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Abstract 

A principal issue in any co-rotational approach for large displacement analysis of plates and 

shells is associated with the specific choice of the local reference system in relation to the 

current deformed element configuration. Previous approaches utilised local co-rotational 

systems which are invariant to nodal ordering, a characteristic that is deemed desirable on 

several fronts; however, the associated definitions of the local reference system suffered from 

a range of shortcomings, including undue complexity, dependence on the local element 

formulation, and possibly an asymmetric tangent stiffness matrix. In this paper, new 

definitions of the local co-rotational system are proposed for quadrilateral and triangular shell 

elements, which achieve the invariance characteristic to the nodal ordering in a relatively 

simple manner and address the aforementioned shortcomings. The proposed definitions 

utilise only the nodal coordinates in the deformed configuration, where two alternative 

definitions, namely bisector and zero-macrospin definitions, are presented for each of 

quadrilateral and triangular finite elements. In each case, the co-rotational transformations 

linking the local and global element entities are presented, highlighting the simplicity of the 

proposed approach. Several numerical examples are finally presented to demonstrate the 

effectiveness and relative accuracy of the alternative definitions proposed for the local co-

rotational system. 
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1 INTRODUCTION 

In recent years, the geometrically nonlinear analysis of plates and shells has drawn 

increasing interest in various fields of engineering, including for example in civil engineering 

the assessment of building structures subject to extreme loading. In formulating large 

displacement finite elements for small strain problems, the relationship between the strain 

and displacement fields is highly nonlinear and complex if the displacement fields are 

referred to a fixed coordinate system, where the nonlinear strain terms arise mainly from the 

element rigid body rotations. The co-rotational approach, which decomposes the element 

motion into rigid body and strain-inducing parts via the use of a local co-rotational system, 

offers exceptional benefits for large displacement structural analysis problems with 

deformations of the bending type, particularly when accounting for arbitrarily large rigid 

body rotations. By choosing an element-specific co-rotational reference system which 

follows the element current deformed configuration, rigid body rotations of the element are 

removed, and low-order, even linear, relationships between the strain and local displacement 

fields may be employed. Therefore, the co-rotational approach shifts the focus of large 

displacement modelling from relating the strain and displacement fields to establishing 

transformations between local co-rotational and global nodal entities, hence effectively 

decoupling the large displacement issues from the local element discretization of the 

continuum response. In this respect, the co-rotational approach has the potential to be applied 

as an element independent procedure [1, 2], upgrading linear local element formulations of 

different sophistication to geometric nonlinear analysis with relative ease.  

A principal issue in any co-rotational approach is associated with the specific choice of the 

local reference system in relation to the current deformed element configuration. Depending 

on the specific definition of the local co-rotational system, the resulting co-rotational 

approach may be element independent but restricted to elements of a specific shape and order, 

or it may be more generally applied to elements of a particular shape regardless of order, 

which is the aim of the present work. 

Rankin and Brogan [1] defined two co-rotational systems for 3-noded triangular and 4-

noded quadrilateral elements, respectively, where in both cases one of the local system axes 
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was effectively aligned to one of the element edges. These definitions of the co-rotational 

system were used by Li et al. [3, 4] in 6-noded triangular elements for problems involving 

geometric and material nonlinearity, and by Jiang and Chernuka [5] in a 4-noded 

quadrilateral element for large displacement analysis. Norachan et al. [6] employed a co-

rotational system for an 8-noded degenerated shell element, utilising the enhanced assumed 

strain and advanced natural strain concepts for the treatment of locking [7, 8], where one of 

the local system axes was aligned with one of the planar covariant base vectors. Alves de 

Sousa et al. [9] also considered a co-rotational approach for a degenerated shell element, 

though the co-rotational transformations were applied at the constitutive integration point 

level, thus losing the desirable characteristics of element independence and decoupling 

between the co-rotational transformations and the local element formulation. 

Whilst an arbitrary definition that simply requires the local co-rotational system to closely 

follow the current element configuration, as in the above definitions [1, 6], may not 

significantly affect the large displacement response predictions for small strain problems, this 

often leads to local system definitions which are not invariant to the specified order of the 

element nodes. Besides the errors that could arise with such definitions when elements in the 

same mesh are defined using different nodal ordering, it has also been argued that the 

invariance characteristic would be desirable for extending the co-rotational approach to large 

strain problems [2] and for identifying the bifurcation points of perfectly symmetric 

structures [10].  

Towards this end, several approaches were previously proposed to achieve the invariance 

of the local system to nodal ordering. Kebari and Cassell [11] defined the co-rotational 

system for a 9-noded quadrilateral shell element by locating the two planar axes 

symmetrically with respect to the two planar curvilinear coordinates at each integration point. 

Kim and his colleagues [12-14] employed this definition of the co-rotational system in the 

formulation of 4-noded and 8-noded monolithic and laminated shell elements for analysis of 

both elastic and elasto-plastic problems, but the alignment of the planar axes was performed 

at the element centroid only rather than at all integration points. Crisfield and Moita [2, 15] 

proposed a co-rotational system that enforced zero local spin at the element centroid using 
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polar decomposition, which they employed for 2D/3D continuum elements as well as shell 

elements. A common feature of these definitions [2, 11-15] is their reliance on the local 

element displacement fields, which restricts their application in each instance to elements of 

the same shape and order; in this respect, these definitions are only partially element 

independent. It is also worth noting that Crisfield and Moita [2] indicated that their approach 

leads to an asymmetric geometric stiffness matrix, which is obviously undesirable from a 

computational perspective. In reality, the geometric stiffness matrix, which is directly related 

to the second derivatives of local with respect to global nodal displacements, cannot be 

asymmetric when the local co-rotational system is uniquely defined in terms of global nodal 

displacements. Whilst this may at first cast doubt on the uniqueness of the co-rotational 

system proposed by Crisfield and Moita [2], it is more credible that their finding of an 

asymmetric geometric stiffness matrix is incorrect. 

There are a few other definitions of the local co-rotational system which not only possess 

the invariance characteristic to nodal ordering but are also defined in terms of only nodal 

position variables, thus making them potentially independent of the local element formulation 

and its order. Rankin [16] defined a co-rotational system by minimising the square of 

Euclidean norm of nodal local displacements, where the local system orientation was 

determined through an iterative procedure. This definition was adopted by Eriksson and 

Pacoste [17] and later refined by Battini and Pacoste [10] for a 3-noded triangular shell 

element where the need for iteration was overcome with explicit expressions for the 

orientation of the local system. Importantly, Battini and Pacoste [10] developed similar 

expressions for the 3-noded triangular element considering also the zero spin definition [2], 

and they noted that both alternative definitions may be directly used for elements of higher 

order. Whilst achieving considerable simplification over the previous approaches [2,16], the 

approach developed by Battini and Pacoste [10] employs two stages, where in the first stage 

local entities are determined for a local system that follows one of the element edges, and this 

is then subjected to a spin rotation in a second stage to determine its final orientation. A 

simpler bisector definition was previously proposed by the first author [18] for 4-noded 

quadrilateral elements, where the local planar axes are defined as the bisectors of interior 
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angles formed by the intersection of the two element diagonals. Not only does this definition 

of the local co-rotational system achieve nodal invariance as well as independence of the 

local element formulation and order, but it is also easily and directly determined from global 

nodal position variables. This co-rotational system was subsequently employed by Li et al. 

[19-21] in the formulation of a 9-noded shell element applied to multi-layered shell problems 

and elasto-plastic analysis. 

In this paper, new definitions of the local co-rotational system are proposed for 

quadrilateral and triangular shell elements, which achieve the invariance characteristic to 

nodal ordering in a relatively simple manner, result in a symmetric tangent stiffness matrix, 

and are independent of the local element formulation and order. This paper elaborates the 

bisector definition to deal with triangular elements, and proposes an alternative and equally 

simple definition based on a zero-macrospin criterion that is also applicable to triangular as 

well as quadrilateral elements. The proposed bisector and zero-macrospin definitions utilise 

only nodal coordinates in the deformed configuration, where the co-rotational 

transformations linking the local and global element response are presented. The new 

definitions are equally applicable to plates and curved shells, and are thus considered in this 

paper with flat as well as curved quadrilateral and triangular shell elements utilising the 

Reissner-Mindlin hypothesis. 

