity and transcription factor–binding sites. Using data from both The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), we showed that rs62331150 was associated with level of expression of TET2 in breast normal and tumor tissue.
Conclusion: Our study identified two independent association signals at 4q24 in relation to breast cancer risk and suggested that observed association in this locus may be mediated through the regulation of TET2.
Impact: Fine-mapping study with large sample size warranted for identification of independent loci for breast cancer risk
“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy
Transformative artificially intelligent tools, such as ChatGPT, designed to generate sophisticated text indistinguishable from that produced by a human, are applicable across a wide range of contexts. The technology presents opportunities as well as, often ethical and legal, challenges, and has the potential for both positive and negative impacts for organisations, society, and individuals. Offering multi-disciplinary insight into some of these, this article brings together 43 contributions from experts in fields such as computer science, marketing, information systems, education, policy, hospitality and tourism, management, publishing, and nursing. The contributors acknowledge ChatGPT’s capabilities to enhance productivity and suggest that it is likely to offer significant gains in the banking, hospitality and tourism, and information technology industries, and enhance business activities, such as management and marketing. Nevertheless, they also consider its limitations, disruptions to practices, threats to privacy and security, and consequences of biases, misuse, and misinformation. However, opinion is split on whether ChatGPT’s use should be restricted or legislated. Drawing on these contributions, the article identifies questions requiring further research across three thematic areas: knowledge, transparency, and ethics; digital transformation of organisations and societies; and teaching, learning, and scholarly research. The avenues for further research include: identifying skills, resources, and capabilities needed to handle generative AI; examining biases of generative AI attributable to training datasets and processes; exploring business and societal contexts best suited for generative AI implementation; determining optimal combinations of human and generative AI for various tasks; identifying ways to assess accuracy of text produced by generative AI; and uncovering the ethical and legal issues in using generative AI across different contexts
Scenario-based decision making for architectural variability in product families
In this paper, we present a systematic approach towards decision making for variability in product families in the context of uncertainty. Our approach consists of the following ingredients: a suitable set of architectural views that bridge the gap between customer needs and available technology, a multi-view variation modeling technique, the selection of several scenarios of different kinds, and a quantitative analysis of quality aspects for these scenarios