8 research outputs found

    Bisector and zero-macrospin co-rotational systems for shell elements

    Get PDF
    A principal issue in any co-rotational approach for large displacement analysis of plates and shells is associated with the specific choice of the local reference system in relation to the current deformed element configuration. Previous approaches utilised local co-rotational systems, which are invariant to nodal ordering, a characteristic that is deemed desirable on several fronts; however, the associated definitions of the local reference system suffered from a range of shortcomings, including undue complexity, dependence on the local element formulation and possibly an asymmetric tangent stiffness matrix. In this paper, new definitions of the local co-rotational system are proposed for quadrilateral and triangular shell elements, which achieve the invariance characteristic to the nodal ordering in a relatively simple manner and address the aforementioned shortcomings. The proposed definitions utilise only the nodal coordinates in the deformed configuration, where two alternative definitions, namely, bisector and zero-macrospin definitions, are presented for each of quadrilateral and triangular finite elements. In each case, the co-rotational transformations linking the local and global element entities are presented, highlighting the simplicity of the proposed approach. Several numerical examples are finally presented to demonstrate the effectiveness and relative accuracy of the alternative definitions proposed for the local co-rotational system

    Analysis of segmentally constructed prestressed concrete bridges using hexahedral elements with realistic tendon profiles

    No full text
    The paper presents a systematically numerical procedure based on the finite-element method for three-dimensional analysis of segmentally constructed prestressed concrete bridges using hexahedral elements including realistic tendon profiles. The enhanced assumed strain (EAS) is used in the formulation of the hexahedral element in order to improve the element performances. Both the geometric nonlinearity and time-dependent effects due to creep, shrinkage, and aging of the concrete and relaxation of the prestress are taken into account, while variations of the structural configuration due to changes of the structural geometry and boundary conditions during the construction process are also incorporated. To include realistic tendon profiles, the idealized prestressing tendon is represented by a system of piecewise linear prestressing segments. Several numerical examples in a wide range of prestressed concrete structures are presented to demonstrate the validity and efficiency of the proposed procedure. Finally, application to the erection of a segmentally erected prestressed concrete bridge is discussed at the end of the paper
    corecore