The paper proceeds with a discussion on the importance of the invariance characteristic to 

nodal ordering for the co-rotational approach. Subsequently, the proposed bisector and zero-

macrospin definitions of the co-rotational system are respectively presented. The application 

of the two co-rotational approaches to triangular and quadrilateral shell elements is presented 

along with an outline of the element formulations in the local system. Several numerical 

examples are finally provided to demonstrate the effectiveness and relative accuracy of the 

two proposed co-rotational system definitions.  

2 INVARIANCE CHARACTERISTIC OF CO-ROTATIONAL SYSTEMS 

The simplest definition of a local co-rotational system is based on orienting the local 

x-axis parallel to the element edge 1-2, with the local z-axis taken normal to edge 1-2 and its 
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neighbouring edge, as depicted in Figure 1 for a triangular element. The local element 

displacement parameters, which exclude rigid body rotations, are then obtained by aligning 

the local element co-rotational systems for the initial undeformed and current deformed 

configurations (see ‘Local reference system 1’ in Figure 1). If the element node numbers are 

specified in a different order, as labelled in Figure 1 with enclosing parentheses (…), 

different local displacement parameters are obtained (see ‘Local reference system 2’ in 

Figure 1). For this specific element geometry and deformed configuration, it appears that the 

first local system is associated with reduced local element spin, in the sense that the 

orientation of the internal line connecting node 3 to the element centroid maintains an almost 

identical orientation to its initial direction, while the other two internal lines associated with 

nodes 1 and 2 rotate respectively clockwise and counter-clockwise from their initial 

directions. However, for the second local system, a resultant counter-clockwise spin of the 

current configuration relative to the initial configuration is observed, which indicates that 

rigid body rotations have not been full eliminated from the local deformations. While 

negligible element spin is a requirement for the viability of a linear local element formulation, 

this is indeed the case for small strain problems where the effective local element response is 

identical for the two alternative sets of nodal numbering. The discrepancy between the global 

element responses with these two sets of nodal numbering does not then arise because of 

discrepancies in the effective local response but due to differences in the relative orientation 

of the local co-rotational system in the deformed configuration ( x y z, ,c c c ) with respect to the 

initial configuration ( o o o
x y z, ,c c c ), though this difference also reduces with smaller strains. 

It is perhaps this observation that led previous researchers to diminish the general 

importance of invariance to nodal numbering for the co-rotational approach in the context of 

small strain problems, citing its significance more for extensions to large strain problems [2] 

and for certain stability problems where symmetry should lead to a loss of stability by 

bifurcation [10]. While the importance of nodal invariance for such situations is not disputed, 

it is propounded in this work that there is also a class of small strain problem for which nodal 

invariance is particularly important, and that is 2D problems involving out-of-plane curvature 

of thin plates and shells. 
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To illustrate this point, consider two scenarios: i) a rectangular plate of depth D subject to 

planar curvature (Figure 2.a), and ii) the same plate with thickness t subject to out-of-plane 

twisting curvature (Figure 2.b), where in both cases the strains are varying linearly over the 

depth/thickness with extreme fibre strains of  . Considering quadrilateral elements of size h, 

it can be easily shown that the difference in relative orientation of the local co-rotational 

system with respect to the initial configuration considering the two noted sets of nodal 

ordering are as follows: 

 

h
2    planar curvature

D

h
2    twisting curvature

t

  
 

  
  

     

 (1) 

Clearly, for the case of planar curvature, h is typically a small fraction of D, hence   is 

also a small fraction of an already small strain  . However, for the case out-of-plane 

curvature of a thin plate, t is typically a very small fraction of h, hence   can be a large 

multiple of  . While in both cases, the co-rotational approach is guaranteed to converge with 

mesh refinement regardless of nodal ordering, since   reduces with h, nodal invariance has 

important implications on solution accuracy for relatively coarse meshes and on the 

achievement of monotonic convergence regardless of nodal ordering between successive 

refinements, as illustrated in subsequent numerical examples. Besides, achieving nodal 

invariance for the co-rotational approach typically brings the beneficial effect of reducing 

spin at the local element level, which improves the accuracy of a local linear formulation for 

large displacement analysis. 

The optimal orientation of the local reference system corresponds to a zero-spin condition 

[2], which cannot be fulfilled at all material points with a single local element system, as 

required in an element independent co-rotational approach, for general strain variations over 

the element. Therefore, the aim should generally be to establish a local co-rotational system 

such that the rotations of infinitesimal segments at different material points within the 

element domain, from the local undeformed to the deformed configuration, are minimised. 
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Within this context, a definition of the local co-rotational system is considered to be effective 

if it has the following characteristics:  

(a) simple to establish,  

(b) achieves nodal invariance, 

(c) reduces the spin of the element, and 

(d) is uniquely defined so as to provide a symmetric element tangent stiffness matrix. 

In this paper, two definitions of the local co-rotational system are proposed, namely 

bisector and zero-macrospin definitions, both of which satisfy the aforementioned 

requirements, as presented in the following sections. 

3 BISECTOR DEFINITIONS 

Consideration is given hereafter to simple bisector definitions of the local co-rotational 

system for quadrilateral and triangular elements, which are invariant to nodal ordering, are 

independent of the local element formulation and order, and provide a symmetric tangent 

stiffness matrix [18] by virtue of achieving explicit kinematic transformations between the 

global and local reference systems.  

3.1 Quadrilateral Element  

The local co-rotational system proposed previously [18] for a 4-noded shell element is 

depicted in Figure 3, where the local x and y axes are chosen as the bisectors of the two 

diagonals of the undeformed element, and rigid body rotations are extracted by orienting 

these local planar axes so as to also bisect the element diagonals in the current deformed 

configuration. Clearly, this simple definition automatically satisfies the orthogonality 

requirement for the two planar axes, and importantly it leads to a relative local orientation of 

the deformed to the undeformed configuration which is invariant to nodal ordering. On the 

latter point, it is true that starting from a different node leads to different local axes; however, 

the eight possible sets of axes represent permutations over three specific orthogonal 

directions relative to the global system, which always leads to the same global element forces 

and tangent stiffness matrix regardless of the element nodal ordering. This bisector definition 
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implies that the local rotations of the element diagonals, from the undeformed to the 

deformed configuration, are minimised, as can be observed from the right inset of Figure 3. 

With reference to Figure 3, the triad ( x y z, ,c c c ) defining the current orientation of the 

local co-rotational system relative to the global system is simply obtained as [18]: 

 13 24 13 24
x y z x y

13 24 13 24

, ,
 

   
 

c c c c
c c c c c

c c c c
 (2) 

with: 

 
ij o

ij ij ij j i

ij

,   
v

c v v d d
v

 (3) 

where o
ijv  is the vector connecting node i to node j in the initial element configuration, and 

T

i i i iU ,V , Wd  represents the global translational displacements of node i. 

3.2 Triangular Element 

A bisector definition of the local co-rotational system for the triangular element becomes 

slightly more involved than for the quadrilateral element, particularly when the property of 

invariance to nodal ordering is to be achieved. In this respect, it is proposed that the 

invariance characteristic can be attained by considering the three internal angles (), 

subtended by the three lines connecting the triangle vertices to its centroid O, and aligning the 

bisectors of the angle that has changed most from the undeformed configuration (say angle 

 , as illustrated in the right inset of Figure 4 for alignment of the bisectors of . Clearly, 

such a definition leads again to a relative local orientation of the deformed to the undeformed 

configuration which is invariant to nodal ordering, ensuring further that the local rotations of 

the three centroidal lines, from the undeformed to the deformed configuration, are minimised. 

For the case where alignment of the bisector of  governs, the triad ( x y z, ,c c c ) defining 

the current orientation can be established as follows: 

 O2 O3
x x y y y x z

O2 O3

ˆ ˆa a , a a ,   


    



v v
c c c c c c c

v v
 (4) 

with: 
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 O2 O3
z

O2 O3

ˆ,  


  



c c
c c c c

c c
 (5) 

 
ik jk Ok

Ok Ok
Ok

, (i j k) 1 3
3


     

v v v
v c

v
 (6) 

and: 

 o o o o
x x y ya , a    c c c c  (7) 

where ijv  is as given by (3) for the quadrilateral element and superscript (o) refers as before 

to entities in the initial undeformed configuration. Similar expressions can be employed for 

the cases in which the alignment of the bisectors of angles  or  are governing the 

orientation of the current local reference system. 

It is important to note the alteration of the selected angle during iteration can lead in rare 

cases to oscillations between two angles, thus causing convergence difficulties, particularly 

when any two values of  , ,    are very close. In this respect, it is proposed that the 

selection of the specific angle to be bisected is fixed during an incremental step according to 

relative values of  , ,    at the last known equilibrium configuration. 

4 ZERO-MACROSPIN DEFINITIONS 

As noted before, the optimal orientation of the local reference system provides a rotated 

undeformed configuration such that the relative spin of the material in the current deformed 

configuration is zero. An equivalent condition is that the material strains are obtained from 

the rotated undeformed configuration using ‘stretch’ operations only, which cannot be 

fulfilled at all material points within an element that is subject to general strain variations 

when a single local reference system is used. Although it is possible to satisfy the zero-spin 

condition at one material point [2], new definitions of the local co-rotational system are 

proposed here which are based on zero-spin at the macro element level, thus reducing the 

material spin in an aggregate sense over the element domain. These zero-macrospin 

definitions of the local co-rotational system maintain all the benefits of the previous bisector 

definitions, including invariance to nodal ordering, element independence and symmetry of 

the tangent stiffness matrix. 
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To introduce the proposed zero-macrospin definitions of the local co-rotational system, 

consider a unit square area, defined by orthogonal unit vectors 
T

x 1 0c  and 
T

y 0 1c , 

which is subjected to a uniform planar ‘stretch’ operation in any two orthogonal directions 

leading to transformed vectors x
c and y

c , as shown in Figure 5. It can be shown that xc  is 

always obtained as the normalised sum of x
c  and n

yc , where 
n

y
c  is a planar rotation of y

c  by 

/ 2 . yc  is similarly obtained as the normalised sum of y
c  and n

xc , where n
xc  is a planar 

rotation of x
c  by / 2 . Accordingly, if zc  is known, the remaining vectors of the triad are 

easily obtained from the stretched vectors as: 

 

n
x y n

x y y z y z xn
x y

, ,
 

     
 

c c
c c c c c c c

c c
 (8) 

The proposed inverse transformation may be used in general to satisfy zero-spin at a 

specific material point, and unlike previous conventional approaches [2] the corresponding 

local system would be obtained in a simple way without the need for iteration. 

Notwithstanding, this relatively simple transformation is employed in this work to ensure 

zero-macrospin at the overall element level, rather than zero-spin at the material level, by 

attaching the stretched triad vectors to the element vertices, as discussed next for the 

triangular and quadrilateral elements. 

4.1 Triangular Element 

With reference to Figure 6, in the initial undeformed configuration, the orthogonal unit 

vectors o
xc  and o

yc  are defined such that o
xc  is aligned with edge 1-2, and these can be 

expressed in terms of the initial element vectors o
12v  and o

23v  as follows: 

 o o o o o o
x x1 12 x2 23 y y1 12 y2 23a a , a a   c v v c v v  (9) 

with the constants x1 x2 y1 y2a , a , a , and a  determined as: 

 

   

o T o
12 23

x1 x2 y1 y2o 2 2
o o T o o o T o12
12 12 23 23 12 23

1 1
a , a 0, a , a

1 1

    

 

c c

v
v c c v c c

 (10) 

 

o
ijo

ij o
ij


v

c
v

 (11) 
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In the current deformed configuration, the stretched vectors x
c  and y

c  are linked to 12v  

and 23v by the same geometric relationship: 

 x x1 12 x2 23 y y1 12 y2 23a a , a a    c v v c v v  (12) 

where ijv  is as given by (3) and the constants x1 x2 y1 y2a , a , a , and a are as given by (10). 

With the stretched vectors x
c  and y

c  obtained according to (12), the rotated unit vectors 

xc  and yc , defining the current orientation of the local co-rotational system, can now be 

established from the inverse ‘stretch’ operation given by (8), taking zc  as the unit normal 

vector in the current deformed configuration, which is expressed as: 

 12 23
z

12 23






v v
c

v v
 (13) 

It is noted that the orientation of an undeformed triangle can always be uniquely 

determined so that a corresponding triangle of any deformed shape may be obtained using a 

uniform ‘stretch’ operation. Therefore, the proposed approach based on zero macrospin is 

invariant to nodal numbering for the triangular element, since the relative orientation of the 

rotated undeformed and the current deformed configurations is uniquely defined. 

4.2 Quadrilateral Element 

Unlike the triangular shape, it is not possible to obtain an arbitrarily deformed 

quadrilateral shape using a single uniform ‘stretch’ operation, regardless of the orientation of 

the undeformed quadrilateral. This can be easily appreciated from the fact that each of the 

component triangles in the quadrilateral shape may require a different orientation of the 

undeformed configuration to obtain the corresponding deformed shape from a ‘stretch’ 

operation. Therefore, the application of the zero-macrospin condition to the quadrilateral 

element could lead to different relative orientations of the current undeformed and deformed 

configurations, depending on which three nodes are attached to the stretched planar vectors, 

thus violating invariance to nodal ordering. This potential shortcoming is overcome in this 

paper by linking the stretched planar vectors to all four nodes via the two diagonals. 

Assuming the local x and y axes to be the bisectors of the diagonals in the undeformed 

configuration, as shown in Figure 3, the following relationship is obtained:  
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o o o o

o o o o o o13 24 13 24
x x1 13 x2 24 y y1 13 y2 24o o o o

13 24 13 24

a a , a a
 

     
 

c c c c
c v v c v v

c c c c
 (14) 

with the constants x1 x2 y1 y2a , a , a , and a  determined as: 

 x1 x2o o o o o o
13 13 24 24 13 24

1 1
a , a  

 v c c v c c
 (15) 

 y1 y2o o o o o o
13 13 24 24 13 24

1 1
a , a 

 v c c v c c
 (16) 

Similar to the triangular element, in the current deformed configuration the stretch vectors 

can be related to current diagonals 13v  and 24v  with the same expression: 

 x x1 13 x2 24 y y1 13 y2 24a a , a a    c v v c v v . (17) 

Again, with the stretched vectors x
c  and y

c  obtained according to (17), the rotated unit 

vectors xc  and yc , defining the current orientation of the local co-rotational system, can now 

be established from the inverse ‘stretch’ operation given by (8), taking zc  as the unit normal 

vector in the current deformed configuration: 

 13 24
z

13 24






v v
c

v v
 (18) 

Via the use of diagonals in the establishment of the co-rotational coordinates, this zero-

macrospin definition of the local co-rotational system for quadrilateral elements provides 

invariance to nodal ordering. It should be noted that if the deformed quadrilateral 

configuration represents a uniform ‘stretch’ of the undeformed configuration, then the 

proposed zero-macrospin definition ensures the satisfaction of zero-macrospin for all 

component triangles; otherwise, the latter is typically satisfied only in an average sense.  

 

5 LOCAL ELEMENT FORMULATIONS 

The proposed definitions of the local co-rotational system are readily applicable to local 

small strain triangular and quadrilateral shell elements. Flat and curved shell elements are 

considered in the present work, including in each case triangular and quadrilateral elements, 

the local kinematics of which are overviewed hereafter. 
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5.1 Flat shell elements 

As is illustrated in Figure 7, two flat shell elements are formulated such that five basic 

parameters (three translations and two rotations) are utilised at each node in addition to four 

hierarchic parameters (two normal/tangential planar translations, one normal rotation, and 

one tangential shear parameter) at each edge. With reference to Figure 7.b, before the 

application of the edge shear constraints to the element, 6 hierarchic parameters 

( i i 1,i 2,i x,i y,iu , v , w , w , ,  ) are defined at each edge to allow for quadratic modes for planar 

displacement (u, v) and rotation ( x y,  ) fields along with cubic modes for transverse 

displacement field w, which leads to the following set of parameters: 

 
T

e T T
b au u u  (19) 

 
1 n 1 n 1 n 1 n

T T

b 1 n 1 n 1 n x y a 1 n 1 n 1 2n x yu v w , u v w
             u u  (20) 

where: bu is the vector of basic nodal parameters; au contains hierarchic edge parameters 

before the introduction of edge shear constraints to the element; and n represents the number 

of element nodes/edges, with : and :  referring to hierarchic parameters that correspond to 

quadratic and cubic hierarchic functions, respectively. Note that the sign convention for 

displacement fields and hierarchic edge parameters is shown in Figure 8. 

The local element geometry and displacement fields for the triangular and quadrilateral 

elements are interpolated as follows: 

 
n n n

L L L
i i i i i i

i 1 i 1 i 1

x( , ) N x , y( , ) N y , z( , ) N z
  

            (21) 

  
n n

L Q
i i i i i ii

i 1 i 1

u( , ) N u N c u s v
 

       (22a) 

  
n n

L Q
i i i i i ii

i 1 i 1

v( , ) N v N s u c v
 

       (22b) 

 1 2

n n n
C CL

i i 1,i 2,ii i
i 1 i 1 i 1

w( , ) N w N w N w
  

        (22c) 

  
n n

L Q
x i x,i i x,i i y,ii

i 1 i 1

( , ) N N c s
 

           (22d) 
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  
n n

L Q
y i y,i i x,i i y,ii

i 1 i 1

( , ) N N s c
 

           (22e) 

in which: L
iN , Q

iN and C
iN represent linear (bilinear for quadrilateral element), quadratic and 

cubic hierarchic functions of ( , )  , respectively; ic and is represent the direction cosines of 

the local axis along edge i-i+ in relation to the local element x-axis; and n=3 for the triangular 

element while n=4 for the quadrilaterial element. 

For the 3-noded triangular element, the shape functions are expressed in terms of area 

coordinates ( 1 2 3L ,L ,L ) as follows: 

 L Q
i i i iiN L , N 4L L


   (23a) 

    1 2C C
i i i i i i i ii i

9 9
N L L 2L L , N L L 2L L

2 2   
     (23b) 

in which i 1 n  , and i mod(i, n) 1   . The shape functions can then be expressed in 

terms of natural coordinates ( ,  ) by setting 1L 1  , 2L   , and 3L   . 

For the 4-noded quadrilateral element, the shape functions are expressed in terms of 

natural coordinates ( ,  ) as follows: 

      L Q 2
i i i i ii

1 1
N 1 1 , N 1 1

4 2 
       (24a) 

        1 2C C2 2
i i i i i ii i

9 9
N 1 1 3 1 , N 1 1 3 1

32 32 
           (24b) 

in which i 1 n  , 1   , 2   , 3    and 4   . 

The tangential shear strain along edge i-i+, x,i , can be obtained as a quadratic field in 

terms of the basic and hierarchic edge parameters:  

 

 

     

 

i i

x,i i i y,i i x,i 2,i 1,i
i i

i i x,i x,i i y,i y,i 2,i 1,i x,i
i

2
i 2,i 1,i x,i

i

w w 9
( ) s c w 2w

l 2l

9
c s 4w 5w 4

l

81
w w 4 (i 1 n)

2l



 


          

 
           
 

 
      

 

 (25) 

where il is the length of edge i-i+; i is the fractional distance along edge i-i+ from node i, 

which is 0 at node i and 1 at node i+.  
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Constraining this edge tangential strain to a constant value x,i , allows the hierarchic 

parameters ( x,i 1,i 2,i, w , w ) to be obtained in terms of a reduced set of edge parameters 

( i x,i y,i j x, j y, j x,iw , , , w , , ,     ) with the use of (25), as shown in Figure 7.c. The vector of 

reduced parameters can then be expressed as: 

 
1 n 1 k

T Te T T
b a a 1 n 1 n y x, u v

     u u u u  (26) 

However, for  the case of a simple support along the edge i-i+ a constant x,i cannot be 

achieved for all combinations of nodal parameters, since the edge must remain straight, and 

hence the hierarchic parameters ( 1,i 2,iw , w ) must be zero. Therefore, for a simply supported 

edge, ( 1,i 2,i x,iw , w , ) are taken as zero, which essentially corresponds to a linear variation for 

( x yw, ,  ) and x,i . Otherwise, the parameters ( 1,i 2,i x,iw , w , ) are determined from (25) so 

as to satisfy a constant edge shear strain x,i . If a binary variable ( i ) is used for edge i-i+, 

with values of 0 and 1 indicating the presence and absence of a straight edge constraint, 

respectively, then the hierarchic edge parameters ( 1,i 2,i x,iw , w , ) can be expressed in terms 

of (
1 n 1 n1 n

1 n x y xw , , ,
 

    ): 

 
1 (2n n) 2 (2n n) 3 (2n n) 4 (2n n) x

x 5 (n n) 6 (n n) 7 (n n) 8 (n n) y

x

   

   

 
 
    

       
       

 
 
 

w

w C C C C θ

θ C C C C θ

γ

 (27) 

 1 2i 1,i 1 2i 1,i 1 2i,i 1 2i,i i

2

27        C C C C  (28a) 

 2 2i 1,i 2 2i 1,i 2 2i,i 2 2i,i i i i

4
2 2 c l

27        C C C C  (28b) 

 3 2i 1,i 3 2i 1,i 3 2i,i 3 2i,i i i i

4
2 2 s l

27        C C C C  (28c) 

 4 2i 1,i 4 2i,i i i

2
l ,

27
    C C i

5 i,i 5 i,i
i

3

2l


   C C  (28d) 

 6 i,i 6 i,i i i

3
c ,

4
   C C 7 i,i 7 i,i i i

3
s ,

4
   C C  8 i,i i

3

2
  C  (28e) 

in which i 1 n  . 

Substituting (27) and (28a-e) into (22c–e) leads to: 
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 yx

n n
w
w,i i x,i y,i x,iw,i w,i w,i

i 1 i 1

w( , ) N w N N N
 

 

         
    (29a) 

  yx

x x x x

n n
w Q

x ,i i x,i y,i i y,i x,ii,i ,i ,i
i 1 i 1

( , ) N w N N N s N
 

   
 

            
    (29b) 

  yx

y y y y

n n
w Q

y ,i i x,i y,i i y,i x,ii,i ,i ,i
i 1 i 1

( , ) N w N N N s N
 

   
 

            
    (29c) 

where the individual shape functions are provided in Appendix A. 

Clearly, linked interpolation is achieved for both ( x y,  ) and w fields. Similar linked 

interpolation was considered for only the w field by Zienkiewicz et al. [22] for elements 

utilising linear/quadratic shape functions, while richer element formulations with 

quadratic/cubic shape functions are considered in the present work without a significant 

increase in element degrees of freedom (i.e. only y,i  and x,i  are required per edge) . It is 

also observed that shape functions associated with the shear parameter x,i are zero for a 

simply supported edge i-i+, indicating that this parameter should not be considered for such a 

case. 

In the context of large displacement analysis for small strain problems, the local strain-

displacement relationship can be taken linear: 

 

x

x x x
xzy

y y
yz

y
xy xy

yx

u

x wx

v x
, ,

wy y

yu v

y x y x

   
  

                               
               

                               
   

       

 (30) 

with geometric nonlinearity considered at the level of the discrete nodal transformations 

between the local and global systems, as presented in Section 6. 

The shape functions for ( x yw, ,  ) of the triangular element can represent the zero /γ

constant   only along the element edges. Within the element domain, cubic terms in w 

appear, which lead to non-zero γ , and hence the constant   patch tests cannot be passed. 

Although the quadrilateral element with a parallelogram geometry can satisfy the zero /γ  

constant   patch test requirement, for a general quadrilateral geometry the shape functions 
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for ( x yw, ,  ) are not sufficient for passing the constant   patch tests. Accordingly, a non-

conforming formulation is employed in which a substitute shear strain field is prescribed in 

terms of the tangential shear strains x,i . The substitute tangential shear strain field is 

obtained by firstly transforming x,i  for all edges into nodal x and y components and then 

interpolating the nodal values over the element domain. Accordingly, the nodal shear strains 

cγ  are related to the element parameters 
e

u  by: 

 
1 n 1 n 1 n 1 n 1 n 1 n

T T

c x y 1 n x y y xw
            γ Q  (31) 

where the terms of Q , taking into account the effect of straight edge constraints, are provided 

in Appendix B. 

The transverse shear strain fields γ  are then interpolated linearly in terms of cγ , thus 

maintaining a compatible distribution of tangential shear strain along the edges even for 

simply supported edges. The corresponding relationship between γ and 
e

u is given by: 

 
1 ne e

1 n

L L 0 0

0 0 L L

  
     

  

γ Su Q u  (32) 

which is employed for the evaluation of shear strains within the element domain. 

By assuming a non-conforming formulation in which the transverse shear strains ( xz yz,  ) 

over the element domain are obtained using a substitute shear field in terms of x,i only [23], 

a mixed Reissner-Mindlin formulation arises. Importantly, setting the x,i  parameters to zero 

derives a discrete Kirchhoff formulation [24] that would be applicable to thin plate analysis.  

5.2 Curved shell elements 

The proposed co-rotational systems are also applicable to curved higher-order triangular 

and quadrilateral shell elements by defining the local system based on corner nodes only. 

Herein, the local kinematics of curved Reissner-Mindlin shell elements based on the MITC 

formulations for 9-noded quadrilateral and 6-noded triangular elements, MITC9 [25] and 

MITC6 [26], are briefly introduced. 

The MITC plate and shell elements have been widely employed in addressing locking 

phenomena. The general MITC formulation procedure can be summarised as follows: 
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(i) Evaluate Green strains directly from displacement fields at a set of prescribed tying 

points. 

(ii) Transform the extracted Green strains into corresponding covariant strain components 

using (33): 

 T
2 2ε J E J  (33) 

where 2E  is the Green strain tensor in terms of Cartesian coordinates; 2ε  is the 

covariant strain tensor; and J  is the Jacobian matrix, which is expressed as: 

 

x x x

y y y

z z z

   
 
  
 
   

  
  
 
   
 
   

J  (34) 

(iii) Interpolate covariant strain fields with the use of the extracted covariant strains: 

 AS DI
rs rs rs,Tε ( , , )    H ε  (35) 

where: r, s ( , , )    ; the superscript ‘AS’ and ‘DI’ refers respectively to the 

assumed strain distribution and the distribution obtained directly from displacement 

fields; rsH  is a row vector of interpolation functions associated with the tying points; 

DI
rs,Tε  consists of the covariant strain values extracted at the tying points. 

(iv) Transform the assumed covariant strain fields to the corresponding Green strain fields 

in terms of real coordinates, obtained from: 

 AS T AS 1
2 2

 E J ε J  (36) 

(v) Replace displacement-based strains with the assumed strain distributions obtained 

from (iv) in the element formulation. 

The MITC9 [25] quadrilateral shell element (Figure 9) performs well, but it does not pass 

the patch test for irregular element shapes due to the varying basis used for sampling and 

mapping covariant strains, which  can be resolved by using a constant Jacobian matrix 

evaluated at the element centre [27]. This is equivalent to replacing (33) and (36) with: 
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 T
2 C 2 Cε J E J  (37) 

 AS T AS 1
2 C 2 C

 E J ε J  (38) 

where CJ  is the Jacobian matrix evaluated at the element centre ( 0, 0   ). Similarly, the 

MITC6 [26] triangular shell element (Figure 10) is enhanced with the same method [28], 

where CJ  is evaluated at ( 1 3  , 1 3  ). 

In this work, Reissner-Mindlin shell elements are developed based on MITC9 and MITC6 

local formulations, where five basic nodal parameters (three translations and two rotations) 

are utilised, as denoted previously by bu  in (20). The shape functions for isoparametric 

mapping of the element geometry and local displacement fields are as follows. 

For the 9-noded quadrilateral element, the shape functions are expressed in terms of 

natural coordinates ( ,  ): 

 
  

  

  

  
i i i i

i
i i i i i i i i

N (i 1 9)
        

   
           

 (39) 

where i i( , )   represents the natural coordinates of node i; i i i( ) 1, 0,1        ; and 

i i i( ) 1, 0,1        . 

For the 6-noded triangular element, the shape functions are first expressed in terms of area 

coordinates ( 1 2 3L ,L ,L ): 

 i i i i 3 i iN L (2L 1), N 4L L (i 1 3)       (40) 

and are then expressed in terms of natural coordinates ( ,  ) by setting 1L 1  , 2L   , 

and 3L    (Figure 10). 

The element strain state is fully determined by membrane strains m
ε , bending strains b

ε , 

and transverse shear strains s
ε . Although a geometric linear local element formulation may 

be used within the co-rotational framework for geometric nonlinear analysis, a quadratic 

strain-displacement relationship based on von Karman’s theory is adopted to achieve 

improved accuracy with coarser meshes, where the various generalised strains are as follows: 
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2 2

x

2 2

m
y

xy

1 z w 1 z
u

2 x x 2 x
x

v 1 z w 1 z

y 2 y y 2 y

u v z w z w z z

y x x x y y x y

                             
                       

           
                                                

ε




 (41a) 

 

x
x

yb
y

yx
xy

x

y

y x

    
   
          

   
   
        

ε  (41b) 

 

xz x
s

yyz

w

x

w

y

        
    


        

ε  (41c) 

Before employing the tying schemes for the element formulation, further assumptions are 

made that the element is shallow and thin, so that the natural coordinate axis   is taken to 

have an identical orientation to the local z-axis, and the transverse normal strain z  is ignored.  

Accordingly, the Jacobian matrix is simplified to: 

 

x x
0

y y
0

t
0 0

2

  
  
 
  

   
 
 
 
 

J  (42) 

where t is the shell thickness. This simplification enables decoupled relationships between 

real strains and covariant strains, with each set of the generalised real strains related to their 

covariant counterparts only, which are expressed thus as: 

 
x xy

T
p p

xy y

1

2

1

2

 

 

 
    

   
      

  

J J  (43a) 
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x xy

T
p p

xy y

1

2

1

2

 

 

 
    

   
      

  

J J  (43b) 

 
xz

T
p

yz

1

t 2

12

2





 
    

   
   

  

J  (43c) 

where pJ  is a sub-matrix of J : 

 

 p

x x

y y

  
  
 
  
   

J  (44) 

By using (43a-c) and evaluating pJ at the element centroid, the strains at each tying point 

are readily transformed to the covariant strains, which are then used in mapping the assumed 

covariant strain fields. The positions of the tying points for the MITC9 and MITC6 elements 

are shown in respectively Figure 9 and Figure 10, where the associated interpolation 

functions for the covariant strains can be found elsewhere [25, 26]. Once the distribution of 

the covariant strain fields is obtained, these are transformed back to real assumed strains in 

the local co-rotational system via the use of (43a-c), and these are then used in the 

formulation of the local response of the 6-noded and 9-noded curved shell elements. 

 

6 LARGE DISPLACEMENT TRANSFORMATIONS 

The proposed bisector and zero-macrospin definitions of the local co-rotational system 

benefit from nodal invariance, and importantly they are completely independent of the local 

element formulation including it order. This is illustrated here in the derivation of the large 

displacement transformations relating local and global element entities, which are generically 

applicable to the different local formulations of flat and curved shell elements of a specific 

triangular or quadrilateral shape, as presented in the previous section. 
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Local nodal translations are established from the global translational degrees of freedom 

by rotating the initial undeformed configuration about the origin of ( o o o
x y z, ,c c c ) to the current 

local system orientation, as defined by ( x y z, ,c c c ), and then measuring the translations from 

the rotated undeformed configuration. On the other hand, the local nodal rotations are 

determined as the projection of the nodal normals on the rotated local reference system 

( x y z, ,c c c ). For smooth surfaces where normals are uniquely defined over the domain, only 

two global rotational parameters are required for each node. Therefore, the two smallest 

components of each nodal normal are directly used as global rotational degrees of freedom 

when dealing with finite rotations of the normal [18], resulting in five global parameters per 

node: 

 
T

T T
Gi i iU d n  (45) 

where id  represents the global translational displacements of node i, as defined in 

Section 3.1, in is the normal vector at node i, and 
i i

T

i i, i, n n n represents the two 

components of in which are smallest in absolute terms, the third component 
ii,n being 

determined by the constraint of a unit in . The indices i , i  and i  are established from the 

following condition: 

 
i i i

o o o
i, i, i,   n n n  (46) 

where o
in is the normal vector of the last known equilibrium configuration. Therefore, the 

indices i i i, ,and   are revised at the beginning of each step. 

Accordingly, the three components of the normal can be obtained from the two parameters 

(
i ii, i,, n n ) as: 

 
i i i i

o T
i, i,1 i, i,2 i, i, i i, , sign( ) 1      n n n n n n n n  (47) 

It is noted here that the case of shell elements meeting at an angle can be dealt with using 

3 global nodal rotational parameters at the intersections, which define the normal vectors in  

using a suitable rotation matrix, such as the quadratic incremental rotation matrix previously 

proposed by the first author [29]. 

In the co-rotational system, there are five local basic parameters per node: 
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T

T T
Ci i iU t r  (48) 

where: 
T

i i i iu , v , wt  represents the local translational displacements of node i; 

T

i x,i y,i,  r  represents the two rotations at node i in the local x-z and y-z planes, 

respectively. 

Note that CiU  represents the basic local nodal parameters, defined as bu  in (26), 

associated with node i, which are obtained from the corresponding global parameters GiU  

using co-rotational transformations. For the flat shell elements of Section 5.1, which use 

additional hierarchic degrees of freedom au at edges, the four hierarchic parameters are 

directly shared between adjacent elements, and as such they are excluded from the co-

rotational transformations.  

For both flat and curved shell elements, the transformation between global and local 

translational displacements can be expressed as [18]: 

  o o
i i io (i 1 n)    t Rd R R v  (49) 

where o
R and R are the orientation matrices of the local co-rotational system in the initial 

and current configurations, respectively, defined as: 

 
T To o o o

x y z x y z,       
R c c c R c c c  (50) 

and o
iov is a vector describing the initial position of node i relative to a reference point o, 

which in turn represents the centre of rotation of the initial configuration to align with the 

current configuration. For triangular elements, the reference point o is selected as node 1, 

while for quadrilateral elements the intersection of the diagonals and the internal node are 

selected for the 4-noded and 9-noded shell elements, respectively. Nevertheless, it should be 

noted that choice of the reference point does not impact on accuracy, since a change in 

location of o merely results in the addition of an increment of rigid body translations to which 

the local element formulation should be insensitive. 

The transformation between global and local rotations for both triangular and quadrilateral 

elements is [18]:  

 
T

i i x y, (i 1 n)      r Rn R c c  (51) 
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Note that the current orientation of the local reference system ( x y z, ,c c c ) depends on the 

adopted definition, whether bisector or zero-macrospin, as discussed in Sections 3 and 4.  

The remaining transformations between the local co-rotational and global reference systems 

relate to the determination of the global nodal forces and tangent stiffness matrix from the 

corresponding local entities, requiring the first and second partial derivatives of local 

parameters with respect to global parameters. These derivatives depend in turn on the first 

and second partial derivatives of ( x y z, ,c c c ) with respect to global translational degrees of 

freedom, where the first derivatives are given in Appendix C and the second derivatives can 

be similarly derived. It is emphasised that the resulting tangent stiffness matrix is always 

symmetric for all proposed definitions of the local co-rotational system, since in all cases the 

triad ( x y z, ,c c c ) is explicitly, thus uniquely, related to the global translational parameters, 

leading to explicit relationships between the local and global parameters.  

7 NUMERICAL EXAMPLES 

The large displacement co-rotational approach based on the local system definitions 

proposed in Sections 3 and 4 has been implemented in ADAPTIC [30] v2.12.9 for the flat 

and curved shell elements introduced in Section 5. Several numerical examples are 

considered hereafter employing ADAPTIC to assess the relative accuracy of the various 

definitions, using in all cases Reissner-Mindlin elements. The simplest local system for both 

the triangular and quadrilateral elements, namely that following the first element edge and 

violating nodal invariance as described in Section 2, is also considered here for comparison. 

In presenting the results, the various local system definitions and element types are referred 

to by element codes, as listed in Table 1. 

7.1 Clamped strip under torsion 

A flat strip, fully clamped at one end, is subjected to a force couple at the free end, as 

depicted in Figure 11. The geometric and material parameters are given as L 12 , w 1 , 

h 0.1 , 
6E 1.2 10  , and 0.0  . 

The strip is first modelled with quadrilateral elements using 121 and 242 meshes. 

Figure 12 shows the deflected shape of the strip for a 242 mesh. The equilibrium paths of 



26 

 

the z-displacement at Point A with different co-rotational systems are plotted in Figures 13 

and 14 for two respective meshes. Four alternative co-rotational systems are employed for the 

first-edge definition, in which the x-axes of FEQ-1 ~ FEQ-4 are aligned respectively with 

edge 1-2, 2-3, 3-4, and 4-1 as denoted in Figure 11. It is emphasized that the results with the 

BSQ and the ZMQ definitions are completely insensitive to nodal ordering, in the sense that 

identical predictions are obtained regardless of the order in which the element nodes are 

specified. It is observed from Figure 13 that the BSQ and ZMQ definitions yield the same 

results, which are consistent with the results from a finer mesh (242) with the ZMQ 

definition. However, the mesh with four FEQ co-rotational systems leads to different 

equilibrium paths, owing to the significant twisting involved in this large displacement 

problem, as explained in Section 2. Due to the element twisting, the four nodes in the 

deflected element configuration are not in the same plane, thus leading to results with the 

FEQ definition, which incorporates only three nodes in determining the element normal, 

highly dependent on nodal ordering. By contrast, the two proposed co-rotational systems, 

BSQ and ZMQ, use all four nodes in the determination of the element plane, thus achieving 

nodal invariance and leading to more accurate predictions. Figure 14 shows the results for the 

finer mesh (242), in which the element twisting is reduced with mesh refinement for all co-

rotational system definitions. It is observed that the deviation of the FEQ results from the 

BSQ/ZMQ results is reduced, though there are still significant discrepancies for a relatively 

fine mesh, particularly at large displacements. This confirms the importance of nodal 

invariance for small strain plate/shell problems in the presence of twisting, as noted in 

Section 2. 

The strip is next modelled with triangular elements using a 121 mesh (see Figure 11) and 

considering the various co-rotational systems. Also provided in the figure is the result from a 

121 mesh of quadrilateral elements with the zero-macrospin co-rotational approach. In this 

example, changing the order of element nodes has little influence on the results with the first 

edge co-rotational approach, so only one FET curve is plotted against the ZMT and the BST 

curves. Figure 15 indicates that the three definitions of the co-rotational approach for the 

triangular element lead to almost identical results throughout the large-displacement small-
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strain range, owing to the fact that in all of the three definitions the element normal is 

correctly defined. In addition, the mesh of triangular elements with various local co-rotational 

approaches yields results very close to that of the mesh with quadrilateral elements. 

7.2 Annular plate under transverse end shear 

An isotropic annular plate, which is fully clamped at one end, is subjected to a uniformly 

distributed transverse load at the other end, as is shown in Figure 16. The geometric and 

material properties are specified as: 1R 6 , 2R 10 , h 0.03 , 
6E 21.0 10  , and 0.0  . 

The whole plate is first modelled with 244 and 488 meshes of the quadrilateral element 

with various co-rotational systems, and the displacement in the z direction at point A is 

investigated. The deformed configuration with the 244 mesh is shown in Figure 17. 

This is again a characteristic shell problem involving significant twisting. Two alternatives 

of the first-edge co-rotational system definition are considered, in which the local x-axes of 

FEQ-1 and FEQ-2 orient respectively to the circumferential and the radial directions. Figure 

18 depicts the load-displacement curves for the coarser 244 mesh, and the ZMQ solution 

with a 9616 mesh is used as a reference solution. Similar to the previous example, the BSQ 

and the ZMQ curves coincide and are very close to the reference solution, while the FEQ 

results show significant errors at large displacements. Also shown in the figure are the results 

of models by Arciniega and Reddy [31] and Sze et al. [32], both of which utilise a 

comparable number of degrees of freedom (see Table 2). The ZMQ and BSQ solutions 

compare well against the results by other researchers [31, 32], indicating the reliability of 

both proposed co-rotational approaches. The discrepancy of the FEQ system is reduced with 

the finer 488 mesh though it is still tangible, as illustrated in Figure 19.  

The annular plate is next modelled with triangular elements using a 244 mesh, as shown 

in Figure 16. Also depicted in the figure is the solution from a 244 mesh of quadrilateral 

elements with the zero-macrospin approach employed. The load-displacement curves 

corresponding to the three definitions of the co-rotational systems for the triangular element 

again coincide throughout the large-displacement small-strain range, and are almost identical 

to the solution of a quadrilateral element mesh, as shown in Figure 20. 
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Together with the previous example, the obtained results demonstrate the effectiveness of 

the proposed bisector and the zero-macrospin co-rotational systems in plate/shell problems 

involving significant twisting. The importance of the invariance characteristic is particularly 

manifested for quadrilateral elements. With the participation of the four corner nodes in 

determining the orientation of the co-rotational system, including the effective normal, nodal 

invariance is obtained, and accurate results are achieved for relatively coarse meshes. Since 

the effective normal is uniquely defined for the triangular element, regardless of the co-

rotational system definition, the discrepancy between the various definitions is significantly 

reduced, as anticipated in Section 2 for small strain problems. 

7.3 Skew plate under point load 

Consideration is given here to a thin skew plate, clamped along two opposite edges and 

free along the remaining two edges, which is subjected to a point load P applied at the plate 

centre, as depicted in Figure 21, with the deflected configuration under loading shown in 

Figure 22. The geometry and material properties for the plate are: L 2 , 60  , h 0.1, , 

6E 1.2 10  , and 0.25  . 

Figure 23 shows the load-centre deflection curves for 168 and 3216 meshes of the 

quadrilateral elements using different co-rotational systems. Two cases of the first edge co-

rotational system definition are chosen such that the x-axes of FEQ-1 and FEQ-2 are parallel 

to the free edge and the clamped edge, respectively. It is observed that the BSQ and ZMQ 

results for each mesh are identical for the considered meshes where the element aspect ratio 

is 1.0, and convergence is exhibited with relatively small errors for the coarser mesh. By 

contrast, the FEQ solution is highly dependent on nodal ordering in the sense that the two 

FEQ curves are quite different, with the FEQ-1 results terminating at a displacement of 

around 1.0 due to excessive local twisting and the FEQ-2 results deviating significantly from 

the converged BSQ and ZMQ results. 

To investigate the effect of element aspect ratio on the relative accuracy of the ZMQ and 

the BSQ approaches, a 1616 mesh of quadrilateral elements, corresponding to an element 

aspect ratio ( r 2 ), is employed for the two approaches, where the predicted response in the 
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range of large displacements (1.0 to 1.8) is compared in Figure 24. Also incorporated are the 

solutions using 168 and 3216 meshes with a unit element aspect ratio ( r 1 ), which bound 

the solution with the 1616 ZMQ element mesh. Similarly, Figure 25 presents the solutions 

using a 1632 mesh, corresponding to a more elongated element aspect ratio ( r 4 ), with the 

results of 168 and 6432 meshes again bounding the 1632 ZMQ solution. From both sets 

of results, it is notable that a discrepancy arises between the bisector and zero-macrospin 

definitions for elongated elements at large displacements, with the discrepancy increasing 

with element elongation. Although it is arguable whether a linear local element formulation is 

realistic for this problem in the range of very large displacements, given that significant 

planar strains are induced, it is evident that the zero-macrospin definition offers a more 

consistent approach than the bisector definition, in relation to element aspect ratio, that is 

applicable for a wider range of strains. This is attributed to the ability of the zero-macrospin 

approach to minimise material spin over the local element domain regardless of the element 

aspect ratio. 

Finally, the skew plate is modelled with triangular elements using 1616 and 

3232meshes, with a mesh pattern similar to that shown in Figure 21. Two first-edge co-

rotational system definitions are considered, in which the x-axes of FET-1 and FET-2 are 

parallel to the free and clamped edges, respectively. It is observed from Figure 26 that the 

BST and ZMT solutions for each of the meshes are virtually identical, suggesting that the 

difference between the two proposed definitions is not significant for triangular elements. In 

contrast, the FET solutions deviate from each other and from the BST/ZMT solutions, 

indicating dependence of the FET results on nodal ordering and their inaccuracy in the range 

of moderate displacements. This inaccuracy arises from the fact that material spin cannot be 

generally reduced with a first-edge definition for the co-rotational system and strongly 

depends on nodal ordering, as previously discussed in Section 2.   

7.4 Hinged cylindrical shell under a point load 

A cylindrical shell, hinged along its two straight edges, is subjected to a central point load 

F, as depicted in Figure 27. The shell has a radius R=2540, half-length L=254, and half-
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substending angle β=0.1 rad. In this problem, two alternative shell thicknesses, t = 12.7 and 

6.35, are considered. The isotropic material properties are E 3.105  and 0.3  . In this 

problem, the curved shell elements BSQ2 and ZMT2 are employed in separate models to 

demonstrate the effectiveness of the proposed co-rotational systems. Due to symmetry, a 

quarter of the shell is modelled using the BSQ2 and the ZMT2 elements with different mesh 

sizes. Figure 27 shows a 33 mesh of ZMT2 elements.  

The central load-deflection curves for the two different shell thicknesses are plotted in 

Figures 28 and 29.  Also presented are the convergent results by Li et al. [3] who used a 33 

mesh of 6-noded elements, and Kim et al. [8] who used a 442 mesh of 8-noded 

degenerated solid-shell elements. Clearly, the 22 mesh of BSQ2 gives a convergent solution 

for both thicknesses considered, while the ZMT2 results is convergent with respectively a 

22 and a 33 mesh for the two thicknesses. Note that for both BSQ2 and ZMT2 models, the 

predicted response remains unchanged with different nodal ordering, and the predictions for 

the two thicknesses compare well with the results of others [3, 8].   

7.5 Pinched hemispherical shell 

A hemispherical shell, with a radius of 10 and thickness of 0.5, is subjected to an 

orthogonal set of two inward and two outward forces, as depicted in Figure 30. The material 

response is assumed to be elasto-plastic with a von Mises yield criterion and isotropic strain 

hardening, where 
1E 1.0 10  , 0.2  , yf 0.2 , and H 9.0 , in which H is a constant 

hardening parameter associated with equivalent plastic strains. Due to symmetry, only a 

quarter of the hemisphere is modelled, where the curved shell elements BSQ2 and ZMT2 are 

employed to demonstrate the effectiveness of the proposed co-rotational system definitions. 

The discretisation patterns for the quadrilateral and the triangular elements are illustrated in 

Figure 31, while Figure 32 depicts the deformed configuration of the pinched hemisphere. 

For both element types, 66 and 1212 meshes are employed for the quarter model in each 

of the three subdomains, and 5 Gauss points are employed over the thickness to capture the 

spread of material plasticity. The load-deflection curves at the pinching points A and B for 

BSQ2 and ZMT2 are plotted in Figures 33 and 34, respectively, where it is evident that a 66 
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mesh provides a convergent solution for both the BSQ2 and ZMT2 elements. Also shown in 

the figures are results from Bestch and Stein [33] using three subdomains of 1616 4-noded 

quadrilateral elements, Eberlein and Wriggers [7] using three subdomains of 1212 4-noded 

quadrilateral elements, and Li et al. [4] using three subdomains of 66 6-noded triangular 

elements. Note that the number of nodes in a 66 mesh of either 9-noded or 6-noded 

elements equals that in a 1212 mesh of 4-noded elements. Therefore, all the reference 

results have comparable number of nodes with the 66 mesh of BSQ2 and ZMT2. Evidently, 

the BSQ2 and ZMT2 curves match well with the results of Bestch and Stein [33] and 

Eberlein and Wriggers [7], thus verifying the accuracy of the co-rotational system definitions. 

As in previous examples, changing node numbering yields identical results for both the 

BSQ2 and ZMT2 models. Table 3 lists the predicted deflections at pinched points A and B 

under F=0.03 with a 66 mesh of various elements, considering the two nodal ordering 

sequences shown in Figure 35. The MH6T results are given by Li et al. [4], who used the 

first-edge definition of the co-rotational system for the 6-noded element. As evident from 

these results, the BSQ2 and ZMT2 results are invariant to element nodal ordering, in contrast 

with the MH6T results which show a discernible difference for the two nodal ordering 

sequences. 

8 CONCLUSIONS 

This paper proposes two effective definitions of the local co-rotational approach, both of 

which are applicable to triangular and quadrilateral elements, and both satisfying the 

requirements of i) being simple to establish, ii) achieving nodal invariance, iii) reducing the 

spin of the element, and iv) providing a symmetric element tangent stiffness matrix. 

Although the significance of nodal invariance for the co-rotational approach in the context 

of large strain problems and certain stability problems have been previously recognised, its 

importance in small strain problems has been largely discounted. This work demonstrates 

there is a class of plate bending problems with significant twisting that pose additional 

specific requirements on this invariance characteristic in large displacement analysis even for 

small strains. Within this context, two efficient definitions of the co-rotational approach, 
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namely the bisector definition and the zero-macrospin definition, are proposed for large-

displacement small-strain plate/shell problems. 

The bisector definition, previously presented for quadrilateral elements [18], defines the 

local axes by aligning the bisectors of the two diagonals of the undeformed element with 

those of the current deformed configuration. This definition is herein elaborated to deal with 

triangular elements, where the bisectors of the angle that has changed most from the 

undeformed configuration are aligned. As an alternative to the bisector definition, a zero-

macrospin definition is also proposed, which is applicable to both triangular and quadrilateral 

elements. Based on this definition, the element deformations are obtained from the rotated 

undeformed configuration using ‘stretch’ operations only, thus minimising the spin over the 

element domain.  

The two proposed definitions of the co-rotational system enable the local element triad to 

be obtained directly from global nodal coordinates in the deformed configuration, where the 

explicit relationship between local and global variables guarantees a symmetric element 

tangent stiffness matrix. In each of the definitions, all corner nodes are involved in defining 

the local triad, thus achieving the nodal invariance and independence of the local element 

formulation and order. In addition, both approaches reduce the spin of the element, where the 

bisector definition minimises the spin of diagonal angles (for quadrilateral elements) or the 

internal angle that changes most (for triangular elements), whilst the zero-macrospin 

definition obtains the element deformation by employing ‘stretch’ only operations. Therefore, 

both definitions fulfil all the stated requirements for an effective co-rotational system that is 

applicable to large-displacement small-strain problems. 

Results obtained from several numerical examples demonstrate that both bisector and 

zero-macrospin definitions of the co-rotational approach address the four requirements well 

for large-displacement small-strain problems, but that the zero-macrospin definition is more 

consistent for quadrilateral elements for a wider range of strains. 
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APPENDIX A: LINKED SHAPE FUNCTIONS 

Explicit expressions of 
x yw,i ,i ,i x yN , N , and N ( w, , , )  
        for the triangular and the 

quadrilateral elements are given by: 
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where the shape functions L
iN , Q

iN , 1C
iN , and 2C

iN  refer to (23a-b) for the triangular 

element and to (24a-b) for the quadrilateral element. 
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APPENDIX B: Q MATRIX 

The Q matrix can be established from (25) and (27), with the non-zero terms given by: 
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where i mod(i n 2,n) 1     . 
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APPENDIX C: FIRST DERIVATIVES OF LOCAL PARAMETERS 

The first derivatives of local parameters with respect to global parameters involve the 

differentiation of the local translations and rotations ( t  and r ) with respect to the global 

translational and rotational parameters ( d  and n ), which can be obtained through chain 

differentiation.  

The required first derivatives for triangular and quadrilateral elements are obtained from 

(49)-(51) [18]: 
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The main difference in the first derivatives between the bisector and zero-macrospin 

definitions of the co-rotational system arises from the partial derivatives of ( x y z, ,c c c ) with 

respect to global translational degrees of freedom. The first derivatives of ( x y z, ,c c c ) with 

respect to global translational degrees of freedom in accordance with the bisector definition 

have been provided in [18]; hereafter, the first derivatives associated with the zero-macrospin 

definition are obtained. 

For quadrilateral elements: 
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The expressions in (C5), (C7) and (C10) are also applicable to triangular elements, while 

the derivatives x i,p
 c d , y i,p

 c d , and z i,p c d are different: 
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Table 1: Variants of co-rotational system definitions. 

Element Code Co-rotational system Local Element Formulation 

ZMQ Zero-macrospin Quadrilateral / Flat 

BSQ Bisector Quadrilateral / Flat 

FEQ First-edge Quadrilateral / Flat 

ZMT Zero-macrospin Triangular / Flat 

BST Bisector Triangular / Flat 

FET First-edge Triangular / Flat 

BSQ2 Bisector Quadrilateral / Curved 

ZMT2 Zero-macrospin Triangular / Curved 
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Table 2: Number of degrees of freedom in different models. 

Model Mesh Number of nodes/element Element DOFs Total active DOFs 

Present  244 4 5/node + 4/edge 1464 

Arciniega & Reddy [31] 51 49 7/node 1715 

Sze et al. [32] 306 4 6/node 1260 
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Table 3: Deflections at pinched points A and B under F=0.03. 

Model 
Deflection 

Point A Point B 

BSQ2-1 4.0452 8.3230 

BSQ2-2 4.0452 8.3230 

ZMT2-1 4.0278 8.2993 

ZMT2-2 4.0278 8.2993 

MH6T-1 (Li et al. [4]) 3.8313 7.9992 

MH6T-2 (Li et al. [4]) 3.8278 7.9864 

 

 



 

Figure 1: First-edge co-rotational system and local deformations for triangular element. 

  



 

Figure 2: Rectangular plate subject to planar and out-of-plane twisting curvatures. 

  



 

Figure 3: Bisector local co-rotational system and global nodal freedoms for quadrilateral element. 

  



 

Figure 4: Bisector local co-rotational system and global nodal freedoms for triangular element. 

  



 

Figure 5: Influence of a uniform ‘stretch’ operation on a unit square area. 

  



 

Figure 6: Zero-macrospin local co-rotational system for triangular element. 

 

  



 

Figure 7: Reference system and parameters of quadrilateral and triangular elements. 

  



 

Figure 8: Sign convention for nodal and hierarchic edge parameters. 

  



 

 

Figure 9: Positions of tying points for MITC9 element ( a 1/ 3 , b 3 5 , and c 1 ). 

  



 

Figure 10: Positions of tying points for MITC6 element (
1 1

a
2 2 3

  ,
1 1

b
2 2 3

  , and 
1

c
3

 ). 

  



 

 

Figure 11: Clamped strip under end torsion. 

  



 

Figure 12: Deformed configuration of the clamped strip. 

  



 

Figure 13: Load-displacement curves for 121 mesh of quadrilateral elements. 
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Figure 14: Load-displacement curves for 242 mesh of quadrilateral elements. 

  

0

20

40

60

80

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6

F
o

rc
e 

P

Displacement

ZMQ

BSQ

FEQ-1

FEQ-2

FEQ-3

FEQ-4



 

Figure 15: Load-displacement curves for 121 mesh of triangular elements. 
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Figure 16: Annular plate subjected to end transverse distributed load. 

  



 

Figure 17: Deflected configuration of the annular plate with a 244 mesh of quadrilateral elements. 

  



 

 

Figure 18: Load-displacement curves for 244 mesh of quadrilateral elements. 
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Figure 19: Load-displacement curves for 488 mesh of quadrilateral elements. 
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Figure 20: Load-displacement curves for 244 mesh of triangular elements. 
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Figure 21: 60 skew plate subjected to central point load. 

  



 

Figure 22: Deflected shape of the skew plate. 

  



 

Figure 23: Load-displacement curves for 168 and 3216 meshes of quadrilateral elements. 
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Figure 24: Influence of element aspect ratio ( r 2 ) on predictions of bisector and zero-macrospin approaches. 
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Figure 25: Influence of element aspect ratio ( r 4 ) on predictions of bisector and zero-macrospin approaches. 
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Figure 26: Load-displacement curves for 1616 and 3232 meshes of triangular elements. 
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Figure 27: Hinged cylindrical shell under point load.  
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Figure 28: Load-deflection curves for alternative meshes of quadrilateral and triangular elements (t=12.7).  
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Figure 29: Load-deflection curves for alternative meshes of quadrilateral and triangular elements (t=6.35).  
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Figure 30: Hemispherical shell subjected to pinching forces. 

 

  



 

 

                                         

                 a. Quadrilateral element mesh                                        b. Triangular element mesh 

Figure 31: Mesh patterns for a 66 mesh of elements. 

  



 

Figure 32: Deformed shape of the hemispherical shell. 

  



 

 

Figure 33: Load-deflection curves at point A and B for 66 and 1212 meshes of quadrilateral elements. 
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Figure 34: Load-deflection curves at point A and B for 66 and 1212 meshes of triangular elements. 

  

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9

L
o

ad
 F

 (


1
0

-3
)

Deflection

ZMT2: 6x6, point A

ZMT2: 6x6, point B

ZMT2: 12x12, point A

ZMT2: 12x12, point B

Li et al. [4], point A

Li et al. [4], point B

Eberlein & Wriggers [7], point A

Eberlein & Wriggers [7], point B

Bestch & Stein [33], point A

Bestch & Stein [33], point B



 

Figure 35: Alternative nodal ordering schemes for 9-noded and 6-noded elements. 
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